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B-Catenin and The 3-Catenin Destruction
Complex: From Basic Science to Drug Design

WENQING XU, DAVID KIMELMAN?
("Department of Biological Structure, ?Department of Biochemistry, University of Washington, Seattle, WA 98195, USA)

Abstract

The canonical Wnt/B-catenin signaling pathway plays critical roles in both embryonic development and

tumorigenesis. Central to the pathway is the turnover of (-catenin, a protein that functions in both cell adhesion and
transcription. In the absence of a Wnt signal, free cytosolic (3-catenin is phosphorylated by a large protein complex called
the “B-catenin destruction complex” that targets B-catenin for degradation by an ubiquitin ligase/proteasome system. In

the presence of a Wnt signal, the binding of Wnt to its receptor Frizzled and co-receptor LRP leads to the inhibition of
B-catenin phosphorylation in the B-catenin destruction complex through an unknown mechanism. Inhibition of the
[3-catenin destruction complex leads to the accumulation of nuclear B-catenin, which in turn forms a complex with Tcf and
BCL9. Recent studies have provided important clues regarding the molecular mechanism of the B-catenin destruction

complex as well as an explanation for how B-catenin switches between its roles in cell adhesion and transcription.
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Wats constitute a family of secreted glycoproteins
that mainly act on target cells in a paracrine fashion.
While the original Wnt gene was identified as an
oncogene that causes mammary tumors, they have
since been recognized as critical regulators of
embryonic development, stem cell growth and as a key
agent in a wide variety of tumors!"?. In embryos, Wnts
play critical regulatory roles in many processes
including the initial formation of the embryonic axes,
the development of the heart, gut and nervous system,
and the formation of the limbs®. The Wnts have been

protein kinases Casein kinase la (CKla) and glycogen
synthase kinase 33 (GSK-3B), with CKla acting to
prime B-catenin for phosphorylation by GSK-33 B,
In the absence of a Wnt signal, a cytoplasmic protein
complex called the [-catenin destruction complex
containing CKla, GSK-383, the tumor suppressor APC
protein, and the scaffolding protein Axin among
others, catalyzes the phosphorylation of B-catenin.
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subdivided into two categories: the
canonical Wnt pathway, which works
through (-catenin, and the non-
canonical Wnt pathway, which includes
the planar cell polarity and Ca*
signaling pathways. The focus of this
review is the canonical Wnt/B-catenin
pathway that controls the degradation
of cytosolic B-catenin. Deregulation of
the canonical Wnt/B-catenin pathway is
tightly associated with cancer and other
diseases!**.

The Wnt/B-catenin pathway is
highly  conserved. The central
regulatory step for the turnover of
B-catenin is the phosphorylation of
B-catenin by the two serine/threonine
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Phosphorylated (3-catenin is recognized by a ubiquitin
ligase complex, which ubiquitinates [-catenin and
targets it for degradation by the proteosome. In the
presence of a Wnt signal, through an as of yet
unknown mechanism, the phosphorylation of
[B-catenin is inhibited, which leads to the accumulation
of B-catenin in the cytosol. Accumulated [B-catenin
migrates into the nucleus and binds to a DNA-binding
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protein of the Tcf/LEF-1 family, BCL9/BCL9-2
and p300/CBPU!'"*. and together they turn on the
transcription of specific target genes. Depending on
the context, these can be embryonic genes including
transcription and signaling factors™®! or genes
involved in cell growth, including c-MYCP and cyclin
D127 (Figure 1).

pathway

Neighboring cell

Fig. 1 Overview of the Wnt signaling pathway
Central to the canonical Wnt pathway is B-catenin, which is a dual function protein that not only activates the transcription of Wnt target genes, but also
connects cell adherens junctions to the actin cytoskeleton. In the absence of a Wnt signal, B-catenin is constitutively phosphorylated by a B-catenin
destruction complex that contains Axin, CKla, GSK-3B and APC along with other proteins not shown. (-catenin is targeted for degradation by the
proteasome by a ubiquitin ligase that recognizes the phosphorylated form of B-catenin. The Wnt protein binds to Frizzled and co-receptor LRP, and
through an unidentified mechanism involving Dishevelled protein, phosphorylation of B-catenin by GSK-3f is inhibited. B-catenin accumulates and

migrates into the nucleus to form the B-catenin/Tcf/BCL9/p300 complex, which activates the transcription of Wnt target genes.

