文章快速检索    
氧化还原调控的表观遗传修饰在乳腺癌中的作用
缑晓萌 , 孙洪亮 , 张中国 , 薛欣雨 , 郝景智 , 张红胜     
北京工业大学生命科学与生物工程学院,北京 100124
摘要: 乳腺癌是影响女性健康最主要的恶性肿瘤之一.表观遗传修饰及活性氧(ROS)过度积累引起的氧化应激在乳腺癌发生发展中起关键作用,表观遗传修饰与ROS的生成和清除相互影响.本文通过对目前有关表观遗传修饰和ROS参与乳腺癌的发生发展进行综述,为寻求乳腺癌发生发展的生物标志物及精准治疗提供思路.
关键词: 表观遗传修饰     活性氧     氧化还原状态     乳腺癌    
Epigenetic Modification of Redox Regulation in Breast Cancer
GOU Xiao-Meng , SUN Hong-Liang , ZHANG Zhong-Guo , XUE Xin-Yu , HAO Jing-Zhi , ZHANG Hong-Sheng     
College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
*This work was supported by grants from The National Laboratory of Biomacromolecules (2017kf02), National Undergraduate Training Programs for Innovation and Entrepreneurship (GJDC-2018-01-52) and The Practical Training Plan for The Cross Training of High Level Talents in Beijing Universities (2017271)
** Corresponding author: ZHANG Hong-Sheng, Tel: 010-67396342, E-mail: zhanghs@bjut.edu.cn
Received: May 10, 2018 Accepted: September 3, 2018
Abstract: Breast cancer is one of the most important malignant tumors affecting women's health. Epigenetic modification and oxidative stress caused by excessive accumulation of reactive oxygen species (ROS) play a key role in the occurrence and development of breast cancer. In addition, epigenetic modification and the production and clearance of ROS interact with each other. In this paper, epigenetic modification and ROS involved in the occurrence and development of breast cancer are reviewed in order to provide possible ideas for seeking biomarkers and precise therapy for the treatment of breast cancer.
Key words: epigenetic modification     reactive oxygen species(ROS)     redox state     breast cancer    

Globocan肿瘤流行病学数据显示,2012年全球女性乳腺癌新发病例与死亡数位居女性恶性肿瘤首位,中国近年女性乳腺癌发病例数和死亡例数在世界范围位居前列,其发病增长速度超全球2倍,成为女性发病率最高的癌症.乳腺癌的异质性和在病因学上相关的基因组演变,使现有治疗方案总体效果不尽人意,所以寻找新的作用靶点将对乳腺癌的治疗研究具有重要意义.表观遗传机制已经成为乳腺癌发生进展的基本参与者,因其变化的可逆性可作为治疗乳腺癌的靶标.研究表明乳腺癌组织具有较强的氧化应激状态和明显的抗氧化能力[1].表观遗传修饰与ROS的相互作用影响着乳腺癌的发生发展,研究表观遗传修饰与ROS的相互作用可能对研究乳腺癌中的靶向治疗提供新途径,为精准治疗及个性化治疗提供可能的机会.

1 乳腺癌中的表观遗传修饰

表观遗传是指核苷酸序列不发生变化的情况下,基因的表达活性发生了可遗传的变化,包括DNA甲基化、组蛋白修饰、非编码RNA调控及染色体重塑等,会导致基因转录失调和细胞增殖失常,从而致癌.其中以DNA甲基化和组蛋白修饰的研究最为重要.表观遗传修饰因具有可逆性变化的特点,可以作为治疗乳腺癌的靶点.Teschendorff等[2]证明在邻近癌症的正常组织中存在数以万计的表观遗传学改变,从而支持乳腺癌在表观遗传领域存在修饰.癌发生早期阶段,DNA甲基化和组蛋白修饰引起的染色质结构改变影响细胞可塑性,促进乳腺细胞获得不受控制的自我更新特性;癌发展后期阶段,添加的表观遗传学改变及微环境的信号会调节癌细胞表型并影响肿瘤的转移倾向[3].

