

www.pibb.ac.cn

基于烟草脆裂病毒构建同时表达2种 外源蛋白的载体及其应用^{*}

郭 歌¹⁾ 常发光¹⁾ 赖家良¹⁾ 张先文²⁾ 杜志游¹⁾ 廖乾生^{1)**} (¹⁾ 浙江理工大学生命科学院与医药学院,杭州 310018; ²⁾ 浙江大学农业实验站,杭州 310058)

摘要 目的 构建在整个寄主植物中能同时表达两个非融合蛋白的病毒载体。方法 以烟草脆裂病毒(tobacco rattle virus, TRV)基因组RNA2的农杆菌侵染性克隆pYL156为材料,缺失TRV RNA2的2b基因5'端279 bp并将其起始密码子ATG改变为AGG、同时引入豌豆早枯病毒(pea early-browning virus, PEBV)外壳蛋白(coat protein, cp)基因启动子,获得pTRV2e²载体;在pTRV2e²载体的2b和PEBV的cp启动子下游插入不同的外源基因,测定病毒TRVe²表达外源蛋白的能力、携带外源基因后重组病毒的稳定性以及分析蛋白质的生物学功能。结果 病毒TRVe²能快速同时表达2个非融合的外源蛋白,且至少能表达70ku外源蛋白,且该病毒携带~2.0kb外源基因能稳定存活于寄主植物中;病毒TRVe²可用于分析蛋白质的生物学功能以及2个蛋白质间的相互作用。结论 本文构建的重组病毒TRVe²为快速有效地表达2个外源蛋白以及分析2个蛋白质间的相互作用提供技术工具。

关键词 烟草脆裂病毒,基因组RNA2,双元表达载体,蛋白质功能分析,本氏烟 中图分类号 Q939.46 DOI: 10.16476/j.pibb.2021.0180

随着大量植物基因组测序的完成,迫切需要一 个好的载体或技术来快速地分析基因组中新基因或 预测蛋白质的生物学功能^[1-2]。目前,研究功能未 知的基因或蛋白质主要通过转基因技术在植物中表 达目的蛋白以证实其功能^[3],但转基因技术存在 操作繁琐、周期长及物种限制等制约因素,利用植 物病毒载体探究蛋白质的生物学功能日益成为一种 趋势^[4-5]。

病毒复制/翻译效率高,可在植物中产生大量 病毒蛋白,且基因组小易操作,大量植物病毒被用 作构建外源蛋白表达载体的来源,但绝大多数植物 病毒载体是表达单个外源蛋白^[6-7]。马铃薯X病毒 (potato virus X, PVX)和烟草花叶病毒(tobacco mosaic virus, TMV)是目前最常用植物病毒表达 载体^[8-9]。越来越多植物病毒用于构建表达多个外 源蛋白的载体,由2个TMV不同株系的*cp*亚基因 组启动子构建表达载体pGR30B在本氏烟中能同时 表达2个不同外源蛋白,但因缺失病毒*cp*基因,该 载体只能在病毒接种叶产生目的蛋白^[10]; Wang 等^[11]将TMV cp亚基因组启动子和PVX的 cp亚基 因组启动子插入 PVX 基因组中获得表达载体 pCaPVX440,该病毒能在整个寄主植物中同时表 达2个外源蛋白,但重组病毒的稳定性有待于进一 步分析。大麦条纹花叶病毒(barely stripe mosaic virus, BSMV)为三分体正义单链 RNA 病毒, Cheuk等^[12]将其改造成四分体病毒,用于在寄主 植物中同时表达2个外源蛋白;基于甜菜坏死黄脉 病毒(beet necrotic yellow vein virus, BNYVS)表 达载体能同时表达4个外源蛋白,但该载体只能在 本氏烟 rdr6i 接种叶中同时表达4个目的蛋白^[13]。 利用多聚体蛋白水解策略或肽酶切割原理基于植物 病毒构建的多个蛋白质表达载体在寄主中产生的目 的蛋白含有源于病毒蛋白或肽酶的氨基酸残

