2. 中国科学院大学研究生院,北京 100049
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
在真核细胞中,核小体作为染色质的基本结构单元,由约146 bp DNA缠绕组蛋白八聚体(包括2个H2A-H2B二聚体和1个H3-H4四聚体)形成[1].多核小体先后形成串珠结构和30 nm染色质纤维,并逐渐折叠成致密的染色质结构.尽管高度折叠的染色质确保巨量的遗传物质DNA得以稳定储存在微小的细胞核内,但是在DNA复制、转录、重组、修复等生命过程中,染色质必须保持松散结构,以确保DNA可以与各种分子机器或者调控因子相互作用.伴随着核小体的组装和去组装,组蛋白被整合进入染色质或者从染色质移除,使染色质结构发生动态变化.
一般认为,在核小体组装过程中,DNA首先缠绕在H3-H4四聚体上,形成核小体DNA的内圈,随后两分子的H2A-H2B二聚体分别结合在H3-H4四聚体两侧的DNA上,形成八聚体形式的核小体(与H2A-H2B二聚体结合的这部分DNA形成核小体DNA的外圈)(图 1a).与占据核小体中心位置的H3-H4相比,处于核小体外圈的H2A-H2B具有更加明显的动态性,更容易被置入或者移除.组蛋白变体H2A.Z对H2A的替换是H2A-H2B组装和去组装的经典事件,通过替换转录起始位点附近的H2A,H2A.Z在该区域发生富集并调控转录的进行[2-3],染色质重塑复合物以及组蛋白伴侣在此过程中发挥了关键作用[4-5].由此可见,体内的核小体组装与去组装并不能自发进行[6],而是受到包括组蛋白伴侣在内的一系列分子机器或者调控因子的严格调控[7-10].
![]() |
Fig. 1 Structural basis of recognition of H2A-H2B/H2A.Z-H2B by histone chaperones 图 1 H2A-H2B类型组蛋白的识别机制及其生物学功能 (a) H2A-H2B结构及其和组蛋白伴侣结合的主要区域(圆圈所示).图左是核小体中的H2A(黄色)和H2B(红色). (b) H2A-H2B与核小体DNA结合区域的表面电势图.蓝色和红色分别表示带有正、负电荷的表面区域. (c~e) Anp32e、YL1、Swr1与H2A.Z αC-螺旋结合方式, 橙色表示延伸的αC-螺旋. (f) Spt16C的Cap-anchor与H2B疏水口袋的结合方式. (g) YL1的苯丙氨酸(Phe)与H2A α1-螺旋的结合方式. |
组蛋白伴侣是一类通过与组蛋白相互作用来发挥调控作用的蛋白质分子.组蛋白伴侣参与组蛋白的折叠[11-12]、转运[13]、修饰[14]、组装、移除[15-16]等过程,其功能异常则会影响DNA复制[17-18]、基因转录[15]、基因组稳定[19-20]、细胞重编程[21-22]、着丝粒的维持[23]等过程.与染色质重塑复合物不同,组蛋白伴侣不依赖ATP水解所产生的能量,不参与形成反应终末产物.Laskey等[7]于1978年发现未受精的爪蟾卵细胞提取物能在体外有效防止组蛋白和DNA发生非特异性聚集并促进核小体的组装,并明确了该种物质是具有组蛋白伴侣功能的核仁素(nucleoplasmin),这是组蛋白伴侣的首次报道.组蛋白伴侣能够结合组蛋白,防止组蛋白与DNA发生非特异性相互作用,也成为广泛接受的观点[24].按照所识别的组蛋白种类,可以将组蛋白伴侣分为兼性和特异性两类.其中,兼性组蛋白伴侣能识别包括H3-H4以及H2A-H2B在内的各种类型组蛋白以及对应的变体,代表性分子包括NAP1、NPM1、FACT等;相反,特异性组蛋白伴侣仅能识别H3-H4而非H2A-H2B类型的组蛋白,如Asf1等,或者仅能识别H2A-H2B而非H3-H4类型的组蛋白,如YL1等.另外,还有一部分更为特殊的特异性组蛋白伴侣,与常规组蛋白H3或者H2A相比,它们对H3变体或者H2A变体具有更高的选择性,代表性组蛋白伴侣包括特异性识别H2A变体H2A.Z的YL1、Anp32e、Swr1、Chz1等,识别H3变体H3.3的DAXX、HIRA等,以及识别H3变体CENP-A的HJURP等.组蛋白伴侣对组蛋白的特异性识别在染色质动态结构调控中具有重要作用,如YL1能够促使游离的H2A.Z-H2B组装到H3-H4四聚体上形成核小体[25-26].Anp32e促进H2A.Z核小体中的H2A.Z-H2B从核小体上解离[27-28].由于组蛋白伴侣对组蛋白的特异性识别具有重要的生物学功能,近年来人们对其识别机制的研究日益重视.2006年,English等[29]解析了第一个组蛋白伴侣Asf1与组蛋白H3-H4的晶体结构.迄今为止,已有一系列组蛋白与组蛋白伴侣的复合物结构被解析.得益于这些复合物结构的解析,我们能够更加清楚地了解组蛋白伴侣调控组蛋白的分子机制.由于篇幅所限,本文主要讨论组蛋白伴侣与H2A-H2B类型组蛋白及其变体的结构和机制研究,并探讨其在染色质结构调节中的作用.