1.1 DNA甲基化

DNA甲基化指DNA复制后,S腺苷甲硫氨酸(SAM)上的甲基基团在DNA甲基转移酶(Dnmt)催化下连接到DNA分子胞嘧啶上形成5-胞嘧啶的过程,主要位点是富含CpG二核苷酸的CpG岛.CpG岛常位于转录调控区附近,多项研究证实基因组整体低甲基化往往伴随着局部的DNA高甲基化及该区域基因表达沉默.肿瘤发生早、晚期Dnmt表达增加,表明DNA异常甲基化诱导了肿瘤的发生和发展.Leu等[4]利用RNA干扰技术发现,在癌细胞中所有Dnmt都协同性地过度表达(尤其是Dnmt1和Dnmt3b)以维持DNA甲基化和基因沉默.原癌基因KIT受体酪氨酸激酶在调节细胞增殖、存活和迁移过程中发挥重要作用.Radoslav等[5]的研究表明,与正常乳腺组织相比,KIT启动子在乳腺肿瘤中高甲基化.Good等[6]通过乳腺癌的生物信息学分析,发现TET1的低甲基化会激活致癌途径,这种低甲基化与激活PI3K突变相互排斥,表明去甲基化可能是激活该致癌途径的替代机制.在乳腺癌中,已有100多个基因的启动子发生甲基化,且这些基因在DNA修复(如BRCA1)、组织侵入转移和调节细胞转录中发挥重要作用.研究乳腺癌的甲基化差异,可能针对个体的不同甲基化修饰提出个性化治疗方案,这符合精准医学的要求.

1.2 组蛋白修饰

组蛋白是核蛋白染色质中与DNA分子密切相关的结构,在基因表达调控中发挥重要作用,共有5种类型:H1、H2A、H2B、H3和H4.其中H1作为连接蛋白参与染色质的高级结构,其他4种与DNA结合形成核小体.翻译后修饰是表观遗传调控的一个主要组成部分,根据细胞核内的信号环境,破坏DNA与组蛋白的相互作用改变核小体结构,或形成转录调节因子的结合位点来影响染色质结构,最终影响病理细胞反应.肿瘤细胞的主要特征之一是组蛋白高甲基化和低乙酰化.2014年李海涛教授课题组[7]的研究首次揭示出生物体内存在组蛋白变体特异的甲基化识别蛋白.这种对组蛋白变体和甲基化修饰类型的双重识别,体现了真核生物表观遗传调控的复杂性和重要性,相关结构研究成果也为基于肿瘤抑制因子ZMYND11靶向的小分子抑制剂筛选提供了重要理论基础.

1.2.1 组蛋白甲基化

大部分组蛋白甲基化酶(KMT)含SET结构域,使组蛋白发生2倍或3倍甲基化,导致染色体空间结构松散,影响下游转录因子与靶基因的结合,最终促进肿瘤细胞生长、侵袭和迁移.组蛋白去甲基化酶(KDM)分两类:一类为赖氨酸特异性组蛋白去甲基化酶1(LSD1),对调控上皮-间质细胞转换(EMT)的基因起重要作用;另一类是含JmjC结构域的蛋白质家族,可对组蛋白多个位点进行去甲基化,调控转录、细胞增殖和肿瘤发生等多种生物学过程.

组蛋白甲基化引起的基因表达、激活或抑制取决于被修饰的氨基酸残基.如组蛋白H3上赖氨酸4的单甲基化或三甲基化(H3K4me1或H3K4me3)和赖氨酸36上的三甲基化(H3K36me3)与开放染色质激活转录有关,而组蛋白H3上的赖氨酸9和27的三甲基化(H3K9me3和H3K27me3)与致密染色质抑制基因表达有关[3].LSD1在雌激素受体阴性乳腺癌中高表达,与癌细胞的侵袭性有关,LSD1减少会导致体外生长抑制[8].Messier等[9]使用全基因组ChIP-Seq方法评估正常(MCF-10A)、致瘤性(MCF-7)、促转移性(MDA-MB-231) 3种乳腺癌细胞系,发现启动子处H3K4me3的增加主要发生在三阴性MDA-MB-231细胞系中,表明组蛋白甲基化可能与增加乳腺癌的转移潜能相关.Al Emran A等[10]使用乳腺癌细胞系生成诱导药物耐受细胞(IDTC),在IDTC中观察到H3K4me3和H3K27me3的缺失和H3K9me3标记增加,这是对药物暴露或营养饥饿的明显反应,而且这些表观遗传变化在停止用药后可逆.