^{*} 转基因生物新品种培育重大专项(2018ZX08001-03B)资助项目。

^{**}通讯联系人。

Tel: 0571-86843195, E-mail: qshliao@aliyun.com

收稿日期: 2021-06-23, 接受日期: 2021-08-31

干扰其生物学功能。目前已有多个负链 RNA 病毒 用作构建多个外源蛋白的表达载体来源,如利用大 麦黄色条点花叶病毒(barley yellow striate mosaic virus, BYSMV) 表达3个外源蛋白^[17], 基于番茄 斑萎病毒(tomato spotted wilt virus, TSWV)构建 的外源蛋白表达载体在本氏烟中能同时表达绿色荧 光蛋白 (green fluorescent protein, GFP) 和红色荧 光蛋白 (red fluorescent protein, RFP)^[18], Peng 等^[19]利用苦苣菜黄网病毒(sonchus yellow net rhabdovirus, SYNV) 在本氏烟中同时表达抗体蛋 白IgG的重链和轻链多肽。尽管负链RNA能在整 个寄主植物中稳定地同时表达多个外源蛋白,但病 毒基因组较大, 克隆过程复杂, 在病毒接种过程中 需要外源表达病毒的复制酶和基因沉默抑制子,实 验操作繁琐,且负链RNA病毒表达外源蛋白需要 时间周期长 [17-19]。

烟草脆裂病毒(tobacco rattle virus, TRV)是 烟草脆裂病毒属(*Tobravirus*)的典型成员,寄主 范围广,能侵染超过50种单子叶和双子叶家族的 400多种植物^[20-22]。TRV为正义单链 RNA 病毒, 基因组由 RNA1和 RNA2分子组成。RNA1所编码 的4个蛋白质参与病毒的复制、移动以及症状产 生,RNA2中包含3个开放阅读框(ORF),编码 CP、27 ku的2b和18 ku的2c,TRV基因组 RNA2 中2b和2c基因完全缺失后病毒依然能在植物中的 复制、包被和移动^[23-24]。TRV寄主范围广泛,引 起的症状反应相对温和,目前被用于构建病毒诱导 的基因沉默(virus induced gene silencing, VIGS) 载体、外源蛋白表达载体和产生引导 RNA 的基因 编辑体^[5, 25-29]。

目前国内外基于植物病毒构建多个蛋白质表达 载体,因选择的病毒特性不一样,存在不同类型缺 点:a.表达多个蛋白质的重组病毒不能系统性侵染 寄主植物;b.外源基因插入影响病毒基因组的完整 性,使得外源蛋白不能有效表达;c.病毒载体在植 物中产生的外源蛋白含有非目的蛋白氨基酸残基; d.表达目的蛋白需要较长的时间,且表达量低。本 文通过缺失TRV 基因组 RNA2 侵染性克隆 (pYL156)中2b基因的279碱基、引入豌豆早枯病 毒(pea early-browning virus, PEBV) cp亚基组启 动子序列,获得载体 pTRV2e²,通过重组病毒 TRVe²中自身携带2c亚基组启动子和外源插入cp亚 基组启动子在本氏烟整个植株中同时表达2个非融 合外源蛋白,并利用其分析蛋白质的生物学功能。

1 材料与方法

1.1 材料

1.1.1 质粒和菌株

质粒 pTRV1、 pYL156 (pTRV2)、 pUC57-PEBV CP pro、 pBI121-*gfp*、 pBI121-*rfp*、 pCMBIA-*AtGapC*2、 pCAMBIA-*NbHsp*70、 pBI121-LS *2b*、 pUC57-*XEG*1、 pUC57-*Avh*52 和大肠杆菌 DH5α 菌 株及农杆菌 GV3101 菌株均保存于本实验室。

1.1.2 寄主植物

本氏烟(*Nicotiana benthamiana*)寄主植物, 播种后~10 d后移栽,在25℃、16 h/8 h(光照/黑 暗)光周期条件下培养至6~8叶期,用于农杆菌浸 润接种。