1 NAP1NAP1(nucleosome assemble protein 1,核小体组装蛋白1)是最早发现的组蛋白伴侣之一.NAP1广泛存在于所有真核细胞中,能够在体外促进核小体组装[30].NAP1及其同源蛋白参与到DNA转录[31]、细胞周期调节[32-33]、细胞自噬[34]等细胞活动中.体外实验表明,NAP1能结合H2A-H2B,连接组蛋白(linker histone)H1[35],或者H3-H4[8, 36];体内实验则表明NAP1可以介导H2A-H2B的核质转运[37]并帮助H2A-H2B的正确折叠[12].因此一般认为NAP1是H2A-H2B的伴侣蛋白.NAP1并未对H2A变体表现出更高选择性,但能介导H2A-H2B与H2A.Z-H2B的交换[38-39].NAP1保守的NAP结构域是NAP1体外组装核小体的必需元件[40],同时,NAP1 C端的酸性区域能够破坏组蛋白和DNA的相互作用,将H2A-H2B从核小体内释放出来,并最终促进核小体的滑动[39, 41].关于NAP1识别组蛋白的分子机制一直是研究的热点.Park等[42]通过X射线晶体学手段解析获得NAP1同源二聚体的结构,发现NAP1二聚体形成“穹顶”结构,其凹面富含酸性残基,推测这一表面可能用于结合富含碱性残基的组蛋白.D’Arcy等[12]通过氢氘交换-质谱以及FRET介导的滴定实验,提出NAP1二聚体的凹面结合2分子H2A-H2B的复合物结构模型,该模型指出NAP1主要结合H2B,NAP1和H2A-H2B的结合比例为2:2.随后,Aguilar-Gurrieri等[43]报道了NAP1与H2A-H2B复合物6.7Å分辨率的晶体结构,指出NAP1以寡聚的形式结合H2A-H2B(12个NAP1结合6个H2A-H2B),该模型中NAP1主要结合H2A,NAP1和H2A-H2B的结合比例为2:1.在该研究中所用的NAP1并非全长序列,且晶体结构的分辨率欠佳,因此该结论存在不确定性.NAP1与H2A-H2B复合物结构的矛盾结果提示二者的作用机制较为复杂,揭示NAP1对组蛋白进行识别、转运、组装的分子机制亟需高分辨率结构.
2 FACTFACT(facilitates chromatin transcription,促染色质转录蛋白)于1998年被首次鉴定,是Orphanides等[44]在研究如何提高RNA聚合酶Ⅱ转录效率时,从HeLa细胞核中提取纯化出来的能够促进RNA聚合酶Ⅱ转录延伸的因子.随后的研究表明,FACT不仅在DNA转录过程中发挥作用,也参与到了DNA复制[45-46]、DNA损伤修复[47]、mRNA转运[48]、着丝粒维持[49]等细胞活动中.在DNA转录延伸过程中,FACT通过促使H2A-H2B从核小体上解离从而影响核小体结构的稳定[50].此外,FACT也能够在Nhp6的招募下与核小体稳定结合[51].FACT由两个进化上保守的亚基Spt16和SSRP1(酿酒酵母中名为Pob3)组成[52].结构研究表明,Spt16的中间结构域Spt16M以一个“U”形转角的结构结合H2A-H2B,这个“U”形转角将H2B α1螺旋包围,占据了核小体DNA与H2B的结合表面,为FACT促使核小体上H2A-H2B的解离提供了结构基础[53].Tsunaka等[54]通过解析Spt16M与H3-H4四聚体的复合物结构,发现Spt16M不仅破坏了DNA与H3-H4之间的相互作用,还破坏了H2A docking结构域与H3-H4之间的相互作用.上述结果提示Spt16M同时影响H3-H4以及H2A-H2B在核小体上的稳定结合,导致DNA从组蛋白上脱离.此外,Spt16和Pob3的C端结构域(Spt16C和Pob3C)都有一段酸性的无序区域,与H2A-H2B具有较强结合,缺失C端结构域的酵母细胞不能存活,说明C端具有重要的功能[50, 55].结构研究表明,Spt16C和Pob3C以相似的“cap-anchor”模式识别结合H2A-H2B[56](图 1f).以上三个结构说明,Spt16M与H2A-H2B结合不仅会对Spt16M与H3-H4的结合产生冲突,还会破坏Spt16C与H2A-H2B的结合,这提示FACT与组蛋白之间的结合可能存在多态性.对于FACT如何识别组蛋白并调节核小体动态,目前存在多种可能的解释.一个可能的机制是Spt16C/Pob3C与H2A-H2B结合,促使H2A-H2B从核小体上解离,随后Spt16M识别结合H3-H4四聚体,打破H3-H4与DNA的相互作用,进一步促进核小体的松散[54].但是,四核小体去组装的研究结果表明,只有Spt16M的“U”形转角才能减弱核小体之间的稳定性[57],因此FACT调节核小体动态的另一个可能的机制是Spt16M首先识别H2A-H2B,使其从核小体上解离并传递给Spt16C/Pob3C,随后Spt16M转而结合H3-H4四聚体,导致DNA从组蛋白上脱离.
3 Chz1Chz1是最早被发现的H2A.Z组蛋白伴侣,能够特异性识别H2A变体H2A.Z[58].研究认为Chz1通过特异性识别H2A.Z-H2B并将之传递给染色质重塑复合物SWR1,从而促进SWR1复合物将转录起始位点的H2A-核小体替换成H2A.Z-核小体,实现DNA转录的调控[58].与这一结果相吻合的是,Chz1的缺失可以影响H2A.Z在启动子区域及端粒处的定位[59].2008年,Zhou等[60]通过溶液核磁共振技术测定了Chz1核心基序(64~124位氨基酸)与H2A.Z-H2B形成的复合物结构.该结果表明Chz1核心基序具有双极性的电荷分布特征[59-62],这一点明显有别于其他已知的组蛋白伴侣.Chz1的酸性N端与组蛋白的结合破坏了DNA与组蛋白的结合,Chz1的碱性C端则结合在组蛋白的酸性区域(acidic patch),破坏了酸性区域与其他因子的结合.Chz1与H2A.Z-H2B的相互作用提示Chz1结合可能有利于H2A.Z-H2B的传递,从而促进SWR1催化的H2A.Z组装过程[58],但需要更为直接的证据.另外,Chz1特异性识别H2A.Z-H2B的机制还并不清楚.
