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Abstract

with various human diseases. The prediction of IncRNA-disease associations can help to understand the mechanisms of human

Objective Long non-coding RNAs (IncRNAs) participate in a variety of vital biological processes and closely relate

disease at the molecular level, and also contribute to diagnosis and treatment of diseases. Most existing methods of predicting the
IncRNA-disease associations ignore the deep embedding features hiding in IncRNA/disease network topological structures.
Moreover, randomly selecting the negative samples will affect the robustness of predictors. Methods Here we first set up a high
quality dataset by using an effective strategy to select the negative samples (i. e., pairs of non IncRNA-disease association) with
relatively higher quality instead of randomly selecting the negative samples, then proposed a novel method (called NELDA) to
predict the potential IncRNA-disease associations by building 4 deep auto-encoder models to learn the low dimensional network
embedding features from the IncRNA/disease similarity networks, and IncRNA-disease association network, respectively. NELDA
takes the IncRNA/disease similarity network embedding features as the input of one support vector machine (SVM) classifier, and
the IncRNA/disease association network embedding features as the input of another SVM classifier. The prediction results of these
In 10-fold cross-
validation (10 CV) test, the AUC of NELDA achieves 0.982 7 on high quality dataset, which is 0.062 7 and 0.020 7 higher than that
of other two state-of-the-art methods of LDASR and LDNFSGB, respectively. In the case studies of stomach cancer and breast

two SVM classifiers are fused by the weighted average strategy to obtain the final prediction results. Results

cancer, 29/40 (72.5%) novel predicted IncRNAs associated with stomach and breast cancers are supported by recent literatures and
public datasets. Conclusion These experimental results demonstrate that NELDA is a superior method for predicting the potential

IncRNA-disease associations. It has the ability to discover the new IncRNA-disease associations.

Key words
DOI: 10.16476/j.pibb.2021.0132

IncRNA-disease association, network embedding, deep auto-encoder, high quality negative samples

Accumulated evidences reveal that more than
70% of the human genome can be transcribed, but
only less than 2% of the genome is able to be
translated into proteins!'?! | and the RNAs which do
not encode proteins exist in the form of non-coding
RNAsP!. Long non-coding RNAs (IncRNAs) with the
length more than 200 nucleotides account for a large
proportion of non-coding RNAs!*, participating in a
variety of vital biological processes”®. Multiple lines
of evidence have linked dysregulations and mutations
of IncRNAs to diverse human diseases!”), such as
bladder cancer®®, lung cancer”, gastric cancer!'”’, and
breast cancer'''l. For example, upregulated MALAT-1
contributes to bladder cancer cell migration by
transition®),

inducing  epithelial-to-mesenchymal

LncRNA H19 expression was elevated in the lung
cancer cell lines and tissues. H19 promotes lung
cancer metastasis and proliferation by inhibiting the
function of miR-200a"). Therefore, identifying the
potential human disease-related IncRNAs will help to
understand the mechanisms of human disease at the
molecular level, and also provide the potential
human disease

biomarkers for diagnosis and

treatment!'?.
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In recent years, computational methods have
IncRNA-disease
associations by utilizing diversity of biological data,

been developed to predict the

which can provide the candidate disease-associated
IncRNAs
reducing the time-consuming and costs in biological

for biological experiment verification,
experiments'*'*!, Existing computational methods for
predicting IncRNA-disease associations can mainly be
divided into network-based methods''®**! and machine
learning-based methods!'> ", The network-based
methods, such as RWRIncD"® and IDHI-MIRW!®,
usually constructed the IncRNA similarity network, or
IncRNA-disease
integrating one or more of IncRNA similarity, disease

IncRNA-protein IncRNA-
interactions, disease-protein associations,

heterogeneous network by

similarity, interactions,
miRNA
disease-miRNA associations, the known IncRNA-
disease associations and so on, then adopted the
random walk, flow propagation and other algorithms
to predict the IncRNA-disease associations. For
example, RWRIncD!"® implemented the random walk
with restart (RWR) algorithm to predict the potential
IncRNA-disease associations by constructing the
IncRNA functional similarity network based on the
known IncRNA-disease associations. IDHI-MIRW!®!
IncRNA-disease
IncRNA
interactions,

constructed a large-scale
network by integrating
IncRNA-miRNA

interactions,

heterogeneous
expression profiles,
IncRNA-protein
disease-miRNA
associations and known IncRNA-disease associations,
then used RWR to predict the potential IncRNA-
disease associations. However, because most of the
functions and mechanisms of IncRNAs are still
unclear, the IncRNA similarity or IncRNA-disease
heterogeneous network built in existing network-
based methods would be noisy and information
missing.