1.2 方法

1.2.1 载体构建

以质粒 pYL156 为模板, 通过引物对 P1/P2 进 行 PCR 扩增,目的产物割胶回收后经 Hind III/ EcoRI双酶切,并连接到 Hind III/EcoRI的载体 pYL156中, 连接产物转化至大肠杆菌 DH5α, 获 得重组质粒pTRV2e1。以pUC57-PEBV CP pro为模 板,通过引物对P3/P4进行扩增获得PEBV CP基因 启动子序列,通过 Mlu I/Sma I 双酶切克隆至 pTRV2e¹中,获得克隆pTRV2e²。采用引物对P5/P6 进行PCR扩增获得基因gfp,经EcoRI/MluI双酶切 连接质粒 pTRV2e¹/pTRV2e², 分别获得载体 pTRV2e¹-gfp/pTRV2e²-gfp-MCS2。通过引物对 P7/ P8进行PCR扩增,目的产物割胶回收,经BamHI/ SmaI双酶切克隆至质粒 pTRV2e² 中获得载体 pTRV2e²-MCS1-gfp。通过引物对 P9/P10进行 rfp 基 因的PCR扩增,目的片段通过 EcoRI/MluI 双酶切 回收并克隆至pTRV2e²-MCS1-gfp,获得到载体 TRV2e²-rfp-gfp。通过引物对P11/P12扩增含有HA 标签序列gfp基因,并通过经BamHI/SmaI双酶切克 隆至质粒 pTRV2e²,获得 pTRV2e²-MCS1-gfp-HA。 通过引物对P13/P14进行扩增基因GapC2,并通过 经BamHI/SmaI双酶切克隆至载体pTRV2e²-MCS1gfp-HA,获得pTRV2e²-MCS1-GapC2-HA。通过引 物对 P15/P16 进行扩增基因 Hsp70,并通过经 BamHI/SmaI双酶切克隆至载体pTRV2e²-MCS1-gfp-HA, 获得 pTRV2e²-MCS1-gfp-HA。通过引物对 P17/P18扩增CMV-LS 2b基因,经EcoRI/MluI双酶 切连接质粒 pTRV2e²-MCS1-gfp, 获得载体 pTRV2e²-2b-gfp。通过引物对P19/P20进行PCR扩

增获得*XEG*1,并通过双酶切克隆到载体pTRV2e² 中,获得pTRV2e²-*XEG*1-MCS2。通过P21/P22引 物对PCR扩增获得*Avh5*2,通过*Bam*HI/*Sma*I双酶 切分别克隆到载体pTRV2e²/pTRV2e²-*XEG*1-MCS2, 分别获得pTRV2e²-MCS1-*Avh5*2和pTRV2e²-*XEG*1-*Avh5*2。构建载体所用引物详细信息见附件表S1。 **1.2.2** 农杆菌转化、接种和病毒表型观察

上述构建的 pYL156 相关载体均采用冻融法转 入农杆菌中 GV3101,农杆菌活化与培养、菌体收 集、浸润接种的具体方法参考刘妮娜等^[30]。农杆 菌 pTRV1 与 pYL156 混 和物为 TRV、pTRV1 与 pTRV2e¹混和物为 TRVe¹、pTRV1 与 pTRV2e²混和 物为 TRVe²。在暗室中用长波型手提便携式紫外灯 观察到本氏烟叶片荧光表型,并用携带 Wratten 过 滤器 15 的柯达照相机拍照记录,汁液摩擦接种的 方法参考廖乾生等^[31]。

1.2.3 植物总RNA提取和RNA印迹

取各个病毒侵染的系统叶 0.1 g,用 Trizol 提取 总 RNA,具体过程按照 Trizol 产品说明书进行。 RNA 电泳、转膜和杂交方法参考地高辛标记检测 试剂盒 II 产品使用说明书,杂交探针为互补于 RNA2 的 3'端一段核苷酸,探针的详细信息见附件 表 S1。TRVe²-MCS1-gfp和 TRVe²-2b-gfp 侵染植株 中 gfp的 siRNA 杂交具体方法参考文献 Du等^[32], siRNA 探针详细信息见附件表 S1。TRV 基因组 RNA2 和 gfp的 siRNA 杂交信号采用软件 Image J量 化处理,并通过 SPASS 软件分析数据,以TRVe²-MCS1-gfp量为 100%,计算 TRVe²-2b-gfp 相对含量 及标准误差。