4 Anp32eAnp32e(acidic nuclear phosphoprotein 32 kilodalton e)最初是从发育中小鼠的小脑中克隆出来的,它被认为具有调节突触发生的功能[63-64].随后的研究表明Anp32e能够特异性识别H2A.Z- H2B[27-28],并能够特异性地移除转录起始位点的H2A.Z-H2B,进而促进转录的发生[27-28];另外,Anp32e还能够有效移除DNA双链断裂(DSB)位点上的H2A.Z-H2B,促进DNA损伤应答的正常进行[65].Anp32e与H2A.Z-H2B的复合物结构表明,Anp32e的特异性结合会导致H2A.Z的αC螺旋显著延伸(图 1c),这种构象变化不但增强了Anp32e对H2A.Z的特异性识别,而且破坏了H2A.Z docking结构域的形成,使之无法与H3-H4结合.Anp32e通过影响H2A.Z核小体的稳定性实现其移除H2A.Z-H2B的功能.
5 YL1SRCAP和SWR1分别是哺乳动物及酵母中负责催化H2A.Z/H2A替换反应的染色质重塑复合物,YL1和Swc2是同源蛋白质,二者分别是SRCAP和SWR1中特异性识别H2A.Z-H2B的关键亚基[66].在酵母细胞中,SWR1复合物招募到转录起始位点附近必须依赖Swc2的正常功能[67-68].另外,尽管SWR1复合物的核心亚基Swr1也能够特异性识别H2A.Z-H2B[66, 69],但Swc2的缺失才能破坏SWR复合物替换H2A.Z-H2B的能力,并影响H2A.Z在核小体上的定位[25, 70],这些结果提示Swc2是SWR1复合物实现H2A.Z-H2B交换的关键元件.在哺乳动物细胞中,YL1既是TRAPP(Tip60)组蛋白乙酰转移酶复合物的亚基之一,也是组成染色质重塑复合物SRCAP的成员之一[71-72].值得注意的是,Tip60复合物与SRCAP复合物都与H2A.Z的动态调节有关[72-75].2016年,Liang等[25]报道了YL1与H2A.Z-H2B的复合物结构,结构表明YL1形成马鞭状的结构包裹住H2A.Z-H2B,并通过与H2A.Z αC后延长的螺旋以及loop2上特异氨基酸的结合实现对H2A.Z的特异性识别(图 1d),同时该研究也证明了YL1能够在体外促进H2A.Z-核小体的形成,为YL1调节H2A.Z-H2B在染色质的定位提供了有力的证据[26].
6 Swr1SWR1复合物是染色质重塑复合物INO80亚家族的成员[75-77],SWR1复合物通过水解ATP释放能量,逐步将启动子区域的H2A-核小体替换成H2A.Z-核小体[78].Swr1是SWR1复合物的核心亚基,除了具有ATP酶活性特征之外,Swr1作为支架蛋白介导了SWR1复合物其他亚基的相互结合,如Swr1的N端与Bdf1、Arp4、Act1、Yaf9以及Swc7相结合,为SWR1复合物识别并结合高度乙酰化的核小体提供可能.Swr1C端的ATP酶结构域包含一个特殊的插入序列,该插入序列是Swc3、Swc2、Arp6以及Swc6的结合所必需的[66, 69, 79].Swr1的N端可以识别结合H2A.Z-H2B,而且具备比H2A-H2B更高的亲和力[69-70].Swr1与H2A.Z-H2B的复合物结构表明,Swr1的结合也能够导致H2A.Z αC螺旋的延伸,这一构象变化扩大了二者结合界面的疏水作用,因此H2A.Z αC螺旋是Swr1实现其选择性结合能力的关键区域(图 1e).由于酵母来源的Swr1和哺乳动物来源SRCAP的同源亚基序列相似度不高,SRCAP对H2A.Z-H2B进行识别的具体机制有待进一步研究.
7 APLFAPLF(aprataxin-PNK-like factor)是一个DNA损伤应答因子.研究表明,APLF通过其C端的PBZ结构域识别PARP催化形成的多聚ADP核糖链从而被招募到DNA损伤位点[80-82].在非同源末端连接(non-homologous end joining,NHEJ)途径中,APLF作为支架蛋白促进NHEJ复合物的组装并提高NHEJ的修复效率[83-84].APLF的C端酸性区域能够结合H2A-H2B和H3-H4并介导染色质的组装[85].另外,APLF还能帮助macroH2A定位在DNA损伤位点[85],而APLF的表达下调会加速Cdh1启动子位点上macroH2A的移除[86],提示APLF可能是组蛋白macroH2A的伴侣蛋白.Corbeski等[87]通过溶液核磁共振技术发现APLF序列中的两个芳香族氨基酸残基(酪氨酸Try和色氨酸Trp)分别锚定在H2B的疏水口袋和H2A的α1-α2区域,破坏了核小体DNA与组蛋白的结合(图 1f,g).相互作用分析结果显示,色氨酸与H2A-H2B的结合具有更为明显的动态性,提示APLF与H2A-H2B在该位点的相互作用较弱,有利于H2A- H2B从APLF传递到DNA或其他伴侣蛋白.