The machine learning-based methods, such as
LRLSLDA!",  LDAPP,  LDNFSGB®"  and
LDASR™, usually used IncRNA similarities, disease
similarities, known IncRNA-disease associations and

disease  ontology,

associations, disease-protein

other information to represent IncRNA-disease pairs,
then used the machine learning algorithms, such as
Laplacian Regularized Least Squares, Bagging SVM,
gradient boosting and rotation forest, to predict the
IncRNA-disease associations. For  example,
LRLSLDA!"? adopted the Laplacian Regularized

Least Squares to predict the IncRNA-disease

associations in the semi-supervised learning
framework by using the information of IncRNA
IncRNA-disease

associations. LDAP™! employed 2 IncRNA similarity

expression profiles and known

methods to calculate the similarities between
IncRNAs, 5 disease similarity methods to calculate
the similarities between diseases, and then utilized the
Karcher mean of matrices to fuse similarity matrices
of IncRNA and disease, respectively, and finally used
the bagging SVM classifier to predict the potential
IncRNA-disease associations. However, these two
methods ignore the deep embedding features.
LDNFSGB™" and LDASR™ built an auto-encoder
model to learn the hidden abstract representation for
IncRNA-disease pairs based on IncRNA and disease
similarities, then adopted the rotation forest and
gradient boosting algorithm to predict the potential
IncRNA-disease associations, respectively. Although
learn the hidden abstract

representation for IncRNA-disease pairs, they also

these two methods
ignore the deep embedding features which preserve
the network structures.

In this work, we proposed a novel machine
learning-based method (called NELDA) to predict the
potential IncRNA-disease associations. Based on the
IncRNA-disease IncRNA
expression profiles and disease ontology, NELDA

known associations,
first constructs 3 networks of the IncRNA-disease
association network, the IncRNA similarity network
and the disease similarity network. Then, 4 deep auto-
encoder models are built to extract the IncRNA
similarity network embedding, disease similarity
network embedding, IncRNA association network
embedding, and disease network
embedding from IncRNA similarity network, disease
similarity network, and IncRNA-disease association
network, respectively. Based on the IncRNA-disease
similarity network embedding (i. e., concatenating
IncRNA similarity network embedding and disease
similarity network embedding) and IncRNA-disease
association network embedding (i. e., concatenating
IncRNA association network embedding and disease
association network embedding), NELDA designs 2
support  vector (SVM)
separately predict the IncRNA-disease associations.
The final prediction result of NELDA is obtained by
fusing the results of 2 SVM classifiers with the

weighted average strategy. In order to generate the

association

machine classifiers to

robust prediction results, we also set up a higher
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quality dataset by choosing the higher quality non
IncRNA-disease
randomly

instead of
IncRNA-disease
association samples. The performance of NELDA in
10-fold cross validation (10 CV) test shows that
NELDA is superior to other 2 methods of LDASR and
LDNFSGB for IncRNA-disease
associations. The case studies of stomach and breast

association samples

selecting the non

predicting the

cancers indicate that NELDA has the power to predict
the novel IncRNA-disease associations, and it can
candidates for further

provide the biological

experimental validations.
1 Methods

1.1 Datasets

To effectively validate the performance of
NELDA, we first set up a higher quality IncRNA-
D, ,=D"UD;,,. For
constructing the IncRNA-disease association sample
set (i. e., DY), we downloaded the known IncRNA-
disease associations from the previous work!'®, which
collected the known IncRNA-disease associations
from  LncRNAdisease®”,  Lnc2Cancer®  and
GeneRIFP*, then deleted the IncRNAs/diseases with
less than two associations. We finally obtained 1 824
known IncRNA-disease associations to form the
positive sample set D*, which contains 151 IncRNAs
and 233 diseases. For constructing the high-quality
non IncRNA-disease association sample set (i.e.,D,)),
IncRNAs and
diseases, we took the idea from literature to select
IncRNA-disease association
samples (i. e., negative samples). The procedures of

disease association dataset

instead of randomly pairing the

the high-quality non

constructing D, are as follows:

rel

(1) Randomly pairing the IncRNAs and diseases
in the 1824 known IncRNA-disecase associations.
Then, IncRNA-disease

associations and the disease semantic similarity,

based on the known
calculating the association score S for each randomly
paired IncRNA-disease pair without any association
evidence.

min 1
ooy (M

max min

S(1.d)- s,

S(1.d,) =

N,

S(Lad) = > A, (ik) S, (jik) 2)
k=1

XN,

where, 4,, e R"*" is the adjacency matrix of the
known IncRNA-disease associations; N, and N, are

the number of IncRNAs and diseases in DY,

respectively; if the pair of the IncRNA [/, and the
disease d, belongs to D', A,,(i,k)=1; otherwise,
A, (k) =0. S, (jk) is the
similarity between j-th disease d; and k-th disease d,,

disease semantic
which can be calculated by “doSim” function from R
package “DOSE” according to the structure of the
directed acyclic graph in Disease Ontology”**". S’
and S/

min

are the maximum and minimum S’ of all

randomly paired IncRNA-disease pairs without
association evidences, respectively.