1.2.4 植物总蛋白质提取与免疫印迹

分别取各个相应病毒侵染植物的系统叶 0.1 g, 液氮研磨至粉末状,加入含 2%β-巯基乙醇的 PBS 缓冲液研磨至均一状液体,离心后取上清并加入 2×上样缓冲液,95℃水浴煮 10 min,10 000 r/min 5 min,取上清备用。蛋白质转膜、抗体杂交和底 物显色的方法参考文献 [33],所用抗体为 GPF、 RFP、HA标签和黄瓜花叶病毒(cucumber mosaic virus, CMV)2b蛋白。TRVe²-MCS1-gfp和 TRVe²-2b-gfp 侵染植株中 GFP 杂交结果采用软件 Image J 量化处理,并通过 SPASS 软件分析数据,以 TRVe²-MCS1-gfp 量为 100%,计算 TRVe²-2b-gfp 相 对含量及标准误差。

2 结果与讨论

2.1 TRV2相关载体构建及侵染活性

·1383·

TRV 基因组由 RNA1 和 RNA2 组成,基因组 RNA1单独能系统性侵染寄主植物^[23],由TRV基 因组RNA2改造而成的载体(pYL156)是目前广 泛地应用于植物功能基因组学研究重要工具之 一^[5, 26, 34];此外,利用PEBV的cp亚基因组启动 子构建外源蛋白的表达载体^[35-37]。在pYL156载体 中, TRV 基因组 RNA2 中第1 643~3 465 区域碱基 缺失,保留2b蛋白N端101个氨基酸,完全缺失 2c 启动子和 ORF^[34]。Morton 等^[37]将 pYL156 载体 中2b蛋白N端101个氨基酸完全缺失,并引入2个 PEBV cp 基因亚基因组启动子,构建同时表达2个 外源蛋白的载体,本文基于载体pYL156构建含有 TRV的2b和PEBV cp亚基因组启动子外源蛋白表 达载体。pYL156、pTRV2e¹和 pTRV2e²载体中 TRV 基因组 RNA2 结构示意图如图 1a 所示, pYL156中RNA2含有2b基因ORF的5'端303bp。 通过缺失 2b 基因 ORF 的 5'端 279 bp,将 2b 基因的 起始密码子(ATG)改为AGG,获得pTRV2e¹载 体。在pTRV2e¹载体中,引入PEBV cp基因亚基因 组启动子构建载体pTRV2e²。为了分析改造后的 TRV 基因组 RNA2 是否具有侵染活性,将农杆菌 pYL156、pTRV2e¹和pTRV2e²分别与农杆菌pTRV1 混和物共同浸润接种于本氏烟,浸润接种5d, TRVe¹和TRVe²侵染寄主植物后不产生明显的症状 反应,与 Mock 接种相似,而 TRV (TRV1+ pYL156)侵染则引起叶片坏死表型(图1b),与程 维舜等^[38]报道的结果相一致。Northern blot分析 结果表明,在寄主植物的系统叶均能检测到TRV、 TRVe¹和TRVe²基因组RNA,因TRVe¹中缺失2b基 因ORF的5'端279 bp, 其基因组RNA2长度明显比 TRV小(图1c),以上结果表明重组病毒 TRVe¹和 TRVe²均可系统性侵染寄主植物。

2.2 2b和cp启动子驱动的外源蛋白表达

为了确定病毒载体 TRVe¹和 TRVe²中亚基组启 动子能否驱动外源蛋白的表达,构建载体 pTRV2e¹-gfp和 pTRV2e²-MCS1-gfp和 pTRV2e²-rfpgfp(图 2a)。病毒 TRVe¹-gfp、TRVe²-MCS1-gfp和 TRVe²-rfp-gfp接种本氏烟 24 h,3个病毒的浸润接 种叶在荧光显微镜下均能观察到绿色荧光现象(结 果未显示);接种5 d的植株荧光表型如图 2b所示, 除了 TRVe¹ 对照接种的本氏烟外,TRVe¹-gfp和