1.2.2 组蛋白乙酰化

乙酰化由组蛋白乙酰基转移酶(HAT)和去乙酰化酶(HDAC)共同调控,是一种可逆的蛋白质共价修饰形式.组蛋白的乙酰化可以减少赖氨酸残基与DNA的相互作用,使组蛋白与DNA分离,利于打开染色质使其成为开放结构,促进转录因子与DNA结合,启动基因的转录和表达.研究证实,HAT有抑制肿瘤的功能,但HAT的过量表达同样可以导致癌症的发生[3],当HDAC过量或HAT的数量减少时,组蛋白乙酰化的平衡将偏向去乙酰化,从而导致基因表达的调节异常,因此,HAT和HDAC之间的失衡引起的表观遗传变化会严重影响基因的转录且与肿瘤的发生和进展相关.由此可见,肿瘤细胞内过表达的HDAC可以作为精准治疗的靶蛋白.

组蛋白去乙酰化酶抑制剂(HDACi)可竞争性抑制底物蛋白质与HDAC结合,促进组蛋白乙酰化修饰,利于转录.Muller等[11]未发现HDAC1或HDAC2与乳腺癌的预后有任何关联,而Schech等[12]证明HDACi能有效地选择性抑制Ⅰ类和Ⅳ类HDAC,且能够逆转乳腺癌细胞系中的EMT.Messier等[9]证明组蛋白H3的赖氨酸4的乙酰化(H3K4ac)标记增加是乳腺癌恶性转化所必需的,组蛋白H3的赖氨酸9的乙酰化(H3K9Ac)与开放染色质区域相关.Cui Z等[13]的研究表明,乳腺肿瘤中更常见到HDAC3的高表达、HDAC3高表达与乳腺肿瘤的ER阴性表达、PR阴性表达、HER2过表达、PT分期和临床分期密切相关,并得出HDAC3可能是浸润性导管乳腺癌的一个合适的预后指标.总体而言,这些数据表明特定组蛋白修饰在改变乳腺癌表观基因组中起关键作用,并导致乳腺肿瘤的异质性.因此,我们可以通过靶向特定组蛋白修饰位点为乳腺癌提供治疗方案.

2 氧化还原状态与乳腺癌

ROS又称“氧自由基”,主要产生于线粒体,是需氧生物体内氧分子经呼吸链中的单电子逐步还原形成的一类物质,具有很强的氧化性,包括过氧化氢(H2O2)、超氧阴离子()、羟自由基(·OH)等.胞内的ROS大部分来自于线粒体的氧化磷酸化过程,还有部分来自胞浆,如NADPH氧化酶和PKCβ/p66Shc通路,它们可直接感受外源刺激,诱导胞内产生ROS.同时机体自身也有一套完整的抗氧化防御系统,使细胞内ROS的产生和降解处于平衡状态,保护细胞膜和组织免受损害.抗氧化系统包括两部分:第一部分为抗氧化酶类,包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)等;第二类是含巯基的小分子蛋白质,包括硫氧还蛋白(Trx)和还原性谷胱甘肽(GSH)等.当机体遭受有害刺激使细胞内ROS不能被及时有效清除而过度积累时,氧化系统失衡,出现“氧化应激态”,引起机体多种分子(线粒体、DNA、蛋白质等)的氧化损伤.

乳腺癌的转移能力与细胞氧化还原状态密切相关.氧化还原失衡可以通过氧化还原依赖性的活化蛋白激酶C(PKC)促进生长因子和整合素信号传导,导致丝裂原活化蛋白激酶(MAPK)信号级联和肿瘤细胞迁移[14].ROS在癌症中有双重用途,它不仅可以激活细胞凋亡途径杀死癌症细胞,还可保护正常组织免受放射、化疗毒性.ROS存在这种潜力是因为恶性细胞的增殖和自我更新依赖细胞内ROS的升高,且基于正常健康细胞不具有升高ROS水平的可能[15].氧化还原状态与肿瘤发生发展的相互关系如图 1所示.