(2) According to the association scores S, ranking
all randomly paired IncRNA-disease pairs without
association evidences (i. e., unconfirmed IncRNA-
disease pairs) in ascending order.

(3) Randomly selecting a certain number of
unconfirmed IncRNA-disease pairs with association
score S less than 0.02 to form the non IncRNA-disease

association set D, in which the number of non

rel>
IncRNA-disease association pairs is same as the
number of IncRNA-disease association pairs in D*. So
far, we build a higher quality IncRNA-disease
association dataset D, = D" U D, with 1 824 known
IncRNA-disease associations and 1 824 high-quality
non IncRNA-disease association pairs.

In addition, to verify the strategy effectiveness of
constructing the high-quality non IncRNA-disease
association pairs, we also constructed another dataset
D, =D"UD,,

and diseases in D', removing the known IncRNA-

by randomly pairing the IncRNAs

disease association pairs and selecting the same
number of the non IncRNA-disease association pairs
as D" to form the non IncRNA-disease association set
D

ran®

The distributions of the association score of
positive samples in D, the high-quality non IncRNA-
disease association samples in D, and the non
IncRNA-disease association samples in D, are
shown in Figure S1 in Supplementary.
1.2 Overview of NELDA algorithm
NELDA algorithm mainly consists of the
following 3 phases: (1) Constructing 3 networks of
the IncRNA similarity network, the disease similarity
network and the IncRNA-disease association network
based on the IncRNA expression similarity, IncRNA
Gaussian interaction profile kernel similarity, disease
semantic similarity, disease Gaussian interaction
profile kernel similarity, and known the IncRNA-
disease associations. (2) Building the deep auto-
encoder models to extract IncRNA similarity network

embedding, disease similarity network embedding,
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IncRNA association network embedding, disease
association network embedding, respectively. (3)
Generating two representation vectors for each
IncRNA-disease pair by concatenating the IncRNA
similarity network embedding features and the disease
similarity network embedding features, concatenating

the IncRNA association network embedding features

(a
[ LncRNA
expression profile

LncRNA-disease

.. DO
association

and the disease association network embedding
features, respectively. Then 2 representation vectors
are inputted into 2 SVM classifiers for predicting the
IncRNA-disease associations, respectively. In the end,
the outputs of 2 SVM classifiers are fused by the
weighted average strategy to get the final prediction
results. Figure 1 is the flowchart of our NELDA.

LncRNA-disease association network

Encoder

Ey () @@ Eqp(d)
| Decoder

| Encoder

Q0 E,,d)

E,0) Q00

N~N—— ] —_— e ~N—— - - e
/ 6) Similarity netvs; 3rk eml::;dding vector E, (1, d) Association netwofk embe ;ding vector £, (1, d) N \

L

Fig.1 Flowchart of NELDA

(a) Constructing the IncRNA similarity network, the disease similarity network and the IncRNA-disease association network. (b) Extracting the

IncRNA similarity network embedding and disease similarity network embedding based on IncRNA expression profile, known IncRNA-disease

associations and Disease Ontology by building 2 deep auto-encoder models. (¢) Extracting IncRNA association network embedding and disease

association network embedding from IncRNA-disease association network by building 2 deep auto-encoder models. (d) Constructing 2 support vector

machine classifiers, and using the weighted average strategy to get the final prediction results.



2022; 49 (D

ZEHE, %: NELDA: ETFMEHNIIncRNA -5 X< BE 5K R Tl

<1373

1.3 LncRNA/disease similarity networks

We generated 2 IncRNA similarity matrices S,
and S,. S, eR"™™ is a IncRNA expression
similarity matrix generated by calculating the absolute
value of Spearman correlation coefficient of any
IncRNA pair from their expression profiles, which
were downloaded from the previous work!"",
S, € R"*™is a IncRNA Gaussian interaction profile

Su(iy) + 8, (i)

kernel similarity matrix ' (calculated with Equation
(1) in Supplementary). Two IncRNA similarity
matrices of S,, and S,, are combined to generate the
IncRNA integrated similarity matrixS, e R"™*"" for
constructing the IncRNA similarity network. The
integrated similarity between IncRNA [, and IncRNA
l; is defined as:

if l; and [, have the expression profiles and S, (ij) # 0

2
S.(iy) = S, (i) if [, and [; have the expression profiles and S, (i) = 0 3)
Sm( lJ) otherwise

where, SLl(i,j) and SLz(i,j) are the expression

similarity and the Gaussian interaction profile kernel
similarity between IncRNA [/, and IncRNA [,
respectively.