TRVe²-MCS1-gfp 侵染的寄主系统叶中均产生绿色 荧光, TRVe²-rfp-gfp 侵染植株的系统叶呈现亮黄色 表型。TRVe²-rfp-gfp 侵染植株系统叶在激光共聚焦 显微镜观察的结果如图 2c 所示, 在本氏烟同一个 细胞中能同时观察到绿色荧光和红色荧光,表明 TRVe²-rfp-gfp 能同时表达 GFP 和 RFP。免疫印迹 (Western blot) 分析结果表明, GFP 抗体可以在 TRVe¹-gfp、TRVe²-MCS1-gfp 和 TRVe²-rfp-gfp 侵染 寄主植物系统叶的总蛋白中检测到目的蛋白, 而对

照接种 TRVe¹则检测不到 GFP 信号;在 TRVe²-MCS1-gfp 的样品中目的条带信号强度明显高于 TRVe¹-gfp (图2d),表明前者侵染寄主植物中 GFP 表达量高于后者,与观察到的绿色荧光表型一致。在 TRVe²-rfp-gfp 侵染的本氏烟植株总蛋白能同时检测到 GFP 和 RFP (图2d),以上结果表明病毒载体 TRVe²能在整个寄主植物中同时快速地表达 2 个外 源蛋白。

Fig. 2 Expression of green fluorescent protein and red fluorescent protein in the whole host plants via $TRVe^2$ vector (a) Diagrammatic illustration of the pTRV2 expression vector constructs for expressing GFP or/and RFP. (b) Green fluorescence appearance on the seedlings of *N. benthamiana* infiltrated with bacterial suspension mixtures containing pTRV1 and pTRV2 derivatives under UV light at 5 d. (c) Green fluorescence and red fluorescence were visualized in the same cell of *N.benthamiana* plants infiltrated with *A.tumefaciens* mixtures carrying pTRV1 and pTRV2e²-*rfp*-gfp under confocal laser microscopy. (d) The levels of GFP and RFP in the systematic leaves of host plants were detected by Western blot with specific antibodies.

2.3 两个启动子表达外源蛋白能力的比较

为了比较载体pTRV2e²中2个亚基组启动子驱 动外源蛋白表达能力,构建载体pTRV2e²-gfp-MCS2和pTRV2e²-MCS1-gfp,两者中的gfp基因分 别由TRV内源2b亚基因组启动子和PEBV cp亚基 因组启动子驱动表达(图3a)。病毒TRVe²-gfp-MCS2和TRVe²-MCS1-gfp 接种5d,紫外灯下观察 寄主植物荧光表型如图3b所示,在本氏烟接种叶 和系统叶中,TRVe²-MCS1-gfp 侵染引起的荧光现 象 明 显 强 于 TRVe²-gfp-MCS2。 RNA 印 迹 (Northern blot)结果显示, 2个病毒在侵染寄主植 物接种叶和系统叶病毒基因组 RNA 含量基本相同 (图 3c)。Western blot进一步证实,在接种叶和系 统叶中病毒 TRVe²-MCS1-gfp 所产生的 GFP 量均高 于 TRVe²-gfp-MCS2 (图 3c)。以上结果表明,病毒 TRVe²中 PEBV cp 基因亚基因组启动子驱动外源蛋 白表达能力强于 TRV 2b 基因亚基因组启动子。

·1385·

Fig. 3 Comparison of the levels of GFP expression driven by either TRV 2b or PEBV cp subgenomic promoters in N. benthamiana plants using TRVe² vector

(a) Schematic representation of the pTRV2e² constructs for expressing GFP. (b) Green fluorescence appearance on the seedlings of *N. benthamiana* infiltrated with bacterial suspension mixtures containing pTRV1 and pTRV2 derivatives under UV light at 5 d. (c) RNA blot analysis of TRV genomic RNAs and Western blot detection for GFP in the host plants.

