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Abstract Tumor genesis and development often result from deregulation of important biological pathways at the gene expression
level. Although there has been much work focused on searching gene sets using gene expression data or other prior information, proper
statistical testing of the gene sets is still an open question. Most studies have expanded the testing method of a single gene into the gene
sets. Parametric statistical analysis of gene sets ( p-SAGE ) was presented for determining the significant gene sets or pathways
associated with a phenotype of interest. The method was applied to brain tumor experiments to identify many gene sets. Some of the
newly discovered gene sets were related to signal transduction and immunity. This simple and effective method gives useful
biologically meaningful results.
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Since microarrays were introduced, much work
has focused on identifying individual genes that exhibit
differential expression between two phenotypes from
the whole genome in cancer research. Various
statistical tests are used to estimate the significance of
the differential expressions[1]. However, with a long list
of identified candidate genes, the main difficulty in the
analysis is how to interpret these differentially
expressed genes.

Since most biological processes involve complex
interactions and the regulation of multiple genes, it is
better that we look through groups of genes with
similar biological meanings instead of discrete
individual genes. Efforts, in fact, have been made in
search of significant gene sets or pathways in recent
decades. A knowledge-based approach for interpreting
genome-wide expression profiles, Gene Set Enrichment
Analysis (GSEA) [2], was one of the first to carry out
this idea. Every predefined set of genes is assigned a
score calculated as the average of the test statistics of
its member genes. Many studies have applied known
pathway information to the searching for gene sets
within this framework[3].

Besides, other prior knowledge, such as the

protein-protein interactions (PPI), has also been used.
Ideker et al. [4] first performed the analysis based on a
PPI network rather than predefined gene sets. They
screen the network to identify active subnetworks, by
assigning to them scores that resemble previous
methods and picking subnetworks with the highest
scores.

Those methods give a new view for microarray
data analysis. They all share the common procedure:
define or identify gene sets and score them with a test
statistic; search highly-scored gene sets and predict
which of them are related to the response or category
of the sample.

As for the search of highly-scored gene sets, many
attempts have been made to develop effective
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algorithms. The significance testing of gene sets is
mainly based on two ideas: (1) The one is to average
the significant levels of the genes, denoted by 撞T [5, 6].
(2) The other is to first average the gene expression
levels and then test the statistical significance, denoted
by T撞[3, 7].

Great progress has been made in this field,
however, these two methods have failed to solve some
problems. Both just identify gene sets in which some
genes have been up- or down-regulated in the same
manner, but they fail to discover pathways containing
both up-regulated and down-regulated genes. There
are many cases where a transcription factor can
simultaneously up-regulate some genes and down-
regulate others. The overall mean value in such cases
can be unchanged or only slightly changed. The
current statistical methods fail to address this issue.

This work presents a parametric statistical
procedure to identify deregulated gene sets, which can
more accurately calculate the significance of gene sets
and discover the gene sets associated with a phenotype
of interest. This method, called p-SAGE, overcomes
some shortages. Firstly, information loss of the
statistical result in traditional approaches, due to
averaging scores, is here corrected by constructing
metric scores between phenotypes for each gene in a
set. Secondly, the correlation structure of the gene sets
no longer affects the results since it is not a concern
whether the genes in a set are correlated in this
method. Finally, in comparison to previous methods,
the method is more suitable for finding sets in which
the genes are simultaneously distributed into two tails.

1 Materials and methods
1.1 Data
1.1.1 Data preparation. The microarray data were
collected from the NIH Gene Expression Omnibus
(GDS1813).Here SNR (signal to noise ratio) was used
as the difference metric scores in an initial analysis.
For simplicity, the SNR was calculated for each gene
as:

SNR= 滋A-滋B

滓A+滓A
(1)

where 滋A and 滓A are the mean and standard
deviation for each probe in phenotype A, with 滋B and
滓B for phenotype B.

1.1.2 Gene set selection. This study used three types
of sets for the analysis. C2 Sets from MSigDB were
used, which were created from several sources
including online pathway databases and the biomedical
literature (20 cancer related pathways from the
NetPath database were added to the C2 sets). In
addition, gene sets from the GO were also used, which
included cellular components (635 gene sets),
molecular functions (2 500 gene sets) and biological
processes (3 048 gene sets). The transcription factor
target gene sets were created from the Transcriptional
Regulatory Element Database.
1.2 Hypothesis testing framework

The overall objective of this analysis was to
identify gene sets in which the gene expression levels
show prominent differences between the two
phenotypes. A parametric statistical approach was used
to achieve the goal.