In addition, we also generated the disease
semantic similarity matrix S,
Gaussian interaction profile kernel similarity matrix

and the disease

S,, € R" ™12 (Equation (3) in Supplementary).
Two disease similarity matrixes S,, and S, are
combined to generate the disease integrated similarity

. Ny xN,
matrixS, e R

for constructing the disease
similarity network. Considering that there is semantic
similarity between any two diseases in the known
IncRNA-disease associations, the integrated similarity
between disease d, and disease d, is defined as:

Sl)l..+SI) Al . ..
)+ Snlid) o

S, (iy) = 2
Sm(izi) ifsm(i:].) =0
1.4 LncRNA/disease embedding features
14.1  Extracting the IncRNA/disease similarity
network embedding
Network

dimensional representations of vertexes in networks,

(4)

embedding can learn the low-
aiming to capture and preserve the network structure.
For example, the structural deep network embedding
(SDNE) is able to capture the highly non-linear
network structure®™. Inspired by SDNE in which the
deep auto-encoder model is used to preserve the
global network structure, we first built a deep auto-
encoder model to extract the IncRNA similarity
network embedding matrix Eg,, from the IncRNA
similarity network. In deep auto-encoder model, the
encoder consists of multiple non-linear functions that
map the input data to the representation space, and the
decoder consists of multiple non-linear functions that

map the representations in representation space to
reconstruction spacel®®.

We inputted the IncRNA integrated similarity
matrix S; to the deep auto-encoder model, that is to
say, for every IncRNA [, the i-th row S,(i,:) in
IncRNA integrated similarity matrix S, is used as the
input vector. The output of encoder, ¥, is the final
low-dimensional representation of IncRNA [, that is,

the IncRNA similarity network embedding ESNL(ZL.,:)

of IncRNA /,. The decoder is built to reconstruct the
input. The detail of the deep auto-encoder model** is
shown in the supplementary file and the loss function
is shown as follows:
L=L, +al, 5)
~ 2 ~ 12
S,(i) = S, (i) | = ‘ S-S, ©

N,
Ll‘DYL = z|
i=1

where L, is a Ly-norm regularization term, which is
[38]

used to prevent overfitting
Similarly, we also built another deep auto-

encoder model to extract the disease similarity

network embedding matrix E,, from the disease

integrated similarity network.

1.4.2

network embedding

Extracting the IncRNA/disease association

According to the process of extracting the
IncRNA/disease similarity network embedding, we
built other 2 deep auto-encoder models to extract the
IncRNA association network embedding matrix £,,,
and the disease association network embedding matrix
E,y, from the IncRNA-disease association network
A, respectively. Considering that the IncRNA-
disease association network is sparse, we redefined
the reconstruction loss function to alleviate the sparse
issue by imposing more penalty to the reconstruction
error of the non-zero elements”®. For examples, the
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reconstruction loss function for extracting IncRNA

association network embedding is defined as
follow!*®:
N, . 2
Lo = D) (Auli) = Alis) ) O, =
i=1
2
I 7)
F
(

Ay = Au,)OB

where A,,(i,:) is the i-th row of IncRNA-disease

association matrix, A,,(i;:) is the i-th row of

reconstruction matrix of IncRNA-disease association
by decoder. IfALD(iJ) = 0, then b(i,j) =1, else b(i,/') =
B>1, B= {b(i?j) ye RV Orepresents Hadamard
product.

Referring to SDNE method, we used the Deep
Belief Network model to pretrain the parameters of
deep auto-encoder models for extracting IncRNA
association network embedding and disease
association network embedding.