Abnormal activation of the Wnt/B-catenin
pathway through loss-of-function mutations in the
tumor suppressors APC and Axin, or through
gain-of-function mutations in -catenin itself, is linked
to various human cancersP¥. In particular, constitutive
up-regulation of B-catenin transcriptional activity is a

uniform feature of almost all colon cancers. APC

mutations that lead to B-catenin accumulation were
found in more than 80% of colon cancers!™. In
addition, P-catenin has been found mutationally
activated in 90% of hepatoblastomas and 75% of
pilomatricomas, among other cancers®*?  The
connection between the Wnt/B-catenin pathway and
cancer has fueled a search for Wnt/B-catenin pathway
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antagonists, which may become lead compounds for
anticancer drugs®*. A better understanding of the
Wnt/B-catenin pathway may benefit patients with other
diseases or conditions as well, because this pathway is
also involved in regulating angiogenesis, adipogenesis,
and stem cell proliferation®. More human diseases
related to Wnt pathway components are listed
at http: // www. stanford. edu/ ~ rnusse / diseases /
Humangeneticdis.htm.

1 Drug targets for inhibiting the Wnt
signaling pathway: the [3-catenin
transcriptional complex

Transcription of Wnt target genes is the most
important readout of the canonical Wnt signaling
pathway, and is the basis of Wnt-induced changes in
normal and malignant development. There are many
ways to inhibit Wnt signaling in cultured cells. For
example, the Wnt signal can be inhibited through the
addition of secreted Wnt inhibitors such as WIF-1,
DKK (Dickkopf) or sFRP proteins®™. However, since
most mutations observed in cancers occur in the
proteins of the B-catenin destruction complex, it is
generally accepted that the best targets for inhibiting
the Wnt pathway in cancer treatment lie downstream
of the B-catenin destruction complex. The formation of
the nuclear [-catenin/Tcf (or [-catenin/LEF-1)
complex is essential for Wnt target gene transcription
and has been a key target for drug development.
Compounds that disrupt this complex may suppress
the transcription of Wnt target genes and be useful for
cancer treatment. In fact, several lead compounds have
been selected from libraries of natural compounds in a
high-throughput assay for immunoenzymatic detection
of the B-catenin/Tcf interaction”. Importantly, these
selected compounds that disrupt [-catenin/Tcf
complexes potently antagonize the cellular effects of
B-catenin-dependent activities, including reporter gene
activation, c-myc or cyclin DI expression, cell
proliferation, and duplication of the Xenopus
embryonic dorsal axis, thus confirming that the
B-catenin transcriptional complex is a valid drug
target.

While Tcf is necessary to bring [(3-catenin to the
promoters of target genes, CBP and the highly related
protein p300 play important roles in activating Wnt
target genes!'. A small molecule (ICG-001) that
inhibits the CBP/B-catenin interaction, but not the
p300/B-catenin binding ¥, was shown to block in
cancer cells the expression of survivin, an inhibitor of
apoptosis that is upregulated in many cancers™!. This

study not only demonstrates the possibility of
interfering with the transcription of Wnt target genes
using small molecules, but indicates that it will be
possible to design inhibitors that block subsets of Wnt
target genes, which may be very useful in designing
therapies that are less toxic than would be obtained
with an inhibitor that completely blocks the response
to Wnt pathway activation.