8 组蛋白伴侣识别组蛋白的结构基础和分子机制组蛋白伴侣的序列和结构相似性都不高,生物学功能也不尽相同,因此很难找到统一的标准来区分各种组蛋白伴侣.尽管如此,通过分析H2A-H2B类型组蛋白及其伴侣的复合物结构,我们仍然可以发现组蛋白伴侣对H2A-H2B的识别存在明显的规律.
a.H2A-H2B与组蛋白伴侣以及核小体DNA的结合位点相互重叠(图 1b,f,g).
2010年,Andrews等[88]通过热力学分析发现NAP1通过结合到组蛋白与核小体DNA的相互作用位点,阻止组蛋白与DNA形成非特异性聚集,从而促进核小体的正确组装.无独有偶,其他组蛋白伴侣(如结合H2A家族组蛋白的NAP1、Chz1、YL1、Anp32e、以及结合H3家族组蛋白的MCM2、SPT2等)也可以通过占据DNA与组蛋白的结合位置,有效避免组蛋白和DNA的聚集.
b.组蛋白伴侣的结合导致H2A-H2B发生构象变化(图 1a,b,d,e).
在已有的组蛋白与组蛋白伴侣的复合物结构中,多数组蛋白的结构都与其在核小体内结构相似,如Spt16M以一个“U”形转角的结构结合H2A-H2B,该作用并不影响H2A-H2B本身的结构[53].但是,组蛋白伴侣也可能导致组蛋白的结构发生变化,如H2A.Z组蛋白伴侣Anp32e、YL1、Swr1与H2A.Z的结合会导致H2A.Z的αC螺旋发生显著延伸.该螺旋的延伸不仅是Anp32e、YL1、Swr1特异性识别H2A.Z的结构基础,也破坏了H2A.Z的核小体组装.
c.组蛋白伴侣具有识别H2B疏水口袋的保守基序(图 1f).
组蛋白伴侣多为天然无序蛋白质且富含酸性氨基酸,这有利于其通过静电相互作用与碱性的组蛋白结合.已经解析的复合物结构显示,组蛋白伴侣FACT(Spt16-C和Pob3-C)、Swr1、Anp32e及YL1中都具有一个保守且无序的结构基序:D/E/S-X-X-Y/F,该基序中的芳香族氨基酸(Y/F)通过疏水相互作用锚定(anchor)在H2B疏水口袋处(由H2B的α1螺旋-L1-α2螺旋形成的一个疏水凹槽),同时,极性氨基酸(D/E/S)通过氢键相互作用结合在H2B的α2螺旋的N端(cap),形成“cap-anchor”的结合模式.
d.组蛋白伴侣对H2A.Z-H2B的特异性识别机制.
尽管“cap-anchor”模式为组蛋白伴侣结合H2A-H2B或其变体提供了较高的亲和力,但不具备特异性识别组蛋白及其变体的能力.H2A.Z是目前研究比较多的组蛋白变体之一,它与常规组蛋白H2A具有较高的序列相似性(约64%),且种属间的序列保守性非常高.从目前解析的H2A.Z及其特异的伴侣蛋白的结构来看,与YL1、Swr1、Anp32e结合时,H2A.Z的αC螺旋都会发生延伸,进而产生了一个疏水结合面,有利于与上述伴侣蛋白形成疏水相互作用.序列分析表明,相较于H2A.Z,H2A的αC螺旋有一个甘氨酸的插入.该变化导致H2A的αC螺旋中断,氨基酸残基的侧链发生偏移,从而打破了疏水表面的形成,干扰了YL1、Swr1、Anp32e与组蛋白之间的相互作用.需要指出的是,决定Chz1特异性识别的H2A.Z氨基酸残基很可能不是H2A.Z的αC螺旋.
9 展望与思考在真核细胞内,染色质结构的动态调节涉及到组蛋白变体、组蛋白修饰、染色质重构、DNA甲基化、非编码RNA等多种因子的作用,本文通过总结组蛋白伴侣识别H2A-H2B类型组蛋白的研究进展,探讨了二者进行相互作用的结构基础和分子机制.
研究组蛋白伴侣对H2A-H2B类型组蛋白的识别机制在技术上具有较大的难度.原因包括:第一,不同组蛋白伴侣的结构和功能存在较大差异,复合物结构中存在的共性较少;第二,组蛋白伴侣结构具有非常大的柔性,组蛋白伴侣与组蛋白形成高度动态结构.因此,这一领域还存在不少亟需回答的科学问题.首先,常规组蛋白H2A存在多种变体,除了H2A.Z之外,还包括macroH2A、H2A.Bbd、H2A.X等变体,已有大量研究说明这些变体在真核细胞内参与了多种生命活动,并且具有重要的功能[89-93],但是迄今为止仍没有鉴定出与之相关的特异性组蛋白伴侣,这些组蛋白变体的动态调控机制不清楚.其次,目前研究表明,与常规组蛋白H2A相比,特异性组蛋白伴侣对H2A变体具有更高的选择性,而且往往体现在特异性组蛋白伴侣对组蛋白变体具有更强的相互作用.2017年Sun等[94]发现染色质重构复合物SWR1亚基Swc5具有组蛋白伴侣活性,并且Swc5对常规组蛋白H2A-H2B有更高选择性,这种反常的选择性识别是否具有特殊的分子机制?第三,NAP1、FACT、NPM1等兼性组蛋白伴侣既能识别H2A-H2B类型组蛋白,也能识别H3-H4类型组蛋白,考虑到H2A-H2B和H3-H4结构的差异,这两种识别的分子机制很可能不尽相同.另外,这些组蛋白伴侣对常规组蛋白H2A和多种变体的识别往往没有选择性,说明必然存在某种具有普适性的分子机制可以介导H2A-H2B类型组蛋白的识别.第四,蛋白质组学分析表明在已知的组蛋白代谢通路中,多个组蛋白伴侣往往要共同发挥伴侣活性,保证生命活动的正常进行[95],如Asf1与MCM2共同结合H3-H4二聚体,为MCM2在DNA复制过程中实现组蛋白的回收以及核小体的再组装提供帮助[96],此外,Chz1和NAP1在H2A.Z的染色质组装调控中也体现出代偿作用[97].组蛋白伴侣之间是如何协调发挥作用的还很不清楚.最后,组蛋白伴侣只是调控染色质结构动态的因素之一,染色质动态调控还依赖组蛋白变体、组蛋白修饰、染色质重构、DNA甲基化、非编码RNA等因子的参与.组蛋白伴侣如何和上述调控因子联系成为一个网络体系发挥作用,我们仍然所知甚少.回答这些亟待解决的问题,对于我们了解H2A-H2B类型组蛋白伴侣的功能具有重要的意义.