1.5 Network embedding feature combination and
decision—level weighted fusion

l; - d,
generated 2 embedding vectors to represent it. One is

the similarity network embedding vector ESLD(li7dj)

For each IncRNA-disease pair we

formed by concatenating the IncRNA similarity
network embedding vector ESNL(ZL.,:) and disease
similarity network embedding vector £ SM(dj,:).
Another is the association network embedding vector
EALD(li,dj) formed by concatenating the IncRNA
association network embedding vector E,Wl(li,:) and

disease association network

EAND(dJ-,:).

embedding vector

Egy(lud) =[ Egy (L) Egp ()] (8)
Eyy(lod) = [E (L) Ey (di) T (9)
Esu)(lwdj) and EALD(li,dj) are inputted into 2
SVM classifiers to output the prediction results of p;,
and p_, respectively. Thus, the results of p, and p,
are fused to get the final prediction results by using
the following weighted average strategy.
p(ld)=w - po(Ld)+ (1 =w)-p.(l.d) (10)
where w is the weight.
1.6 Assessment of the prediction system

The 10-fold cross-validation (10-CV) test is used
to evaluate the performance of NELDA. In 10-CV

test, the positive sample set and negative sample set
are randomly divided into 10 subsets with the almost
equal size, respectively. For each fold in 10-CV test, 9
subsets are used as the training samples, and the
remaining 1 subset are used as the testing samples.
For all the following 10-CV test experiments, all the
known IncRNA-disease associations to be used as the
testing samples in each fold testing subset were
removed, and then we recalculated the IncRNA
similarities, disease similarities and IncRNA-discase
association network by using the remaining known
IncRNA-disease associations.

Accuracy (ACC),
correlation coefficient (MCC) are used as the

Fl-score and Matthew’s

evaluation metrics to assess the prediction system. We
also use AUC and AUPR to evaluate the prediction
system. AUC is the area under the receiver operating
characteristic (ROC) curve, and AUPR is the area
under the precision-recall curve.

2 Results and discussion

2.1 Comparison with other methods

We compared our NELDA method with the state-
of-the-art methods of LDASR™! and LDNFSGB"” on
D,, dataset in 10-CV test (Table S1 lists the main
parameters of NELDA in Supplementary), and all
experiments are implemented on Ubuntu system with
a NVIDIA TITAN V GV100. The prediction results of
NELDA, LDASR and LDNFSGB are shown in Table
1, from which we can see that the AUC of NELDA is
0.982 7, which is 0.062 7 and 0.020 7 higher than that
of LDASR and LDNFSGB, respectively. The AUPR
of NELDA is 0.987 4, which is 0.044 9 and 0.014 6
higher than that of LDASR and LDNFSGB,
respectively. The ACC, F1 and MCC of NELDA are
0.9506, 0.9485 and 0.904 0, which are 0.0552,
0.055 9 and 0.111 9 higher than that of LDASR, and
0.0297, 0.0311 and 0.0591 higher than that of
LDNFSGB, respectively. These results show that
NELDA can effectively predict the IncRNA-disease

Table 1 Results of NELDA, LDASR and LDNFSGB on
D, dataset in 10—CYV test

rel

Method ACC Fl1 MCC AUPR AUC

LDASR 08954 0.8926 0.7921 09425 0.9200
LDNFSGB 09209 09174 08449 09728 0.9620

NELDA 09506 09485 09040 09874 0.9827

Above results are the average results of running three 10-CV tests.
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associations.

To evaluate the effect of the strategy of selecting
high-quality non IncRNA-disease association pairs,
we compared the performance of NELDA, LDASR
and LDNFSGB on D, dataset and D, dataset in
10-CV test. The results of NELDA, LDASR and
LDNFSGB are shown in Table 2, from which we can
see that ACC, F1, MCC, AUPR and AUC of NELDA
on D _, dataset are 0.950 6, 0.948 5, 0.904 0, 0.987 4
and 0.982 7, respectively, which are higher than that
of NELDA on D, dataset. In addition, the measure
metrics values of LDASR and LDNFSGB on the D,
dataset are also higher than those on D

rel

.., dataset.
These results indicate that the strategy of selecting the
high-quality non IncRNA-disease association samples
to construct the training dataset indeed help to

improve the performance of predictors.

Table 2 Results of NELDA, LDASR and LDNFSGB
on D, ,and D,,, datasets in 10—CV test

ran

Method ~ Dataset ACC  F1 ~ MCC AUPR AUC
LDASR D, 07554 07378 05156 0.8299 0.7941
D, 08954 0.8926 07921 0.9425 0.9200
LDNFSGB D, 08094 07969 06237 09005 0.8947
D, 09209 09174 08449 0.9728 0.9620
NELDA  D,, 08422 08337 0.6882 09246 09234

09506 09485 09040 0.9874 0.9827

Above results are the average results of running three 10-CV tests.