The null hypothesis is: The expression differences
for the genes in a gene set between the two phenotypes
show the same distribution as that of all the genes in
the experiments. To construct a suitable statistic for
the hypothesis test, the basic assumption was made
that the SNRs satisfied the standard Gaussian
distribution after normalization. In statistics, x or 字2

could be chosen as the natural test statistic, but the
testing efficiency of the two statistic was different.
Statistic x did identify gene sets in which the genes
were expressed up or down in the same manner, but
failed to find gene sets in which some genes went up
whereas others went down with the overall mean value
unchanged or slightly changed. The expressions of
genes in a deregulated pathway may remain unchanged
in the same way. Tests on some examples showed the
limit of the x statistic. The statistic 字2 overcomes this
deficiency because of its form, thus suits our
hypothesis. Therefore, 字2 is used in the procedure as
the statistic to identify the desired gene sets (Figure 1).
In the analysis, for a gene set S with k genes,

SDS(S) =
k

i = 1
移SNR i

2 (2)

where SDS refers to set deviation score.
Then, SDS (S) was compared with the critical

value of 字琢2(k) from the 字2(n) distribution table for the
required significant level (the P-value threshold is
0.005).

1416· ·



黄波等：p鄄SAGE: 基因集合的参数统计分析方法2009; 36 (11)

SNR

0

-100

100

200

300

400

500

600

700

800

-6 -4 -2 0 2 4 6

Fig. 2 SNR population distribution compared
with a standard Gaussian
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Fig. 1 A schematic diagram of calculating
the significant level of gene sets
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2 Results and discussion
The analysis was used to identify deregulated

gene sets with statistical significance related to brain
tumors. The SNR can be used as the difference metric
for each individual gene. Figure 2 shows the
distribution of the normalized SNRs and standard
Gaussian distribution. Although there are some
differences in the figure between the two curves, the
SNRs’ distribution is close enough to be considered
as a Gaussian distribution since they have very similar
statistical characteristics.

2.1 Significant deregulated gene sets
The program did not filter the gene sets by size so

as not to miss sets with meaningful biological
information. The P value was used as the final ranking
score. With significance P臆0.005, 400 deregulated
gene sets were identified from the C2 gene sets, 202
from the GO gene sets and 12 from the TF target gene
sets.

Most of the most significant gene sets are related
to brain tumor. It is well-known that some receptor
signaling pathways are involved in tumor suppression
and cancer progression, such as TGF茁 receptor, B cell
receptor. TNF琢 is a proinflammatory cytokine, which
plays a role in the pathogenesis of neuronal degeneration[8]

and in the neuroinflammatory response. Meanwhile, it
is reported that TGF茁 and TNF琢 are involved in the
pathogenesis of AD [9]. Mitochondria dysfunction is
one of the hallmarks of cancer cell and plays important
roles in neuronal apoptosis [10]. Some of the genes are
known to be functionally changed in the cancer cell,
such as TP53, JUN, MYC[11]. Also, processes related to
immune response were discovered in our analysis,
such as RUTELLA_HEMATOGFSNDCS_DIFF
(hematopoietic growth factors promote the
differentiation of tolerogenic dendritic cells).
2.2 Comparison with 撞T

The representative method, GSEA (software
downloaded from http://www.broad.mit.edu/gsea) with
the default parameters was chosen for comparison with
the present results. The parameter‘gene list sorting
mode: real or absolute’strongly affected the GSEA
results, so comparisons were made with both options.
2.2.1 Comparison with GSEA results sorted in real
mode.