In addition to p300/CBP, BCL9 and its
Drosophila ortholog named Legless interact with
B-catenin in the nucleus, and are necessary for
expression of Wnt responsive genes?. Human BCL9
is a previously defined oncogene that was found
over-expressed in a patient with precursor B-cell acute
lymphoblastic leukemia™!. BCL9 genes share three
short regions of homology, termed HD1, HD2, and
HD3. It has been shown that the HD2 region of BCL9
interacts directly with the first 4 armadillo repeats of
B-catenin, and that this interaction is required for
Wnt/Wg signal transduction®#, It has been proposed
that one of the main functions of BCL9/Legless is to
tether Pygopus to the B-catenin/TCF complex2434,
Since BCL9 is specific and essential for the
transactivation of Wnt responsive genes,  the
BCL9/B-catenin interaction has been proposed as an
important drug target for the
pathway 202,

BCL9-2, a homologue of BCLY, contains about
60% sequence identity among vertebrates and 35%
identity to the human BCL92. There are seven
domains of homology among BCL9-2 proteins, two of
which include the original HD1 and HD2 domains
that are homologous between BCL9 and Legless. In
addition to its role as a co-activator of [3-catenin
transcription in the nucleus, BCL9-2 has also been
proposed to have an essential role in switching
B-catenin between its roles in adhesion and
transcription (see below)?".Importantly, transcriptional
activation of Wnt target genes by BCL9-2 does not
involve Pygopus, indicating that a drug that targets the
BCL9/Pygopus interaction may not be very effective.
If BCLY and BCL9-2 bind -catenin in very similar
ways, it may be possible to find a drug that disrupts the
interaction of B-catenin with both BCL9 proteins,
which would have more general applicability.

canonical Wnt

2 Switching between [3-catenin’s dual
functions: cell-cell adhesion and
transcription of Wnt target genes

In the canonical Wnt pathway, B-catenin is the
central effector and is required for the transcription of
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Wnt target genes. In addition to transcription,
B-catenin is also required for cell-cell adhesion+7,
In fact, B-catenin was originally isolated as a protein
associated with the cytoplasmic region of cadherin, a
transmembrane protein involved in homotypic cell-cell
contacts™. Only when associated with B-catenin does
cadherin exhibit its normal adhesive function. In
adherens junctions, [-catenin is the bridge between
cadherins and a-catenin, which in turn interact with
the actin cytoskeleton (Figure 1). While B-catenin
bound to cadherin is apparently quite stable, the
cytosolic pool of catenin has a short half-life. In
C. elegans, the different functions of (-catenin are
carried out by different B-catenin-family proteins™-,
In vertebrates, a single 3-catenin protein carries out
both the transcriptional and cell adhesion functions.
An important question is whether [(-catenin
intercellular adhesion and the activation of Wnt target
genes is coordinated by shuttling B-catenin between
the cell membrane and the nucleus®™ Y. While the
constitutive formation of the [3-catenin/Tcf/BCL9
complex leads to tumorigenesis, the loss of cell
adhesion (the cadherin/B-catenin/a-catenin link) has
also been shown to play a critical role in cancer
formation and metastasis, suggesting a possible
connection®*,

A critical clue suggesting how the balance of cell
adhesion and Wnt signaling is regulated came from a
study of BCL9-2. Using overexpression and RNAi
studies, Brembeck et al. (2004)?" presented clear
evidence that BCL9-2 regulates whether (-catenin is
at the membrane involved in cell adhesion, or in the
nucleus activating Wnt target genes. The important
regulator of these functions is residue Tyrl42 in
B-catenin. When [B-catenin Y142 was changed to
alanine, BCL9-2 binding was abolished, whereas
mutation of Y142 to the phospho-mimic glutamate
dramatically increased BCL9-2 binding. Intriguingly,
Y142 must remain de-phosphorylated for the proper
binding of a-catenin, a critical interaction that
maintains the integrity of adherens junctions. These
results lead to a model in which, in the absence of
Y 142 phosphorylation, (3-catenin is bound to a-catenin
and cadherin at the membrane, promoting cell
adhesion. When B-catenin Y142 is phosphorylated,
BCL9-2 binds B-catenin strongly, and [-catenin
binding to cadherin is disrupted. The B-catenin/
BCL9-2 complex translocates to the nucleus and
activates Wnt target genes. In addition to Y142,
B-catenin can be phosphorylated at Y654, which
also disrupts the [-catenin/cadherin interactions™.

However, unlike Y142 phosphorylation that results in
BCL9-2 binding and nuclear localization, [(-catenin
proteins phosphorylated at Y654 can be captured by
the B-catenin destruction complex and may not reach
the nucleus.