2.2  Influence of the decision—level weighted
fusion strategy

To evaluate the influence of decision-level
weighted fusion strategy, we also designed another
two predictors of NELDA-SIM and NELDA-ASS.
For one IncRNA-disease pair, NELDA-SIM inputs the
IncRNA
network embedding feature and its disease similarity

concatenating feature of its similarity
network embedding feature to a SVM classifier, and
NELDA-ASS inputs the concatenating feature of its
IncRNA/disease embedding feature derived from the
known IncRNA-disease association network. The
results of NELDA, NELDA-SIM and NELDA-ASS
on D, and D, , datasets in 10-CV test are shown in
Table 3, from which we can see that the AUC and
AUPR of NELDA on D, , dataset are 0.9827 and
0.987 4, which are 0.004 7 and 0.003 9 higher than
that of NELDA-SIM, respectively, and 0.008 5 and
0.0057 higher than that of NELDA-ASS,
respectively; the AUC and AUPR of NELDA on D

ran

dataset are 0.923 4 and 0.924 6, which are 0.018 9 and
0.031 8 higher than that of NELDA-SIM, and 0.019 6
and 0.0139 higher than that of NELDA-ASS,
respectively. These results show that the strategy of
decision-level

weighted fusion can effectively

improve the performance of NELDA.

Table 3 Results of NELDA, NELDA-SIM and NELDA-
ASS on D,,, and D,,, datasets in 10—CYV test

Dataset  Predictor ACC Fl1 MCC AUPR AUC
D, NELDA-SIM 0.8384 0.8337 0.6782 0.8928 0.904 5
NELDA-ASS 0.7862 0.7426 0.6079 0.9107 0.903 8
NELDA  0.8422 0.8337 0.6882 0.9246 0.923 4

D,, NELDA-SIM 0.9444 09429 0.8902 0.9835 0.978 0
NELDA-ASS 0.9426 09400 0.8887 0.9817 0.9742
NELDA 09506 0.9485 0.9040 0.9874 0.9827

Above results are the average results of running three 10-CV tests.

To analyze the effect of different fusion weight
used in the decision-level fusion strategy, we
implemented NELDA with different fusion weights
on D, dataset in 10-CV test. As shown in Table 4, all
the measurement metrics first increase and then
decrease with the increase of w. When w = 0.5, the
performance of NELDA is optimal. Therefore, we set

w= 0.5 for NELDA on D , dataset.

rel

Table 4 Results of NELDA using different fusion weights
on D, dataset in 10—CV test

w ACC Fl1 MCC AUPR AUC
0.9 0.946 9 0.945 4 0.8954 0.9855 0.980 6
0.8 0.947 5 0.9459 0.896 7 0.986 4 0.981 6
0.7 0.949 0 0.947 3 0.900 0 0.986 9 0.9823
0.6 0.9503 0.948 5 0.9029 0.9872 0.982 6
0.5 0.950 6 0.948 5 0.904 0 0.987 4 0.982 7
0.4 0.949 2 0.946 9 0.901 5 0.987 3 0.982 6
0.3 0.946 6 0.944 2 0.896 6 0.9871 0.982 4
0.2 0.944 6 0.942 1 0.8927 0.986 6 0.9819
0.1 0.943 7 0.9411 0.890 9 0.9857 0.980 8

Above results are the average results of running three 10-CV.

In addition, we also compared the performance
of using the similarity network raw features and its
embedding features, association network raw features
and its embedding features. By separately
concatenating the IncRNA similarity network raw
features and the disease similarity network raw
features, the IncRNA similarity network embedding

features and the disease similarity network embedding
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features, the IncRNA association network raw features
and the disease association network raw features, the
IncRNA association network embedding features and
the disease association network embedding features to
generate 4 vectors for representing each IncRNA-
disease pair, then we input them into 4 SVM models
to predict the IncRNA-disease associations. The
comparison results of raw and embedding features are
shown in Table S2 in Supplementary, from which we
can see that association network embedding features
achieve a better performance than their corresponding
raw features, but the prediction results of similarity
network embedding features are slightly lower than
that of their corresponding raw features. The reason
may be that IncRNA/disease similarity networks do
not contain the label information of IncRNA-disease
associations, applying the unsupervised deep auto-
encoder model to dimension reduction will cause
information loss; while IncRNA/disease association
networks contain the label information of IncRNA-
disease associations, thus its lower dimension
embedding features preserve the class separability
information, which can improve the prediction
performance. Furthermore, we also built another
model of ANELDA (Figure S2 in Supplementary) by
fusing the similarity network raw features and

association network embedding features to predict the
IncRNA-disease  associations. The results of
ANELDA and NELDA on D,, dataset in 10-CV test
are shown in Table S3 in Supplementary, from which

rel

we can see that the performance of ANELDA is better
than that of NELDA.
2.3 Case studies