[1] |
Luger K, Mader A W, Richmond R K, et al. Crystal structure of the nucleosome core particle at 28 A resolution. Nature, 1997, 389(6648): 251-260. DOI:10.1038/38444 |
[2] |
Marques M, Laflamme L, Gervais A L, et al. Reconciling the positive and negative roles of histone H2AZ in gene transcription. Epigenetics, 2010, 5(4): 267-272. DOI:10.4161/epi.5.4.11520 |
[3] |
Zlatanova J, Thakar A. H2AZ: view from the top. Structure, 2008, 16(2): 166-179. DOI:10.1016/j.str.2007.12.008 |
[4] |
Suto R K, Clarkson M J, Tremethick D J, et al. Crystal structure of a nucleosome core particle containing the variant histone H2AZ. Nat Struct Biol, 2000, 7(12): 1121-1124. DOI:10.1038/81971 |
[5] |
Placek B J, Harrison L N, Villers B M, et al. The H2AZ/H2B dimer is unstable compared to the dimer containing the major H2A isoform. Protein Science, 2005, 14(2): 514-522. DOI:10.1110/ps.041026405 |
[6] |
Wilhelm F X, Wilhelm M L, Erard M, et al. Reconstitution of chromatin: assembly of the nucleosome. Nucleic Acids Res, 1978, 5(2): 505-521. DOI:10.1093/nar/5.2.505 |
[7] |
Laskey R A, Honda B M, Mills A D, et al. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature, 1978, 275(5679): 416-420. DOI:10.1038/275416a0 |
[8] |
Ito T, Bulger M, Kobayashi R, et al. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol, 1996, 16(6): 3112-3124. DOI:10.1128/MCB.16.6.3112 |
[9] |
Verreault A, Kaufman P D, Kobayashi R, et al. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell, 1996, 87(1): 95-104. DOI:10.1016/S0092-8674(00)81326-4 |
[10] |
Narlikar G J, Sundaramoorthy R, Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell, 2013, 154(3): 490-503. DOI:10.1016/j.cell.2013.07.011 |
[11] |
Campos E I, Fillingham J, Li G, et al. The program for processing newly synthesized histones H31 and H4. Nat Struct Mol Biol, 2010, 17(11): 1343-1351. DOI:10.1038/nsmb.1911 |
[12] |
D'Arcy S, Martin K W, Panchenko T, et al. Chaperone Nap1 shields histone surfaces used in a nucleosome and can put H2A-H2B in an unconventional tetrameric form. Mol Cell, 2013, 51(5): 662-677. DOI:10.1016/j.molcel.2013.07.015 |
[13] |
Straube K, Blackwell J S, Jr, Pemberton L F. Nap1 and Chz1 have separate Htz1 nuclear import and assembly functions. Traffic, 2010, 11(2): 185-197. DOI:10.1111/tra.2010.11.issue-2 |
[14] |
Avvakumov N, Nourani A, Cote J. Histone chaperones: modulators of chromatin marks. Mol Cell, 2011, 41(5): 502-514. DOI:10.1016/j.molcel.2011.02.013 |
[15] |
Venkatesh S, Wørkman J L. Histone exchange, chromatin structure and the regulation of transcription. Molecular Cell Biology, 2015, 16(3): 178-189. |
[16] |
Huang C, Zhu B. H33 turnover: a mechanism to poise chromatin for transcription, or a response to open chromatin?. BioEssays, 2014, 36(6): 579-584. DOI:10.1002/bies.201400005 |
[17] |
Mejlvang J, Feng Y, Alabert C, et al. New histone supply regulates replication fork speed and PCNA unloading. J Cell Biol, 2014, 204(1): 29-43. DOI:10.1083/jcb.201305017 |
[18] |
Alabert C, Groth A. Chromatin replication and epigenome maintenance. Nature reviews. Molecular Cell Biology, 2012, 13(3): 153-167. DOI:10.1038/nrm3288 |
[19] |
Meeks-Wagner D, Hartwell L H. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell, 1986, 44(1): 43-52. DOI:10.1016/0092-8674(86)90483-6 |
[20] |
Gunjan A, Verreault A. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell, 2003, 115(5): 537-549. DOI:10.1016/S0092-8674(03)00896-1 |
[21] |
Ishiuchi T, Enriquez-Gasca R, Mizutani E, et al. Early embryonic-like cells are induced by downregulating replication- dependent chromatin assembly. Nat Struct Mol Biol, 2015, 22(9): 662-671. DOI:10.1038/nsmb.3066 |
[22] |
Cheloufi S, Elling U, Hopfgartner B, et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature, 2015, 528(7581): 218-224. DOI:10.1038/nature15749 |
[23] |
Lacoste N, Woolfe A, Tachiwana H, et al. Mislocalization of the centromeric histone variant CenH3/CENP-A in human cells depends on the chaperone DAXX. Mol Cell, 2014, 53(4): 631-644. DOI:10.1016/j.molcel.2014.01.018 |
[24] |
Hammond C M, Stromme C B, Huang H, et al. Histone chaperone networks shaping chromatin function. Nature reviews. Molecular Cell Biology, 2017, 18(3): 141-158. DOI:10.1038/nrm.2016.159 |
[25] |
Liang X, Shan S, Pan L, et al. Structural basis of H2AZ recognition by SRCAP chromatin-remodeling subunit YL1. Nat Struct Mol Biol, 2016, 23(4): 317-323. DOI:10.1038/nsmb.3190 |
[26] |