A second level of switching between the different
roles of B-catenin may be regulated by intramolecular
interactions within B-catenin. Structural and molecular
studies have shown that (-catenin contains three
regions (Figure 2a). The central core region consists of
twelve armadillo repeats and is responsible for
interacting with Tcf, APC, Axin and cadherin®>%. Each
armadillo repeat consists of three helices. The 12
armadillo repeats form a superhelix of helices that
features a long,
N-terminal ~ region
phosphorylation sites.

positively charged groove. The

contains the GSK-3B
Both the N- and C-terminal
regions contain transcriptional activation domains that
are required for gene expression. It has been shown in
vitro that the C-terminal domain of B-catenin, and
possibly the N-terminal domain as well, can interact
with the armadillo repeat domain®, Moreover, the
C-terminus prevents [3-catenin binding to cadherin, but
does not inhibit Tcf binding to B-catenin®*"*, This
intramolecular interaction also prevents the [3-catenin
C-terminus from binding to other B-catenin partners,
such as the PDZ domain of Lin7, a scaffold protein
involved in cell adhesion™. These results suggest that
intramolecular interactions within B-catenin could play
an important role in regulating its function. In support of
this, a recent study demonstrated that in the presence of
a Wnt signal, a form of B-catenin is generated that binds
Tcf but not cadherin. This Wnt-stimulated,
Tcf-selective form of B-catenin is regulated by the
C-terminus of B-catenin selectively preventing cadherin
binding through an intramolecular “ fold-back”
interaction as suggested by in vitro studies™. It was thus
proposed that the Wnt signal not only inhibits the
degradation of B-catenin, but also switches the
B-catenin binding activity towards Tcf by stabilizing
this intramolecular interaction. How does a Wnt signal
stabilize the 3-catenin intramolecular interaction? One
obvious possibility is posttranscriptional modification.
While Y654 phosphorylation may disrupt the
interaction between the armadillo repeats and the
C-terminal domains®, it remains to be tested whether or
not Y142 phosphorylation, or the binding of BCL9-2,
also affects the intramolecular interactions of B-catenin.
Future studies are needed to search for the potential
B-catenin modification that stabilizes the fold-back
conformation.
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Fig. 2 B-catenin and the (3-catenin destruction complex components

(a) Domain structures of B-catenin, Axin and APC. B-catenin contains a central armadillo repeat domain consisting of 12 repeats. B-catenin is
subjected to ubiquitination and degradation upon the phosphorylation of four conserved Ser/Thr residues in the N-terminal domain (indicated by red
stars). Axin consists of an N-terminal “regulator of G-protein signaling” (RGS)-like domain that binds APC, separate binding domains for GSK-3 and
B-catenin located in the center of the protein, and a C-terminal DIX domain related to a segment of Dishevelled, which mediates dimerization of Axin
and binding to Dishevelled. The DIX domain is also required for the binding of the cytoplasmic domain of the Wnt co-receptor LRP5/6. The C-terminal
half of Axin also contains the binding site for CKla. APC contains heptad repeats at its N-terminus that mediate homo-oligomerization, and seven
armadillo repeats (arm) of unclear function. The C-terminal region contains a basic domain that binds microtubules. The central part of APC (~1 000
amino acids) contains ten (3-catenin binding sites which includes three 15 amino acid repeats (A-C), and seven 20 amino acid repeats (1~7). Interspersed
within the 20 amino acid repeat region of APC are three so-called SAMP repeats that have been shown to mediate the interaction with Axin/Conductin®®,

(b) Crystal structures of (3-catenin armadillo repeat domain (yellow), in complex with the (3-catenin-binding domain of Axin (Axin-CBD; blue) or the
phosphorylated third 20aa repeat of APC (red). Four phosphorylated Ser residues in the APC 20aa repeat are also shown in red sticks and labeled with a red
P. Each armadillo repeat contains three helices, and the twelve armadillo repeats form a superhelix with a positively charged structural groove, which forms
the binding site for APC, Axin and Tcf. Note that the binding site on B-catenin for the phosphorylated APC 20aa repeat overlaps the binding site for the
Axin-CBD.