To evaluate the power of NELDA for predicting
the novel IncRNA-disease associations, we adopted
the stomach and breast cancers as the cases to
implement our NELDA to predict their potential
associated IncRNAs. Stomach cancer is the fifth
leading cancer and third most common cause of
cancer-related deaths worldwide™. For stomach
cancer, among all the 20 top IncRNAs (Table 5)
predicted by NELDA, 15 of them have the
corresponding evidences to verify the associations
with stomach cancer. For example, DANCR promotes
the progression of stomach cancer, and it has the
potential to act as a novel diagnostic biomarker*".,
ZEB1-AS1 acts as the oncogenic roles in the
regulation of stomach cancer cells migration, invasion
and EMT process via modulating ZEBI"". EGOT
serves as an oncogene in stomach cancer, and it could
be useful as a conceivable diagnostic and prognostic

Table 5 Top 20 IncRNAs predicted with NELDA for stomach cancer

LncRNA Evidences Rank
HOTAIRM1 MNDR v3.1, Lnc2Cancer 3.0 1
DANCR MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 2
PCAT1 MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 3
KCNQI1O0T1 MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 4
CRNDE MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 5
ZEBI1-AS1 MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 6
LINC00687 Unconfirmed 7
LINC00602 Unconfirmed 8
HCCATS Unconfirmed 9
SNHG1 MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 10
SNHG12 MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 11
EGOT MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 12
C5o0rf66-AS1 MNDR v3.1, Lnc2Cancer 3.0 13
RMST Unconfirmed 14
LINC00473 MNDR v3.1, Lnc2Cancer 3.0 15
SOX2-0T MNDR v3.1, LncRNADisease 2.0 16
LUCAT1 MNDR v3.1, Lnc2Cancer 3.0 17
HCG27 Unconfirmed 18
HCP5 MNDR v3.1, Lnc2Cancer 3.0 19
CBR3-AS1 MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 20
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biomarker for stomach cancer tumorigenesis!*'/.

Breast cancer is the most frequently diagnosed
cancer and leading cause of cancer death in women'**.
For breast cancer, among all the 20 top IncRNAs
(Table 6) predicted by NELDA, 14 of them have the
corresponding evidences to verify the associations
HULC s
overexpressed in breast cancer cell lines and tissues

with breast cancer. For example,
compared with normal breast cell line and normal

healthy breast tissues'*. In addition, HULC promotes

the development of breast cancer via regulating
LYPDI1 expression through sponging miR-6754-5p.
Deletion of HNF1A-AS1 suppresses the malignant
phenotypes of breast cancer cells in vitro and in vivo
by targeting miRNA-20a-5p/TRIM32 axis'*. HNF1A-
AS1 could be a promising treatment target for breast
cancer'*, SNHGI functions as a novel oncogene in
breast cancer through the SNHG/miR573/LMO4

axis ',

Table 6 Top 20 IncRNAs predicted with NELDA for breast cancer

LncRNA Evidences Rank
HULC MNDR v3.1, Lnc2Cancer 3.0 1
NPTN-ITI MNDR v3.1 2
WTI1-AS MNDR v3.1, LncRNADisease 2.0 3
PCAT1 MNDR v3.1, Lnc2Cancer 3.0 4
HNF1A-AS1 Reference!*! 5
SNHG1 MNDR v3.1, Lnc2Cancer 3.0 6
ZEB1-ASI1 MNDR v3.1, Lnc2Cancer 3.0 7
LINC00687 Unconfirmed 8
LINC00602 Unconfirmed 9
HCCATS Unconfirmed 10
TUSC7 MNDR v3.1 11
CBR3-ASI MNDR v3.1 12
PCGEM1 Unconfirmed 13
CASC2 MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0 14
GHET1 MNDR v3.1, Lnc2Cancer 3.0 15
DRAIC MNDR v3.1, LncRNADisease 2.0 16
MIR17HG Unconfirmed 17
HCP5 Unconfirmed 18
HOTAIRM1 MNDR v3.1, Lnc2Cancer 3.0 19
BANCR MNDR v3.1, Lnc2Cancer 3.0 20

In summary, 29 (14 for breast cancer, 15 for
stomach cancer) out of 40 predicted IncRNAs
associated with breast and stomach cancers have been
supported by recent literatures and public database.
Results of these 2 case studies show that our NELDA
can effectively predict the potential association
IncRNAs for a disease.