Latrick C M, Marek M, Ouararhni K, et al. Molecular basis and specificity of H2AZ-H2B recognition and deposition by the histone chaperone YL1. Nat Struct Mol Biol, 2016, 23(4): 309-316. DOI:10.1038/nsmb.3189 |
[27] |
Mao Z, Pan L, Wang W, et al. Anp32e, a higher eukaryotic histone chaperone directs preferential recognition for H2AZ. Cell Res, 2014, 24(4): 389-399. DOI:10.1038/cr.2014.30 |
[28] |
Obri A, Ouararhni K, Papin C, et al. ANP32E is a histone chaperone that removes H2AZ from chromatin. Nature, 2014, 505(7485): 648-653. DOI:10.1038/nature12922 |
[29] |
English C M, Adkins M W, Carson J J, et al. Structural basis for the histone chaperone activity of Asf1. Cell, 2006, 127(3): 495-508. DOI:10.1016/j.cell.2006.08.047 |
[30] |
Ishimi Y, Kojima M, Yamada M, et al. Binding mode of nucleosome-assembly protein (AP-I) and histones. Eur J Biochem, 1987, 162(1): 19-24. DOI:10.1111/ejb.1987.162.issue-1 |
[31] |
Levchenko V, Jackson V. Histone release during transcription: NAP1 forms a complex with H2A and H2B and facilitates a topologically dependent release of H3 and H4 from the nucleosome. Biochemistry-Us, 2004, 43(9): 2359-2372. DOI:10.1021/bi035737q |
[32] |
Canela N, Rodriguez-Vilarrupla A, Estanyol J M, et al. The SET protein regulates G2/M transition by modulating cyclin B-cyclin- dependent kinase 1 activity. J Biol Chem, 2003, 278(2): 1158-1164. DOI:10.1074/jbc.M207497200 |
[33] |
Kellogg D R, Murray A W. NAP1 acts with Clb1 to perform mitotic functions and to suppress polar bud growth in budding yeast. J Cell Biol, 1995, 130(3): 675-685. DOI:10.1083/jcb.130.3.675 |
[34] |
Fan Z, Beresford P J, Oh D Y, et al. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell, 2003, 112(5): 659-672. DOI:10.1016/S0092-8674(03)00150-8 |
[35] |
Kepert J F, Mazurkiewicz J, Heuvelman G L, et al. NAP1 modulates binding of linker histone H1 to chromatin and induces an extended chromatin fiber conformation. J Biol Chem, 2005, 280(40): 34063-34072. DOI:10.1074/jbc.M507322200 |
[36] |
Dong A, Liu Z, Zhu Y, et al. Interacting proteins and differences in nuclear transport reveal specific functions for the NAP1 family proteins in plants. Plant Physiology, 2005, 138(3): 1446-1456. DOI:10.1104/pp.105.060509 |
[37] |
Mosammaparast N, Ewart C S, Pemberton L F. A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B. Embo J, 2002, 21(23): 6527-6538. DOI:10.1093/emboj/cdf647 |
[38] |
Chen X, D'Arcy S, Radebaugh C A, et al. Histone chaperone Nap1 is a major regulator of histone H2A-H2B dynamics at the inducible GAL locus. Mol Cell Biol, 2016, 36(8): 1287-1296. DOI:10.1128/MCB.00835-15 |
[39] |
Park Y J, Chodaparambil J V, Bao Y, et al. Nucleosome assembly protein 1 exchanges histone H2A-H2B dimers and assists nucleosome sliding. J Biol Chem, 2005, 280(3): 1817-1825. DOI:10.1074/jbc.M411347200 |
[40] |
Fujii-Nakata T, Ishimi Y, Okuda A, et al. Functional analysis of nucleosome assembly protein, NAP-1. The negatively charged COOH-terminal region is not necessary for the intrinsic assembly activity. J Biol Chem, 1992, 267(29): 20980-20986. |
[41] |
Ohtomo H, Akashi S, Moriwaki Y, et al. C-terminal acidic domain of histone chaperone human NAP1 is an efficient binding assistant for histone H2A-H2B, but not H3-H4. Genes Cells, 2016, 21(3): 252-263. DOI:10.1111/gtc.2016.21.issue-3 |
[42] |
Park Y J, Luger K. The structure of nucleosome assembly protein 1. Proc Natl Acad Sci USA, 2006, 103(5): 1248-1253. DOI:10.1073/pnas.0508002103 |
[43] |
Aguilar-Gurrieri C, Larabi A, Vinayachandran V, et al. Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly. Embo J, 2016, 35(13): 1465-1482. DOI:10.15252/embj.201694105 |
[44] |
Orphanides G, LeRoy G, Chang C H, et al. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell, 1998, 92(1): 105-116. DOI:10.1016/S0092-8674(00)80903-4 |
[45] |
Zhou Y, Wang T S. A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase alpha facilitates DNA replication. Mol Cell Biol, 2004, 24(21): 9568-9579. DOI:10.1128/MCB.24.21.9568-9579.2004 |
[46] |
Kundu L R, Seki M, Watanabe N, et al. Biphasic chromatin binding of histone chaperone FACT during eukaryotic chromatin DNA replication. Biochim Biophys Acta, 2011, 1813(6): 1129-1136. DOI:10.1016/j.bbamcr.2011.01.002 |
[47] |
Keller D M, Lu H. p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2hSPT16SSRP1 complex. J Biol Chem, 2002, 277(51): 50206-50213. DOI:10.1074/jbc.M209820200 |
[48] |
Hautbergue G M, Hung M L, Walsh M J, et al. UIF, a New mRNA export adaptor that works together with REF/ALY, requires FACT for recruitment to mRNA. Curr Biol, 2009, 19(22): 1918-1924. DOI:10.1016/j.cub.2009.09.041 |
