文章快速检索    
纳米酶:新一代人工模拟酶
阎锡蕴     
中国科学院生物物理研究所,北京 100101
Nanozyme: a New Type of Artificial Enzyme
YAN Xi-Yun     
Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
Abstract: The nanozyme is a new concept that has been included in the Encyclopedia of China. It is defined as a type of nanomaterial that possesses intrinsic enzyme-like activity. Nanozymes were first conceptualized by Chinese scientists in interdisciplinary fields of material science, chemistry, biology and medicine. Since the original work was published in Nature Nanotechnology in 2007, 2: 577-583, it has been cited over 1480 times and has drawn significant attention worldwide. To date, over 130 laboratories across 22 countries have contributed to research on nanozymes. The application of nanozymes has been extended to biology, medicine, agriculture, national defense and many other fields, and has gradually transferred from diagnosis to therapeutics of human diseases. Nanozyme research is an emerging field bridging nanotechnology and biology. By using their multi-functionality, including enzymatic activity and other specific nanoscale properties, nanozymes will likely continue to facilitate the development of state-of-the-art technologies and products to improve human health and quality of life. As we approach the 10-year anniversary of the discovery of nanozymes, I humbly accepted to organize this "nanozyme special edition". I would like to convey my gratefulness to the editor and all the authors, who have done extraordinary amount of work for their reviews, this project would not have been possible without them.

酶是活细胞产生的一类具有催化作用的有机分子.1877年,德国科学家Wilhelm Kuhne将这类分子命名为“酶”.随后,美国科学家James B. Sumner将其鉴定为一种蛋白质.天然酶具有催化效率高、底物专一、反应条件温和等特点.然而,由于酶的化学本质是蛋白质,在酸、碱、热等非生理环境中容易发生结构变化而失活.为此,科学家一直在寻求用化学合成法制备人工模拟酶,以便在非生理环境中应用.但如何提高模拟酶的催化效率,一直是该领域的核心问题之一.特别是,能否用无机材料制造出人工酶,使其不仅具有生物酶的催化效率,而且制造技术也比较简便可控,更是许多科学家的朝思暮想.

自1993年以来,纳米材料类酶催化现象偶有报道,但是由于缺乏深入研究而没有引起广泛关注.直到2007年,中国科学家打破传统学科界限,通过生物、化学、材料、物理、医学等领域研究人员的多年精诚合作,首次从酶学角度系统地研究了无机纳米材料的酶学特性(包括催化的分子机制和效率,以及酶促反应动力学),建立了一套测量纳米酶催化活性的标准方法,并将其作为酶的替代品应用于疾病的诊断(原始论文: Nature Nanotechnology, 2007, 2: 577-583).随后,国内外许多实验室也陆续报道了其他纳米材料的酶学特性(图 1).2013年,汪尔康院士和魏辉教授以纳米酶(nanozyme)为题发表长篇综述文章(Nanozyme: next-generation artificial enzyme,Chem Soc Rev 2013, 42: 6060-6093).从此,纳米酶(nanozyme)这一新概念引起了学术界广泛关注.目前,全球至少已有22个国家130个实验室从事纳米酶研究,50多种不同材料和结构的纳米酶被陆续报道,纳米酶的应用研究也已经拓展到了生物、农业、医学、环境治理和国防安全等多个领域,逐渐形成了纳米酶研究新领域.

Fig. 1 The number of research papers on nanozymes has annually risen since Chinese scientists first reported nanomaterials with enzyme-like characteristics 图 1 自中国科学家2007年报道纳米材料酶学特性以来,纳米酶研究论文数量逐年飙升 数据来源:Web of Science,截止日期:2017年12月31日.

纳米酶是新一代人工模拟酶(图 2).它如同天然酶一样,能够在温和条件下高效催化酶的底物,呈现出类似天然酶的催化效率和酶促反应动力学;但是它比天然酶稳定,即使在强酸/强碱(pH 2~ 10)或较大温度范围(4℃~90℃)内,仍能保持85%催化活性.另外,纳米酶除了催化活性之外,还兼有某些独特的理化特性,这为设计复杂的催化体系提供了条件.例如,我们曾设计了铁基纳米酶探针,兼具分离(磁性)和信号放大(催化)功能于一体,应用于试纸条检测中,灵敏度提高100倍,突破了传统试纸条因灵敏度低而长期应用受限的瓶颈,这项新技术已成为首个纳米酶产品.更可喜的是,动物实验表明,纳米酶有保护心肌、改善阿尔茨海默病和缺血性脑卒中等功能,预示纳米酶的应用研究已经从体外扩展到了体内,有望为疾病的治疗提供新思路和新方法.

Fig. 2 Nanozyme is a new member of enzyme mimics 图 2 纳米酶是模拟酶领域的新成员

纳米酶的出现改变了人们的传统观念,无机纳米材料不再被认为是惰性物质.正如德国科学家Wolfgang Tremel教授撰写的综述文章(Solids Go Bio:Inorganic Nanoparticles as Enzyme Mimics)所指出的那样,纳米酶揭示了纳米材料自身蕴含的生物效应,这不仅拓展了纳米材料在生物医学中的应用,还为人工模拟酶研究提供了新思想和新材料,更是为纳米生物学开启了新的研究方向.