Fig. 1 Relationship between redox state and tumor development 图 1 氧化还原状态与肿瘤发生发展的相互关系
2.1 H2O2水平与乳腺癌

H2O2是O2的双电子还原产物,目前至少已有30种酶被鉴定为H2O2产生酶[16],包括超氧化物歧化酶(SOD)、NOX和黄素蛋白脱氢酶.H2O2可作为信使携带一个产生的氧化还原信号到达目标部位,调节转录因子AP-1、Nrf2、CREB、HIF-1α、p53、NF-κB、SP1的活性和EMT[17].H2O2浓度依赖于AP,同时对维持稳态有关键作用.H2O2水平可能对细胞生长有正面或负面的影响,这取决于H2O2增加的水平及所在细胞位置.已经表明,与H2O2的比例决定了癌症的走向:过多支持细胞存活并促进肿瘤发生,而H2O2过多则诱导细胞死亡信号传导[18].乳腺癌细胞在DNA损伤程度很高时,在低浓度H2O2刺激下进行细胞分裂,而较高浓度会抑制细胞生长并最终导致细胞死亡[15].

2.2 锰超氧化物歧化酶(MnSOD)与乳腺癌

SOD是锰依赖性酶,可抑制信号传导.MnSOD是控制线粒体中ROS量的关键因素,至少有2个主要功能:一个是抗氧化功能,防止过量O2导致积累的防御机制;另一个功能是能将转化为H2O2.相比于正常细胞,侵略性癌症中的MnSOD和氧化应激增加.MnSOD具有肿瘤抑制和促进功能,在癌症中的双重作用主要与其在癌症的某个阶段是作为线粒体ROS清除剂还是H2O2生成剂有关[19].如果MnSOD是H2O2生成剂,则MnSOD的过表达会抑制癌症生长,但如果MnSOD是一种线粒体超氧化物清除剂,MnSOD的抑制将增强癌细胞死亡.研究结果支持MnSOD在抵抗ROS介导的损伤,保护人正常组织中的作用[15].人乳腺上皮细胞MCF-10A中的MnSOD活性在增殖阶段比静止状态明显下降[20],乳腺癌细胞中表现出显著的MnSOD上调,其通过影响细胞氧化还原环境来调节EMT和MET相关表型之间的转换.另一方面,MnSOD过度表达显著降低乳腺癌细胞的存活和生长转移[21].

2.3 胞浆内NADPH氧化酶及PKCβ/p66Shc通路与乳腺癌

NADPH氧化酶的催化亚基gp91phox及其同系物NOX1、NOX3、NOX4、NOX5、DUOX1、DUOX2被称为NOX家族.当细胞接收到外源刺激时,异常激活的NOX家族蛋白以NADPH/ NADH为递氢体进行催化反应,迅速生成高浓度的ROS参与诱导肿瘤的发生和发展.在这些酶催化的反应中,电子受体是氧,电子转移反应的产物是,由于自发和酶促歧化,H2O2也迅速产生.NOX1在乳腺癌中过表达,与生长、增殖和侵袭有关;NOX4在乳腺癌中的过表达与迁移、血管生成、糖酵解转变和预后不良有关[22].Shen等[23]的研究表明使用天然酶抑制NOX1,降低了ROS的产生并在乳腺癌中减少了癌症的转移.总体而言,NOX酶的活化或增加NOX表达,可以作为乳腺癌的标记物以指示其对给定的ROS生成的敏感性或以酶为基础的抗性治疗.

外源刺激导致胞内ROS升高的主要原因之一是p66Shc的活化.p66Shc是ShcA基因编码的蛋白质,可感受外源刺激及胞内ROS的水平,从3个方面诱导ROS的生成:a.在细胞核中,p66Shc抑制FOXO转录因子的活性,导致ROS清除酶的表达降低,减少ROS的清除;b.在细胞浆内,p66Shc可促进racl分子活化,诱导NADPH氧化酶产生ROS,此外,p66Shc也存在于线粒体膜间隙;c.积聚的ROS通过氧化应激激活PKCβ,引起p66Shc磷酸化而被活化以及线粒体转位,促进线粒体产生并释放H2O2,从而进一步提高细胞内H2O2的水平,触发线粒体促凋亡作用.胞浆内ROS增加,促进PKCβ/p66Shc自我激活回路,维持或增加PKCβ的激活,从而不断诱导胞浆中ROS产生[24].