[49] |
Lejeune E, Bortfeld M, White S A, et al. The chromatin-remodeling factor FACT contributes to centromeric heterochromatin independently of RNAi. Curr Biol, 2007, 17(14): 1219-1224. DOI:10.1016/j.cub.2007.06.028 |
[50] |
Belotserkovskaya R, Oh S, Bondarenko V A, et al. FACT facilitates transcription-dependent nucleosome alteration. Science, 2003, 301(5636): 1090-1093. DOI:10.1126/science.1085703 |
[51] |
Formosa T, Eriksson P, Wittmeyer J, et al. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. Embo J, 2001, 20(13): 3506-3517. DOI:10.1093/emboj/20.13.3506 |
[52] |
Orphanides G, Wu W H, Lane W S, et al. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature, 1999, 400(6741): 284-288. DOI:10.1038/22350 |
[53] |
Hondele M, Stuwe T, Hassler M, et al. Structural basis of histone H2A-H2B recognition by the essential chaperone FACT. Nature, 2013, 499(7456): 111-114. DOI:10.1038/nature12242 |
[54] |
Tsunaka Y, Fujiwara Y, Oyama T, et al. Integrated molecular mechanism directing nucleosome reorganization by human FACT. Genes & Development, 2016, 30(6): 673-686. |
[55] |
Schlesinger M B, Formosa T. POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics, 2000, 155(4): 1593-1606. |
[56] |
Kemble D J, McCullough L L, Whitby F G, et al. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs. Mol Cell, 2015, 60(2): 294-306. DOI:10.1016/j.molcel.2015.09.008 |
[57] |
Li W, Chen P, Yu J, et al. FACT remodels the tetranucleosomal unit of chromatin fibers for gene transcription. Mol Cell, 2016, 64(1): 120-133. DOI:10.1016/j.molcel.2016.08.024 |
[58] |
Luk E, Vu N D, Patteson K, et al. Chz1, a nuclear chaperone for histone H2AZ. Mol Cell, 2007, 25(3): 357-368. DOI:10.1016/j.molcel.2006.12.015 |
[59] |
Liu H, Luo K, Zhou Z, et al. Histone chaperone Chz1 facilitates the disfavouring property of Spt16 to H2AZ-containing genes in Saccharomyces cerevisiae. Biochem J, 2014, 460(3): 387-397. |
[60] |
Zhou Z, Feng H, Hansen D F, et al. NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B. Nat Struct Mol Biol, 2008, 15(8): 868-869. DOI:10.1038/nsmb.1465 |
[61] |
Hansen D F, Zhou Z, Feng H, et al. Binding kinetics of histone chaperone Chz1 and variant histone H2AZ-H2B by relaxation dispersion NMR spectroscopy. J Mol Biol, 2009, 387(1): 1-9. DOI:10.1016/j.jmb.2009.01.009 |
[62] |
Chu X, Wang Y, Gan L, et al. Importance of electrostatic interactions in the association of intrinsically disordered histone chaperone Chz1 and histone H2AZ-H2B. Plos Computational Biology, 2012, 8(7): e1002608. DOI:10.1371/journal.pcbi.1002608 |
[63] |
Radrizzani M, Vila-Ortiz G, Cafferata E G, et al. Differential expression of CPD1 during postnatal development in the mouse cerebellum. Brain Res, 2001, 907(1-2): 162-174. DOI:10.1016/S0006-8993(01)02351-4 |
[64] |
Costanzo R V, Vila-Ortiz G J, Perandones C, et al. Anp32e/Cpd1 regulates protein phosphatase 2A activity at synapses during synaptogenesis. Eur J Neurosci, 2006, 23(2): 309-324. DOI:10.1111/(ISSN)1460-9568 |
[65] |
Gursoy-Yuzugullu O, Ayrapetov M K, Price B D. Histone chaperone Anp32e removes H2AZ from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. Proc Natl Acad Sci USA, 2015, 112(24): 7507-7512. DOI:10.1073/pnas.1504868112 |
[66] |
Wu W H, Alami S, Luk E, et al. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat Struct Mol Biol, 2005, 12(12): 1064-1071. DOI:10.1038/nsmb1023 |
[67] |
Ranjan A, Mizuguchi G, FitzGerald P C, et al. Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2AZ replacement. Cell, 2013, 154(6): 1232-1245. DOI:10.1016/j.cell.2013.08.005 |
[68] |
Morillo-Huesca M, Clemente-Ruiz M, Andujar E, et al. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2AZ. Plos One, 2010, 5(8): e12143. DOI:10.1371/journal.pone.0012143 |
[69] |
Wu W H, Wu C H, Ladurner A, et al. N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex. J Biol Chem, 2009, 284(10): 6200-6207. DOI:10.1074/jbc.M808830200 |
[70] |
Hong J, Feng H, Wang F, et al. The catalytic subunit of the SWR1 remodeler is a histone chaperone for the H2AZ-H2B dimer. Mol Cell, 2014, 53(3): 498-505. DOI:10.1016/j.molcel.2014.01.010 |
[71] |
Ikura T, Ogryzko V V, Grigoriev M, et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell, 2000, 102(4): 463-473. DOI:10.1016/S0092-8674(00)00051-9 |
[72] |
Cai Y, Jin J, Florens L, et al. The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J Biol Chem, 2005, 280(14): 13665-13670. DOI:10.1074/jbc.M500001200 |