(c) A structural model for the role of APC in the B-catenin destruction complex. (Left side) Axin recruits unphosphorylated B-catenin to the
destruction complex, via its interaction with 3-catenin armadillo repeats 3 and 4. The GSK-33 binding site of Axin is N-terminal to the B-catenin binding
site, positioning GSK-3f3 near the N-terminus of 3-catenin, which can then be phosphorylated. APC is recruited to the complex through an interaction
between its SAMP repeats and the RGS domain of Axin. (Right side) APC and B-catenin are phosphorylated by GSK-3B and CKI(red stars). The
phosphorylated APC 20aa repeats compete B-catenin away from the Axin binding site, and open up Axin’s B-catenin binding site for the next B-catenin
substrate molecule.
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3 APC: the rejuvenator of the (3-catenin
destruction complex?

One of the most critical questions in Wnt
signaling is how APC, which is mutated in the large
majority of colon cancers, plays a critical role in
B-catenin turnover’®™. APC is a large protein with
2 843 residues in a single peptide chain, which
interacts with both [(-catenin and Axin. The
N-terminal region of APC contains an oligomerization
domain and seven armadillo repeats of unclear
function (Figure 2a). The C-terminal region contains a
basic domain that binds microtubules. The central part
of APC (~1 000 amino acids) contains three 15 amino
acid (15aa) repeats®®! and seven 20 amino acid
(20aa) repeats® that both bind B-catenin. Interspersed
within the 20 amino acid repeat region of APC are
three so-called SAMP repeats that have been shown to
mediate the interaction with Axin, the scaffold protein
of the B-catenin destruction complex®™. Axin consists
of an N-terminal “regulator of G-protein signaling”
(RGS)-like domain that binds APCI . gseparate
binding domains for GSK-33 and B-catenin located in
the center of the protein®, and a C-terminal DIX
oligomerization domain (Figure 2a).

One of the proposed roles for APC is promoting
B-catenin nuclear export™®. Tt is also generally
assumed, although it has not been strictly proven, that
APC promotes the phosphorylation of B-catenin in the
B-catenin destruction complex, the most critical step
of B-catenin turnover. Consistent with this concept,
APC directly interacts with the scaffolding protein
Axin in the B-catenin destruction complex™.
Moreover, tansfection of the APC central region
containing the Axin and B-catenin binding motifs into
colon cancer cells, which lack a functional APC,
enhanced the degradation of B-catenin™. Exactly how
APC promotes B-catenin degradation within the
destruction complex has been an important mystery.

Recently, based on structural and biochemical
studies, we and Ha et al. have proposed that APC may
play a critical role in the P-catenin destruction
complex by removing the catalytic product,
phosphorylated (-catenin, from the active site, thus
allowing the destruction complex to efficiently recruit
the next B-catenin substrate! ™. In this way, APC
functions as the active site “rejuvenator” of the
B-catenin destruction complex. Critical to this model
is the proposal that the 15 and 20 amino acid repeats
have different roles, and that the 20aa repeats are
regulated by phosphorylation. The model is largely

based on the following observations. First, the
intracellular concentration of Axin is in picomolar
range, at least in frog eggs where it was carefully
measured™. Since Axin is the essential scaffold, the
concentration of the B-catenin destruction complex in
these frog eggs must be also in this range.
Nevertheless, in the presence of Wnt signal, the
concentration of cytosolic B-catenin increases from
<50 nmol/L range to 100~200 nmol/L range within
minutes™. Therefore, the [-catenin destruction
complex has to be an efficient enzymatic complex.
Second, phosphorylated 3-catenin, the product of each
catalytic cycle, can interact avidly with the single
B-catenin binding site in Axin, which is required for
recruiting the next B-catenin substrate to the active
site7, Third, structural studies demonstrated that the
binding sites on [-catenin for Axin and the
phosphorylated APC 20aa repeats overlap (Figure 2b),
and that the phosphorylated 20 amino acid repeats can
prevent Axin from binding B-catenin/™",