3 ROS引起的氧化应激与表观遗传修饰的交互影响在乳腺癌中的作用

ROS引起的氧化应激会导致基因表观遗传变化,与肿瘤发生密不可分.外源刺激长期反复作用导致氧化系统失衡,导致机体长期处于过量ROS水平,以致引发癌症.表观遗传修饰可以通过改变抗氧化酶在胞内的表达水平,影响ROS的清除效率;同时抗氧化酶的表观遗传修饰可以诱导ROS产生,该过程是一个ROS通过引起表观遗传修饰诱导抗氧化酶表达沉默,而减少自身清除的正反馈过程[25].机体的酶促反应是瞬时性的,而表观遗传修饰可以长期稳定地发挥作用,被固定下来,提供适应疾病发生的分子环境.ROS引起的氧化应激与表观遗传修饰的交互影响,在乳腺癌中的作用机制如图 2所示.

Fig. 2 Mechanism of interaction between oxidative stress and epigenetic modification in breast cancer 图 2 氧化应激与表观遗传修饰的交互影响在乳腺癌中的作用机制
3.1 ROS引起的氧化应激与DNA甲基化

DNA甲基化是氧化应激诱发的一个重要的表观遗传变化,主要表现在高甲基化引起的基因转录抑制(如抑癌基因)和低甲基化诱导基因转录激活(如癌基因),在肿瘤发生发展中起重要作用.氧化应激会引起CpG岛DNA甲基化水平降低,导致肿瘤发生[26].

ROS(特别是·OH)过量引起的氧化应激导致DNA损伤,阻碍了DNA作为甲基转移酶的底物,也降低了DNA碱基对甲基的接受能力.Veeck等[27]证明DNA甲基化的异常对于正常乳腺细胞的恶性转化起重要作用.在氧化应激引起的肿瘤中,肿瘤抑制基因是最为常见的甲基化异常位点,如在乳腺癌中肿瘤抑制基因RB、p16INK4A、p53、BRCA1等启动子区域CpG位点均可发生高甲基化,从而使基因表达沉默[28].p53突变的肿瘤细胞增殖与凋亡失去控制,导致无限繁殖;BRCA1等的甲基化水平已作为乳腺癌发生的诊断工具.

3.2 ROS引起的氧化应激与乙酰化

研究表明,表观遗传修饰可以调控NOX家族蛋白的表达从而影响癌症的发生和发展[29].NOX2调控机体大多数非吞噬细胞中ROS的产生,其表达可能受到组蛋白乙酰化的调控.已有研究表明,在赖氨酸122处的MnSOD的乙酰基模拟物(MnSODK122Q)可增加线粒体ROS水平,导致基因组不稳定并且与乳腺癌恶性肿瘤风险相关[15].

HDACi可提高肿瘤细胞内的ROS水平,活化多种信号转导途径,启动DNA应激反应,抑制肿瘤细胞增殖并诱导其凋亡以发挥抗癌活性.HDACi在杀伤肿瘤细胞过程中ROS的调控机制:a.过度积累的ROS会破坏线粒体的膜电势,增加线粒体膜通透性,活化caspase通路,诱导肿瘤细胞凋亡;b.HDACi可以上调硫Trx结合蛋白2(TBP2),TBP2抑制抗氧化剂清除剂Trx,从而提高细胞内的ROS水平,HDACi引起的乙酰化修饰使DNA更易被ROS结合并氧化,引起DNA氧化损伤,发挥杀伤肿瘤细胞的作用[30].因此,可根据乳腺癌患者细胞的不同乙酰化修饰靶向设计HDACi杀伤癌细胞.

3.3 表观遗传修饰调控抗氧化酶系统影响ROS的清除

抗氧化酶SOD、GPx及CAT受表观遗传修饰调控与乳腺癌的发生发展密切相关,清除效率取决于抗氧化物酶在胞内的表达水平,以及胞内ROS产生或累积的浓度.肿瘤发生早期阶段,SOD2发生高甲基化降低其表达量,引起胞内ROS增加从而促进细胞增殖;当肿瘤开始侵袭和转移时,SOD2甲基化水平下降,表达量上调,引起胞内ROS水平降低,可能更利于细胞的侵袭转移[31].Nelson等[32]已经提出MnSOD基因表达变化与人乳腺癌细胞的增殖和迁移有关,即抑制抗氧化酶基因的表达与氧化应激引起的启动子区高甲基化所致的基因沉默具有正相关性.有研究认为,抗氧化酶的表观遗传修饰可以通过ROS诱导产生,该过程是一个ROS通过表观遗传修饰改变诱导抗氧化酶表达沉默,继而减少自身清除的正反馈过程[15].因此,在肿瘤发生过程中,抗氧化酶的表观遗传修饰改变通过影响胞内ROS的清除,在机体氧化平衡系统的调控中起关键作用.