2017年,“纳米酶”香山会议在北京召开,执行主席由汪尔康、包信和、张先恩、顾宁和我共同担任.来自全国20多个单位40余名专家(生物、材料、物理、化学、医学、理论计算、临床医生)从不同视角探讨了纳米酶的催化机制与应用研究.在充分讨论纳米酶催化机制及构建其理论体系的基础上,与会专家充分肯定了纳米酶的原创性及国际影响.例如,美国高登会议邀请多位中国科学家做纳米酶主题报告,国际最有影响的学术出版公司之一施普林格(Springer)出版集团邀请中国科学家编写《纳米酶》英文专著,国际知名杂志Small 设立了《纳米酶》专栏.目前无论是纳米酶研究论文还是成果转化,中国科学家都处于领先地位.

在纳米酶发现10周年之际,我应《生物化学与生物物理进展》主编王大成院士邀请,受命组织一期《纳米酶研究专刊》.我放下手中的实验,四处拨打电话或登门约稿.令我欣喜不已的是,这些活跃在纳米酶研究领域的中青年科学家,个个欣然接受约稿,人人写出颇有见地的文章,道出了对纳米酶的认知和贡献.正由于他们朝气蓬勃,创新思想层出,敬业精神十足,才有了纳米酶研究的飞速发展,也才有了这期《纳米酶研究专刊》面世.在此,我对他们的辛勤劳动深表谢忱.

我冒昧为专刊写了个引言,简述了几句纳米酶,敬请读者批评指正.

参考文献
[1] Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol, 2007, 2(9): 577-583 DOI:10.1038/nnano.2007.260
[2] Gao L, Yan X. Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci, 2016, 59(4): 400-402 DOI:10.1007/s11427-016-5044-3
[3] Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev, 2013, 42(14): 6060-6093 DOI:10.1039/c3cs35486e
[4] Karakoti A, Singh S, Dowding J M, et al. Redox-active radical scavenging nanomaterials. Chem Soc Rev, 2010, 39(11): 4422-4432 DOI:10.1039/b919677n
[5] Hu X, Liu J, Hou S, et al. Research progress of nanoparticles as enzyme mimetics. Science China Physics, Mechanics and Astronomy, 2011, 54(10): 1749-1756 DOI:10.1007/s11433-011-4480-0
[6] Celardo I, Pedersen J Z, Traversa E, et al. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3(4): 1411-1420 DOI:10.1039/c0nr00875c
[7] Xie J, Zhang X, Wang H, et al. Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends in Analytical Chemistry, 2012, 39(1): 114-129
[8] Gao L, Yan X. Discovery and current application of nanozyme. Prog Biochem Biophys, 2013, 40(10): 892-902
[9] He W, Wamer W, Xia Q, et al. Enzyme-like activity of nanomaterials. Journal of Environmental Science and Health, Part C, 2014, 32(2): 186-211 DOI:10.1080/10590501.2014.907462
[10] Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials, 2014, 6(3): 102-108
[11] Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents. Adv Mater, 2014, 26(25): 4200-4217 DOI:10.1002/adma.v26.25
[12] Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res, 2014, 47(4): 1097-1105 DOI:10.1021/ar400250z
[13] Shin H Y, Park T J, Kim M I. Recent research trends and future prospects in nanozymes. Journal of Nanomaterials, 2015, 2015(1): 1-11
[14] Ragg R, Tahir M N, Tremel W. Solids Go Bio: inorganic nanoparticles as enzyme mimics. European Journal of Inorganic Chemistry, 2015, 2016(13-14): 1906-1915
[15] Garg B, Bisht T, Ling Y C. Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: an overview. Molecules, 2015, 20(8): 14155-14190
[16] Singh S. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases, 2016, 11(4): 04B202 DOI:10.1116/1.4966535
[17] Garg B, Bisht T. Carbon nanodots as peroxidase nanozymes for biosensing. Molecules, 2016, 21(12): 1653 DOI:10.3390/molecules21121653
[18] Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorganic Chemistry Frontiers, 2016, 3(1): 41-60 DOI:10.1039/C5QI00240K
[19] Kuah E, Toh S, Yee J, et al. Enzyme mimics: advances and applications. Chemistry, 2016, 22(25): 8404-8430 DOI:10.1002/chem.v22.25
[20] Xiaoyu wang., Wenjing guo., Yihui hu., et al. Nanozymes: next wave of artificial enzymes. Springer, 2016 http://link.springer.com/978-3-662-53068-9
[21] Wang G, Zhang J, He X, et al. Ceria nanoparticles as enzyme mimetics. Chinese Journal of Chemistry, 2017, 35(6): 791-800 DOI:10.1002/cjoc.v35.6
[22] Zhou Y, Liu B, Yang R, et al. Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjug Chem, 2017, 28(12): 2903-2909 DOI:10.1021/acs.bioconjchem.7b00673
[23] Liu B, Liu J. Surface modification of nanozymes. Nano Research, 2017, 10(4): 1125-1148 DOI:10.1007/s12274-017-1426-5
[24] Gao L, Fan K, Yan X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics, 2017, 7(13): 3207-3227 DOI:10.7150/thno.19738
[25] Cormode D P, Gao L, Koo H. Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol, 2018, 36(1): 15-29 DOI:10.1016/j.tibtech.2017.09.006
中国科学院生物物理研究所和中国生物物理学会共同主办
0

文章信息

阎锡蕴
YAN Xi-Yun
纳米酶:新一代人工模拟酶
Nanozyme: a New Type of Artificial Enzyme
生物化学与生物物理进展, 2018, 45(2): 101-104
Progress in Biochemistry and Biophysics, 2018, 45(2): 101-104
http://dx.doi.org/10.16476/j.pibb.2018.0041

相关文章

工作空间