After combining the significant gene sets enriched
in both normal and tumor phenotypes, the sets were
ranked by their absolute NES scores. GSEA identified
532 gene sets from the C2 gene sets, 200 from the GO
gene sets and 42 from the TF target gene sets. The two
methods agreed on 213 of the C2 sets, 55 of the GO
sets and 10 of the TF target gene sets. About 70% of
the top 100, 80% of the top 30, and 50% of the top 10
gene sets which are discovered in the GSEA results
also were identified from the three databases by the
present method. Selected representative sets that were
missed in the GSEA results but identified by the
present analyzes are listed in Tables 1～3.
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Gene set Rank Description
GO:0006533 25 Aspartate catabolism
GO:0006468 37 Protein amino acid phosphorylation
GO:00459641) 44 Positive regulation of dopamine metabolism
GO:00057541) 46 Proton-transporting ATP synthase, catalytic core (sensu Eukaryota)
GO:0030308 56 Negative regulation of cell growth
GO:0007264 60 Small GTPase mediated signal transduction
GO:0015991 62 ATP hydrolysis coupled proton transport
GO:0006464 63 Protein modification
GO:0005080 64 Protein kinase C binding
GO:0004861 65 Cyclin-dependent protein kinase inhibitor activity
GO:0007010 70 Cytoskeleton organization and biogenesis
GO:0004422 71 Hypoxanthine phosphoribosyltransferase activity
GO:0006915 89 Apoptosis
GO:0042127 122 Regulation of cell proliferation
GO:0007187 123 G-protein signaling, coupled to cyclic nucleotide second messenger
GO:0008635 143 Caspase activation via cytochrome c
GO:0042102 145 Positive regulation of T cell proliferation
GO:00060201) 146 myo-Inositol metabolism
GO:0042771 150 DNA damage response, signal transduction by p53 class mediator resulting in induction of apoptosis
GO:0016337 156 Cell-cell adhesion

Gene set Rank Description
TNF-琢 11 TNF-琢 pathway
VIPPATHWAY 44 Apoptosis of activated T cells is inhibited by vasoactive intestinal peptide (VIP)
FMLPPATHWAY 45 fMLP receptor recognizes formylated bacterial peptides and activates NADPH oxidase

CDMACPATHWAY 53 Ca2+ promotes cell proliferation in cultured macrophages by entering the cell via
calcium channels and activating the MAP kinase pathway

KERATINOCYTEPATHWAY 56 Keratinocyte differentiation, requires the four main MAP kinase pathways
FCER1PATHWAY 76 In mast cells, Fc epsilon receptor 1 activates BTK, PKC, and the MAP kinase

pathway to promote degranulation and arachnidonic acid release

TCRPATHWAY 84 T cell receptors pathway induce T cell activation

RACCYCDPATHWAY 100 Ras, Rac, and Rho coordinate to induce cyclin D1 expression and activate cdk2 to
promote the G1/S transition

CALCINEURIN_NF_AT_SIGNALING 109 Genes associated with signal transduction through calcium, calcineurin, and NF-AT

PPARAPATHWAY 121 Peroxisome proliferators regulate gene expression via PPAR/RXR heterodimers

BCRPATHWAY 122 B-cell receptors activate tyrosine kinases and transiently increase tyrosine
phosphorylation

PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM 126 Phosphatidylinositol signaling system

NFATPATHWAY 139 Cardiac hypertrophy is induced by NF-ATc4 and GATA4
MCALPAINPATHWAY 147 In integrin-mediated cell migration, calpains digest links between the actin

cytoskeleton and focal adhesion proteins

CXCR4PATHWAY 190 Responds to the ligand SDF-1 by activating Ras and PI3 kinase to promote
lymphocyte chemotaxis

DREAMPATHWAY 192 TF DREAM blocks expression of the prodynorphin gene to blocks pain signaling

Table 1 16 gene sets not identified by the GSEA analysis in the C2 sets

Table 2 Gene sets not identified by the GSEA analysis in the TF target gene sets
Genes sets Rank Description

TF_NFIC 6 Transcription factor NFIC target genes

TF_NFIA 10 Transcription factor NFIA target genes

Table 3 Representative gene sets not identified by the GSEA analysis in the GO gene sets

1) Gene sets contain only one gene.

1418· ·



黄波等：p鄄SAGE: 基因集合的参数统计分析方法2009; 36 (11)

Gene sets with genes’SNR distribution farthest
from zero are of most interest, which means that either
(1) the SNRs are mainly distributed at one of the
extremes (top or bottom) or (2) the SNRs are mainly at
both tails. The top three sets in Table 4 (examples of
our result) belong to the second type. The average
SNRs of these three gene sets are all very close to zero,
but their average absolute SNRs are approximately 1
(one standard deviation from the center of the
population distribution). This means that there are a lot
more genes distributed at both tails in these sets than
those in non-significant sets. On the contrary, top
genes in GSEA ranking with the real sorting value
accord well only with the first type because ES reflects
the degree to which set S is overrepresented at either
extremes (top or bottom) of the list, but it is not
sensitive to sets overrepresented at both ends. In this
way, ES is very similar to the statistic x and may fail to
identify some sets with biological meanings, since
gene expressions in deregulated gene sets or pathways
may go in different directions, exhibiting distributions
at both ends.