3.4 Nrf2/ARE通路的表观遗传调控影响胞内ROS

Nrf2/ARE是调节体内氧化平衡系统的重要信号通路,其激活介导抗氧化基因(CAT、SOD、NADPH等)的表达,Nrf2可上调NADPH和NADPH产生酶水平,有利于降低ROS含量.因此,增加癌症中的氧化应激通常导致Nrf2的下调,且癌症的Nrf2抑制会引起治疗的敏感性增强[33].组成型降解Keap1相关蛋白质可引起Nrf2的失活,Nrf2/Keap1复合体受氧化还原电位和H2O2浓度的调节,在人乳腺癌细胞中,Keap1启动子区的高甲基化活化Nrf2,激活内源性Nrf2/ARE抗氧化通路,造成乳腺癌细胞抵抗化学药物的治疗[34].由NCBI表观基因组学数据库可知,人Nrf2基因的甲基化修饰可能发于乳腺中,且多种Nrf2的激活剂如姜黄素通过影响表观遗传学改变,抑制肿瘤发生和恶性转化.总之,Nrf2被认为是基于刺激及癌症阶段的可能潜在治疗靶点和肿瘤发生抑制剂.

3.5 缺氧诱导因子(HIF)的表观遗传调控与乳腺癌

HIF1-α存在于线粒体中,可以抑制电子传递链中ROS的产生.SIRT3通过去乙酰化和活化MnSOD参与氧化还原调节,SIRT3的丢失促进HIF-1α稳定,增加线粒体ROS并改变癌症代谢相关的致癌途径[35].研究表明,HIF-α在正常组织中无表达,在癌旁组织中仅有部分表达,而在乳腺癌组织中高表达[36],因此HIF-α可作为乳腺癌发生发展的生物学标志.乳腺癌快速生长导致局部缺氧,使HIF-α通过反式激活作用于缺氧反应元件(HRE),激活下游靶基因表达,增强肿瘤的侵袭转移能力,以逃避或适应低氧的环境[37].表观遗传修饰显著影响HIF家族与HRE结合能力,DNA甲基化和组蛋白修饰相关酶也受到缺氧调控,诱发染色质重塑[38].HIF是否与HRE位点结合受HRE周围特异性CpG岛甲基化的影响,转录激活的基因座需发生组蛋白H3K4me3修饰才可能与HIF结合.在长期适应慢缺氧过程中,机体不仅可通过改变HIF信号通路以应答低氧,也可通过改变整体甲基化或组蛋白修饰水平等表观遗传修饰以适应低氧环境.

4 结论与展望

正如我们前面所讨论的,现在已有令人信服的证据支持表观遗传机制及ROS引起的氧化应激在乳腺癌的发展和进展中的关键作用.ROS在癌症中的双重作用,调节氧化还原状态,在治疗各种乳腺癌方面有积极的反应.ROS引起的氧化应激可导致表观遗传变化最终引发肿瘤,氧化酶的表观遗传修饰可以通过ROS诱导产生,表观遗传修饰通过影响ROS产生、清除及氧化还原平衡调控通路中关键分子的表达,从多个方面参与机体氧化平衡系统的调控.

基于氧化还原的治疗会对个体的癌症有不同的影响,前瞻性个性化的氧化还原治疗尚未纳入诊断.相比于瞬时性的机体酶促反应,表观遗传的改变可以长期稳定地发挥作用,提供适应疾病发生的分子环境.表观遗传变化的可逆性可能为我们寻找乳腺癌发生发展的生物标志物及根据不同患者表现的个性化治疗提供一个深入探索的切入点.另外,我们考虑到可以利用生物信息学的知识,从cBioPortal网站入手,分析氧化还原与表观遗传修饰两者之间的关系,并作出相关网络机制图,找寻乳腺癌中表观遗传修饰和调节ROS相关酶之间的相关性,这将对弄清两者之间的相互作用及其机制、筛选可能的治疗靶点、以及精准治疗有一定的指导意义.