It is important to note that the phosphorylation of
the APC 20aa repeat dramatically increases its binding
affinity for B-catenin. Without phosphorylation, the
APC 20aa repeats can not inhibit Axin binding to Axin
or Tcef"™. Thus APC phosphorylation is essential for
the proposed “rejuvenator” function. In the
proposed model, [-catenin enters the complex by
binding both Axin and the 15aa APC repeats (Figure
2¢). B-catenin is then phosphorylated by CKla and
GSK3, both of which are bound to Axin. The APC
20aa repeats are also phosphorylated, and this causes
them to bind B-catenin tightly, displacing Axin from
B-catenin. We suggest that this conformation
promotes the exit of B-catenin from the destruction
complex. P-catenin may be released from the
destruction complex through the dephosphorylation of
the 20aa repeats by PP2A, which is present in the
destruction complex through its direct interactions
with both APC and Axin™7, Alternatively, APC and
phosphorylated [-catenin may be released from
destruction complex as a complex, which are separated
when B-catenin is degraded by the proteasome. The
overall model is attractive as it provides a mechanism
for B-catenin release from the destruction complex,
and because it is consistent with many biochemical
observations. Future studies will be needed to directly
test this model.

4 Regulation of the (B-catenin destruction
complex

A fundamental question in Wnt signaling is how
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the presence of Wnt signal in the extracellular space
regulates the activity of the [-catenin destruction
complex. It is generally accepted that the binding of
certain Wnt proteins to the extracellular domains of
Frizzled and LRP5/6 is essential for the inhibition of
B-catenin phosphorylation in the 3-catenin destruction
complex™(Figure 1). At this point, it is unclear if the
Wnt signal leads to the disassembly of the B-catenin
destruction complex or if it controls its activity
through a subtle conformational change.

A large body of work demonstrates that Axin is a
critical regulator of the B-catenin destruction complex.
First, Axin mutations cause an increase in [3-catenin
levels and Wnt gene activation, and are associated with
cancersP¥>%1 - Second, Axin is the one component of
the complex that directly interacts with all of the other
proteins in the complex. Third, Axin is the limiting
factor for the formation of the complex. The Axin
concentration in the cell is much lower than the
concentration of the other components in the 3-catenin
destruction complex. In fact, it was proposed that
Wnt regulates the activity of the destruction complex
through the degradation of Axin®. Finally, Axin is the
only known partner for the PPPSP motif of the
cytosolic domain of LRP5/6, which is sufficient for
activating the Wnt pathway™ (see below).

Dvl, the mammalian homolog of Drosophila
Dishevelled (Dsh), was shown to be genetically
required for the canionical Wnt signaling pathway™®.
The Dvl N-terminal region, including the DIX domain,
interacts with the C-terminal region of Axin that also
contains a DIX domain (Figure 2a)®*. Dvl is also a
critical regulator of the non-canonical Wnt pathway. It
remains unclear how Dvl regulates the activity of the
B-catenin destruction complex separately from its
non-canonical role®.

LDL receptor related proteins 5 and 6 (LRP5/6)
and their Drosophila homolog Arrow are single span
transmembrane proteins essential for Wnt/B-catenin
signaling®™*. The cytoplasmic domain of LRP5/6
contains five PPPSP motifs that are necessary and
sufficient to trigger canonical Wnt signaling®™. A
single PPPSP motif, attached to the LDL receptor is
sufficient to activate the Wnt pathway™. Wnt signaling
induces, and requires, phosphorylation of the PPPSP
motif, which creates a binding site for Axin®. Thus
the LRP-Axin interaction is another key step for
understanding ~ (-catenin  destruction  complex
regulation™*%1,

5 Perspectives

The Wnt signaling pathway has been shown to
control cell differentiation and proliferation, and is
critical for embryonic development, cancer and stem
cell maintenance. In recent years, as more and more
players were found to play a role in Wnt signaling
regulation, this pathway turned out to be very complex.
However, the main theme for this pathway remains the
regulation of the (B-catenin and (3-catenin destruction
complex, which is still poorly understood. In the
coming years, it will be profoundly important to reveal
the mechanism of B-catenin destruction complex and
to determine how [3-catenin controls the transcription
of Wnt responsive genes. Unraveling the Wnt signaling
mechanism will be key to understanding many aspects
of embryonic patterning and stem cell regulation as
well as providing the basis for drug design to deal with
Wnat-related cancers.
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