3 Conclusion

LncRNAs participate in a variety of wvital
biological processes and closely relate with various
human diseases. The prediction of IncRNA-disease
association can help to understand the mechanisms of
human disease at the molecular level, and contribute

to diagnosis and treatment of diseases. Most existing
IncRNA-disease  association prediction
ignored the deep embedding features hided in the
network topological structures. In this work, we
presented a novel method of NELDA to predict the
potential IncRNA-disease associations by extracting
the IncRNA/disease deep embedding features with 4
deep auto-encoder models. NELDA first constructs 3
networks of a IncRNA similarity network, a disease
similarity network and a IncRNA-disease association
network based on the IncRNA expression profiles,
disease ontology and the known IncRNA-disease
associations, then builds 4 deep auto-encoder models
to extract the IncRNA/disease similarity network
IncRNA/disease

methods

embedding features and the
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association network embedding features, respectively.
In the end, NELDA adopts the weighted fusion
strategy to fuse the outputs of 2 SVM classifiers for
identifying whether a IncRNA is associated with a
disease. The experimental results on two datasets in
10-CV test show that the performance of our NELDA
is superior to other state-of-the-art methods of
LDASR and LDNFSGB. The strategies of the
weighted fusion in decision level and selecting the
higher quality non IncRNA-disease association pairs
for building the high-quality training set can
effectively improve the performance of predictors. In
addition, results of two cases studies on stomach and
breast cancers indicate that NELDA is powerful to
find the novel association IncRNAs for one disease,
which provides the candidates for further biological
experimental validation.

Although NELDA achieves good performance
for predicting the IncRNA-disease associations, there
are still some issues needing to be improved and
further studied in the future. On one hand, there are
about IncRNAs

diseases, but how to effectively integrate these

many biological resources and
biological resources is a direction worthy to discuss
and further research in the future. On the other hand,
we expect to explore more effective strategies to
select higher quality non IncRNA-disease association
pairs for constructing high quality training dataset to
further enhance the accuracy of predicting the

IncRNA-disease associations.

Supplementary  PIBB 20210132 S1. pdf is
available online (http://www.pibb.ac.cn or http://www.
cnki.net).
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YT BERK KRBRT
(FEIL MV R2: B shik2Be, 5 ERGHEARZ T WE L9282, 764 710072)

WE BA KIEHSRNA (IncRNAs) S5 ZREZ W AEY)E BRI 5 &R EPRE VM, B, IneRNA-BRCHE
TN B FEmR e Wi . 1897 RIS T oK T3 AP i k28 R R LE] . B AT, KZEIncRNA-FR ST 75 7
Wi 7] F7R)Z 245 IncRNA IR RIAI (G 8, Z B3NS B2 A EIE s 53 /Ml BEHLIE I IncRNA-$ER A S 1k
MR FREARNNGEES, MM kST, ik AU —Fh R T M AR NELDA J7ik,  TiliVE7E A9 IncRNA-
PR RIKICFR . NELDA B JEHIH IncRNA ik 7% | PERAAIE AT HIA IncRNA-PRG IR SC R, FIFE IncRNA ML [ 4% |
PR AL 45 F1 IncRNA-BG BRI 4% . ARG, i 53 4 N A i 8553 51N IncRNA/ZG AR R4 . IncRNA-
PN I 9 2% 27 > IncRNA LG B 4k R 254 ABRAE . H3 356 IncRINA FIZ S AR AR LI 190 288 4% AHRAE B2 IncRNA FIBE NG il 56
I RO AL, 43 S A AN S RF 1] AL 2 T IncRNA-BG G . I, SR A INBCRIG SR s Bl P AS S Re 1) AL
AR TINEE T, 45 HY IncRNA-JEG I 56 2 B S TN 25 5 oS3 40, AR 2 6189 IncRIN A S I R 18 SCHIL
Pk, BT R AR 0k HRCSRE s ) 7 T 1 R A X 1 ) Inc RN AR SCBR AT REAC AR LBk /0 2SR il , ik s
BT —FT 43 R ECH B X IncRNA-BSRHEATHT 43, BEHAS /330K A IncRN AP X K IneRNA-BIR AR I REA (HI 17
FEAR) , &R T NRIEI A5 R & . NELDA BB/ 20T IncRNA-BR B R, HAUCA%10.982 7, LA
LDASR il LDNFSGB J7 i 43 4 5 T 0.062 7 f10.020 7, 34k, fAE A 5 BUR 0% L5 e 58 S0 AL A 5% W BE 0% 75 20k 36
NELDA il PR, B AFLIE ZOIREE T, 29/40 (72.5%) TUNAY-S 5 i FFLIRIE S IncRNAs, 78 I 3] SCHERFN 2 34
PE P RERS L UM DG I S PR . 458 X SeSIIRSE I, NELDA 2 —Fl A RHY IncRNA-JG B OE R i, A
FE VAR IncRNA-BR eI C R AV RE

KPR IncRNA-PRICHE, LR, TREE HAmias, =0T at AR R
FES%ES  TP391 DOI: 10.16476/j.pibb.2021.0132
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