参考文献
[1]
黎思毅, 彭红娟. 乳腺癌组织氧化应激反应指标的变化. 实用医学杂志, 2009, 25(16): 2626-2627.
Li S Y, Peng H J. Journal of Practical Medicine, 2009, 25(16): 2626-2627. DOI:10.3969/j.issn.1006-5725.2009.16.008
[2]
Teschendorff A E, Gao Y, Jones A, et al. DNA methylation outliers in normal breast tissue identify field defects that are enriched in cancer. Nat Commun, 2016, 7: 10478. DOI:10.1038/ncomms10478
[3]
Pasculli Barbara, Barbano Raffaela, Parrella Paola. Epigenetics of breast cancer: biology and clinical implication in the era of precision medicine. Seminars in Cancer Biology, 2018. DOI:10.1016/j.semcancer.2018.01.007
[4]
Leu YW1, Rahmatpanah F, Shi H, et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res, 2003, 63(19): 6110-6115.
[5]
Janostiak R, Vyas M, Cicek A F, et al. Loss of c-KIT expression in breast cancer correlates with malignant transformation of breast epithelium and is mediated by KIT gene promoter DNA hypermethylation. Exp Mol Pathol, 2018, 105(1): 41-49. DOI:10.1016/j.yexmp.2018.05.011
[6]
Good C R, Panjarian S, Kelly A D, et al. TET1-mediated hypomethylation activates oncogenic signaling in triple-negative breast cancer. Cancer Res, 2018, Jun 11. doi: 10.1158/0008-5472.CAN-17-2082
[7]
Wen H, Li Y, Xi Y, et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature, 2014, 508(7495): 263-268. DOI:10.1038/nature13045
[8]
Lim S 1, Janzer A, Becker A, et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis, 2010, 31(3): 512-520. DOI:10.1093/carcin/bgp324
[9]
Messier T L, Gordon J A, Boyd J R, et al. Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget, 2016, 7(5): 5094-5109.
[10]
Al Emran A, Marzese D M, Menon D R, et al. Distinct histone modifications denote early stress-induced drug tolerance in cancer. Oncotarget, 2017, 9(9): 8206-8222.
[11]
Müller B M, Jana L, Kasajima A, et al. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer--overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer, 2013, 13: 215. DOI:10.1186/1471-2407-13-215
[12]
Schech A, Kazi A, Yu S, et al. Histone deacetylase inhibitor entinostat inhibits tumorInitiating cells in triple-negative breast cancer cells. Mol Cancer Ther, 2015, 14(8): 1848-1857. DOI:10.1158/1535-7163.MCT-14-0778
[13]
Cui Z, Xie M, Wu Z, et al. Relationship between histone deacetylase 3 (HDAC3) and breast cancer. Med Sci Monit, 2018, 24: 2456-2464. DOI:10.12659/MSM.906576
[14]
Pan X, Wu X, Yan D, et al. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs. Toxicol Lett, 2018, 288: 55-64. DOI:10.1016/j.toxlet.2018.02.002
[15]
Chaiswing L, St Clair W H, St Clair D K. Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid & Redox Signal, 2018. DOI:10.1089/ars.2017.7485
[16]
Brand M D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med, 2016, 100: 14-31. DOI:10.1016/j.freeradbiomed.2016.04.001
[17]
Marinho H S, Real C, Cyrne L, et al. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol, 2014, 2: 535-562. DOI:10.1016/j.redox.2014.02.006
[18]
Pervaiz S, Clement M V. Superoxide anion: oncogenic reactive oxygen species. Int J Biochem Cell Biol, 2007, 39(7-8): 1297-1304. DOI:10.1016/j.biocel.2007.04.007
[19]
Kim Y S, Gupta Vallur P, Phaeton R, et al. Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants (Basel), 2017, 6(4): pii: E86. DOI:10.3390/antiox6040086
[20]
Sarsour E H, Kalen A L, Xiao Z, et al. Manganese superoxide dismutase regulates a metabolic switch during the mammalian cell cycle. Cancer Res, 2012, 72(15): 3807-3816. DOI:10.1158/0008-5472.CAN-11-1063