Before we explore more from this comparison, it
is necessary that we look into more details of our
approach. The sum of the normalized SNR’s square
(SDS) was used to estimate each gene set’s distance
from the normal state assuming that the SNR
population distribution is approximately a standard
Gaussian distribution. For a gene set S with k genes,
the SDS (S) gives the significance of the set by
comparison with critical values corresponding to
specific significant levels in the chi-square test table.
However, the SNR distribution may be not a standard
Gaussian distribution so the SDS distribution may

deviate from the standard chi-square distribution. To
prove the validity of this method, k SNRs were
randomly selected from population to generate a
reference set S’with a SDS (S’). The process was
repeated 1 000 times to get a distribution of SDS(S’).
The distribution was almost a chi-square distribution
with the standard deviation slightly higher than
expected and with the same mean value.

Theoretically, SDS can be applied to cases where
the genes are distributed at only one tail and where
they are distributed at both tails, but the method turns
out to be more sensitive to the second case. The results
show that for the first case, the method identified
desired gene sets, but the sensitivity was not good as
the GSEA approach. For example, the genes in set
ALZHEIMERS_INCIPIENT_UP in Table 4 are mainly
distributed at the bottom (left tail), so GSEA gives it a
high NES. In our method, however, the average of the
absolute SNR is so small (about 0.82), indicating few
genes with SNR higher than 1, that the statistic SDS
cannot be very significant.

When the genes were distributed at both tails, the
current method identifies a number of biologically
meaningful gene sets. For example, for the TF_NFIC
distribution shown in Figure 3, the two tails of the
curve turned up while the center remains low. This
shape indicates that the genes in this set were
distributed away from the center but not at one end, so
the GSEA ES score with the real SNR ranking did not
identify this set.
2.2.2 Comparison with GSEA results sorted in
absolute mode. GSEA identified 432 gene sets from
the C2 sets, 47 from the GO sets and 22 from the TF
target genes sets. The TF_NFIC set was identified, but

Gene set Average SNR Average absolute SNR Set size P value of Chi square test

ALZHEIMERS_INCIPIENT_UP -0.48 0.82 296 0.38

TNF-琢 -0.066 0.95 753 3.6伊10-11

TF_NFIC -0.041 0.93 98 0.002 4

GO_apoptosis -0.039 0.91 261 0.000 60

The reasons that these gene sets were identified
by the current approach but not by GSEA will be
explained by examining the characteristics of
examples from each gene set. The three examples are
TNF琢, GO:0006915 (apoptosis), and TF_NFIC.

The statistical data for these gene sets’SNRs
(normalized) are compared with that of a GSEA
specifically identified gene set (ALZHEIMERS_
INCIPIENT_UP [12] from C2 is used as a reference) in
Table 4.

Table 4 Statistical data for three examples from Tables 1～ 3

1419· ·



生物化学与生物物理进展 Prog. Biochem. Biophys. 2009; 36 (11)

P values of these gene sets barely pass the
significance threshold we set. Most sets play important
roles in tumor genesis and have been used as targets in
drug design to treat human brain tumors. For example,
in the NFATPATHWAY, the NFAT proteins are a
family of Ca2+/calcineurin-responsive transcription
factors primarily recognized for their central roles in T
lymphocyte activation. Yet, they have also been shown
to regulate other genes related to cell cycle
progression, cell differentiation and apoptosis,
revealing a broader role for these proteins in normal
cell physiology. Several reports have addressed the
participation of NFATs in various aspects of malignant
cell transformation and tumorigenic processes [13].
There are also reports that three other gene sets
MCALPAINPATHWAY [14], DREAMPATHWAY [15],
CCR5PATHWAY[16] are associated with brain tumor.
2.3 Comparison with T撞

In this comparison both up-regulated and
down-regulated genes in the same gene set or pathway
are considered. Thus, an absolute expression formula
was used to calculate the expression level of the jth

gene set or pathway:

Sj =
k

i = 1
移I(SNR i>0)X ij (3)

where function I is the indicator function
returning 1 if the argument is true and -1 otherwise,
X ij is the gene expression level of ith gene in the jth
gene set.