[73] |
Kusch T, Mei A, Nguyen C. Histone H3 lysine 4 trimethylation regulates cotranscriptional H2A variant exchange by Tip60 complexes to maximize gene expression. Proc Natl Acad Sci USA, 2014, 111(13): 4850-4855. DOI:10.1073/pnas.1320337111 |
[74] |
Mizuguchi G, Shen X, Landry J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science, 2004, 303(5656): 343-348. DOI:10.1126/science.1090701 |
[75] |
Kobor M S, Venkatasubrahmanyam S, Meneghini M D, et al. A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2AZ into euchromatin. Plos Biology, 2004, 2(5): E131. DOI:10.1371/journal.pbio.0020131 |
[76] |
Clapier C R, Iwasa J, Cairns B R, et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nature reviews. Molecular Cell Biology, 2017, 18(7): 407-422. DOI:10.1038/nrm.2017.26 |
[77] |
Krogan N J, Keogh M C, Datta N, et al. A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell, 2003, 12(6): 1565-1576. DOI:10.1016/S1097-2765(03)00497-0 |
[78] |
Luk E, Ranjan A, Fitzgerald P C, et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2AZ and canonical nucleosome. Cell, 2010, 143(5): 725-736. DOI:10.1016/j.cell.2010.10.019 |
[79] |
Nguyen V Q, Ranjan A, Stengel F, et al. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell, 2013, 154(6): 1220-1231. DOI:10.1016/j.cell.2013.08.018 |
[80] |
Bekker-Jensen S, Fugger K, Danielsen J R, et al. Human Xip1 (C2orf13) is a novel regulator of cellular responses to DNA strand breaks. J Biol Chem, 2007, 282(27): 19638-19643. DOI:10.1074/jbc.C700060200 |
[81] |
Macrae C J, McCulloch R D, Ylanko J, et al. APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation. DNA Repair, 2008, 7(2): 292-302. DOI:10.1016/j.dnarep.2007.10.008 |
[82] |
Iles N, Rulten S, El-Khamisy S F, et al. APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Mol Cell Biol, 2007, 27(10): 3793-3803. DOI:10.1128/MCB.02269-06 |
[83] |
Grundy G J, Rulten S L, Zeng Z, et al. APLF promotes the assembly and activity of non-homologous end joining protein complexes. Embo J, 2013, 32(1): 112-125. |
[84] |
Rulten S L, Fisher A E, Robert I, et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell, 2011, 41(1): 33-45. DOI:10.1016/j.molcel.2010.12.006 |
[85] |
Mehrotra P V, Ahel D, Ryan D P, et al. DNA repair factor APLF is a histone chaperone. Mol Cell, 2011, 41(1): 46-55. DOI:10.1016/j.molcel.2010.12.008 |
[86] |
Majumder A, Syed K M, Mukherjee A, et al. Enhanced expression of histone chaperone APLF associate with breast cancer. Mol Cancer, 2018, 17(1): 76-84. DOI:10.1186/s12943-018-0826-9 |
[87] |
Corbeski I, Dolinar K, Wienk H, et al. DNA repair factor APLF acts as a H2A-H2B histone chaperone through binding its DNA interaction surface. Nucleic Acids Res, 2018, 46(14): 7138-7152. DOI:10.1093/nar/gky507 |
[88] |
Andrews A J, Chen X, Zevin A, et al. The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol Cell, 2010, 37(6): 834-842. DOI:10.1016/j.molcel.2010.01.037 |
[89] |
Rogakou E P, Pilch D R, Orr A H, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem, 1998, 273(10): 5858-5868. DOI:10.1074/jbc.273.10.5858 |
[90] |
Fernandez-Capetillo O, Lee A, Nussenzweig M, et al. H2AX: the histone guardian of the genome. DNA Repair, 2004, 3(8-9): 959-967. DOI:10.1016/j.dnarep.2004.03.024 |
[91] |
Costanzi C, Pehrson J R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature, 1998, 393(6685): 599-601. DOI:10.1038/31275 |
[92] |
Ishibashi T, Li A, Eirin-Lopez J M, et al. H2ABbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Res, 2010, 38(6): 1780-1789. DOI:10.1093/nar/gkp1129 |
[93] |
Tolstorukov M Y, Goldman J A, Gilbert C, et al. Histone variant H2ABbd is associated with active transcription and mRNA processing in human cells. Mol Cell, 2012, 47(4): 596-607. DOI:10.1016/j.molcel.2012.06.011 |
[94] |
Sun L, Luk E. Dual function of Swc5 in SWR remodeling ATPase activation and histone H2A eviction. Nucleic Acids Res, 2017, 45(17): 9931-9946. DOI:10.1093/nar/gkx589 |
[95] |
Campos E I, Smits A H, Kang Y H, et al. Analysis of the histone H31 interactome: a suitable chaperone for the right event. Mol Cell, 2015, 60(4): 697-709. DOI:10.1016/j.molcel.2015.08.005 |
[96] |
Huang H, Stromme C B, Saredi G, et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol, 2015, 22(8): 618-626. DOI:10.1038/nsmb.3055 |
[97] |
Dronamraju R, Ramachandran S, Jha D K, et al. Redundant functions for Nap1 and Chz1 in H2AZ deposition. Sci Rep, 2017, 7(1): 10791. DOI:10.1038/s41598-017-11003-8 |