[21]
Kumar A P, Loo S Y, Shin S W, et al. Manganese superoxide dismutase is a promising target for enhancing chemosensitivity of basal-like breast carcinoma. Antioxid Redox Signal, 2014, 20(15): 2326-2346. DOI:10.1089/ars.2013.5295
[22]
Little A C, Sulovari A, Danyal K, et al. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med, 2017, 110: 117-132. DOI:10.1016/j.freeradbiomed.2017.05.024
[23]
Shen K, Lu F, Xie J, et al. Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of NADPH oxidase 1 and the alteration of mitochondrial morphology and dynamics. Oncotarget, 2016, 7(31): 50596-50611.
[24]
De Marchi E, Baldassari F, Bononi A, et al. Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C. Oxid Med Cell Longev, 2013, 2013: 564961.
[25]
Afanas'ev I. New nucleophilic mechanisms of ros-dependent epigenetic modifications: comparison of aging and cancer. Aging Dis, 2013, 5(1): 52-62.
[26]
刘雄雄, 李强. 氧化应激引起的遗传变化和DNA甲基化改变在肿瘤发生中的作用. 辐射研究与辐射工艺学报, 2013, 31(06): 3-10.
Liu X X, Li Q. Journal of Radiation Research and Radiation Technology, 2013, 31(06): 3-10.
[27]
Veeck J, Esteller M. Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia, 2010, 15(1): 5-17. DOI:10.1007/s10911-010-9165-1
[28]
Hornsveld M, Dansen T B. The hallmarks of cancer from a redox perspective. Antioxid Redox Signal, 2016, 25(6): 300-325. DOI:10.1089/ars.2015.6580
[29]
Lassègue B, Griendling K K. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol, 2010, 30(4): 653-661. DOI:10.1161/ATVBAHA.108.181610
[30]
Bhat A V, Hora S, Pal A, et al. Stressing the (Epi) genome: dealing with reactive oxygen species in cancer. Antioxid Redox Signal, 2017 Sep 25. DOI: 10.1089/ars.2017.7158
[31]
Archer S L, Marsboom G, Kim G H, et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation, 2010, 121(24): 2661-2671. DOI:10.1161/CIRCULATIONAHA.109.916098
[32]
Nelson K K, Melendez J A. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med, 2004, 37(6): 768-784. DOI:10.1016/j.freeradbiomed.2004.06.008
[33]
Moon EJ, Giaccia A. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med, 2015, 79: 292-299. DOI:10.1016/j.freeradbiomed.2014.11.009
[34]
Cheng D, Wu R, Guo Y, et al. Regulation of Keap1-Nrf2 signaling: The role of epigenetics. Curr Opin Toxicol, 2016, 1: 134-138. DOI:10.1016/j.cotox.2016.10.008
[35]
Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta, 2016, 1857(8): 1086-1101. DOI:10.1016/j.bbabio.2016.03.012
[36]
俸瑞发, 柏璐, 刘晓萌, 等. HIF-1α对乳腺癌细胞增殖及血管生成影响的探讨. 中华肿瘤防治杂志, 2013, 20(15): 1158-1161.
Feng R F, Bai L, Liu X M, et al. Chinese Journal of Cancer Prevention and Treatment, 2013, 20(15): 1158-1161.
[37]
Bharti S K, Mironchik Y, Wildes F, et al. Metabolic consequences of HIF silencing in a triple negative human breast cancer xenograft. Oncotarget., 2018, 9(20): 15326-15339.
[38]
Rybnikova E, Samoilov M. Epigenetic mechanisms of hypoxic preconditioning. Springerplus, 2015, 4(Suppl 1): L39. DOI:10.1186/2193-1801-4-S1-L39
中国科学院生物物理研究所和中国生物物理学会共同主办
0

文章信息

缑晓萌, 孙洪亮, 张中国, 薛欣雨, 郝景智, 张红胜
GOU Xiao-Meng, SUN Hong-Liang, ZHANG Zhong-Guo, XUE Xin-Yu, HAO Jing-Zhi, ZHANG Hong-Sheng
氧化还原调控的表观遗传修饰在乳腺癌中的作用
Epigenetic Modification of Redox Regulation in Breast Cancer
生物化学与生物物理进展, 2018, 45(12): 1224-1231
Progress in Biochemistry and Biophysics, 2018, 45(12): 1224-1231
http://dx.doi.org/10.16476/j.pibb.2018.0144

文章历史

收稿日期: 2018-05-10
接受日期: 2018-09-03

相关文章

工作空间