Since a simple function cannot be established to
describe the distribution of the SNR of S, the SNR was
simply ranked according to this value. The results
overlap very little with the present method for the top
ranked sets, agreeing on only 12 of the top 100 C2
sets, 4 of the top 50 GO sets, and 3 of the top 10 TF
target genes sets. At the same time, the results from T撞
overlapped with the results from 撞T on only 2 of the
top 100 C2 sets, 1 of the top 50 GO sets, and 0 of the
top 10 TF target genes sets, which was similar to that
found by Nacu et al.[7].
2.4 Discussion

Unlike the previous two methods, the present
approach focused on the distributions of all the SNRs
and the SNRs in each gene set. Parametric statistics

Fig. 3 SNR distribution of set TF_NFIC compared with
standard a Gaussian and random sets from
the SNR population with the same set size

:TF_NFIC; : Standard Gaussian; : Randomly sampled
from population.
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Gene set Average SNRs Average absolute SNRs Set size P value of Chi square test

NFATPATHWAY 0.397 1.14 47 8.61伊10-5

MCALPAINPATHWAY 0.320 1.28 22 0.000 1

DREAMPATHWAY 0.540 1.36 13 0.000 3

CCR5PATHWAY -0.003 40 1.36 16 0.000 5

GO_apoptosis and some other sets were still not found
in its significant gene sets list. Moreover, this search
missed some gene sets with important biological
functions that were identified in the first result, such as
TF_TP53, TP_MYC (from the TF target gene sets) and
PGC (from the C2 sets). Our initial expectation was
that the gene sets discovered using the absolute SNR to
rank the genes would include all the real SNR ranking
results, but there were fewer gene sets identified in the
absolute mode. Some sets may have been lost because
the gene sets were more dispersed in the list than in the
real mode so their ES values were lower.
2.2.3 Gene sets identified only by the present
method. Four representative gene sets from the C2 sets
that were identified by the present method with
relatively high rankings but not by either GSEA
method are listed in Table 5.

Table 5 Four gene sets identified only by our method
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were used with a suitable statistic, SDS, which was
constructed for each gene set to estimate the difference
between the set’s SNR distribution and the SNR
distribution with the population. The method does not
require a ranked list for all genes. This method is very
sensitive to gene sets containing both up- and
down-regulated genes, which is quite meaningful in
biology. SDS was chosen as the test statistic for two
reasons: previous studies try to take into account gene
sets that contain both up- and down-regulated genes
and use an absolute mode as the test statistic, but there
is no simple classical statistic to describe the
distribution of the absolute mode. However, the
chi-square distribution can characterize the square of
the variance following a normal Gaussian distribution
in a convenient, statistically significant manner. The
second reason is that many classical statistical testing
methods for a single gene, such as the t test and F test,
are very difficult to apply to test the gene sets. The
major bottleneck is that the sizes of various gene sets
are quite different. Therefore, the average significance
of the genes is always used. However, this
normalization assumes that the score is approximately
linear with the size of the gene sets, which probably
introduces a bias. In addition, these processing
methods always tend to select smaller gene sets. On
the contrary, SDS, which follows a Chi-square
distribution, can analyze all sizes of gene sets; the
chi-square test does not assume a linear size
relationship.

In conclusion, the SDS method can be regarded as
a new statistical framework for scoring multiple genes,
and also one that gives more biologically meaningful
results.
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摘要 肿瘤的发生与发展通常是由重要的细胞通路表达水平的反常导致的．尽管目前已经有很多工作利用基因表达谱数据以

及一些其他的先验知识来寻找那些与肿瘤相关的基因集合，但还是没有一个恰当的基因集合的统计学方法．大多数研究都是

直接将单基因的检验方法直接应用到基因集合上来．提出了基因集合的参数统计分析方法( p-SAGE )，这个方法应用到大脑
肿瘤的实验中，识别了许多显著的基因集合．一些新发现的基因集合是与信号转导和免疫相关的．这个简便有效的方法可以

得出有生物学意义的结果．
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