2.4 利用TRVe²表达不同长度的外源蛋白

为了分析病毒 TRVe²对不同长度外源基因的表 达能力,分别将基因*gfp*(720 bp)、拟南芥三磷酸 甘油醛脱氢酶 C2 亚基基因 *Gap*C2(1017 bp)、烟 草热激蛋白 70 基因 *Hsp*70(1950 bp)克隆至载体 pTRVe²中,获得载体 pTRV2e²-MCS1-*gfp*-HA、 pTRV2e²-MCS1-*GapC*2-HA 和 pTRV2e²-MCS1-*Hsp*70-HA;病毒 TRVe²-MCS1-*gfp*-HA、TRVe²-MCS1-*Gap*C2-HA和 TRVe²-MCS1-*Hsp*70-HA 接种 接种寄主植物 5 d, 分别采集寄主植物系统叶用于 Northern blot杂交和 Western blot分析,结果如图 4 所示。在pTRV2e²载体插入不同长度的基因后,重 组病毒基因组 RNA2 长度增加(图 4a);通过 HA 抗体在各个病毒接种寄主的系统叶中均能够检测到 目的蛋白(图 4b)。以上结果表明,病毒 TRVe²在 本氏烟系统叶中至少能表达 70 ku外源蛋白。TRV 基因组 RNA1 的大小为~6.8 kb, RNA2 大小为 ~3.9 kb,病毒粒子呈直杆状^[20-24, 39],本文构建 TRV2e²载体中TRV2基因组大小为~2 kb,病毒 TRVe²能在整个植株中表达~2.0 kb外源基因,完全 符合预期。病毒TRVe²在寄主植物中能否表达2.0 kb 以上外源基因、并能在寄主中系统移动的相关 工作本实验室正在进行中。

Fig. 4 Expression of various proteins in *N. benthamiana* plants with TRVe²

(a) Northern blot analysis of TRV genomic RNAs in the systematic leaves of *N. benthamiana* plants. (b) Proteins in the seedlings of *N. benthamiana* challenged with TRV constructs were detected by Western blot using anti-HA peptide antibody.

2.5 TRVe²在寄主中保持稳定

为了分析病毒TRVe²携带外源基因后在寄主植物稳定性,取TRVe²-MCS1-Hsp70-HA农杆菌浸润接种10d寄主系统叶,通过汁液摩擦转接于健康本氏烟中,连续进行3次转接。分别采集3次转接寄主系统叶用于病毒基因组杂交和蛋白质检测。结果(图5)表明,TRVe²-MCS1-Hsp70在3次转接植株中的病毒基因组RNA2积累量与大小与农杆菌浸润接种寄主相比无明显差别,插入到TRV基因组RNA2中外源基因Hsp70不丢失;在病毒侵染植株系统叶的总蛋白质中均能检测到Hsp70,并且Hsp70含量在3次转接的植株中含量没有明显差别,

Fig. 5 Analysis of stability of TRVe²-MCS1-*Hsp*70-HA by serial passages in *N. benthamiana* plants

1: Agro-infiltrated; 2: first passage; 3: second passage; 4: third passage.

病毒TRVe²在携带~2.0 kb外源基因后可以稳定存在 于寄主植物中,并在整个寄主植物中表达目的 蛋白。

2.6 利用TRVe²验证CMV 2b基因沉默抑制子的 功能

黄瓜花叶病毒 (cucumber mosaic virus, CMV)的2b蛋白是基因沉默抑制子,抑制寄主植 物对CMV抗病反应^[33]。本文构建病毒载体TRVe²-2b-gfp用于验证CMV的2b蛋白具有抑制基因沉默 功能。病毒接种3d, TRVe²-2b-gfp在寄主植物接种 叶中荧光强度明显高于TRVe²-MCS1-gfp; 病毒接 种5d,2个病毒均扩展至本氏烟的系统叶,并且 TRVe²-2b-gfp 荧光表型强于 TRVe²-MCS1-gfp (图 6a)。在TRVe²-2b-gfp 侵染本氏烟系统叶能检测到 2b蛋白,与TRVe²-MCS1-gfp相比,TRVe²-2b-gfp侵 染植株中GFP含量增加2.2倍(图6b)。为了确定 病毒 TRVe²-MCS1-gfp 表达 CMV 2b 蛋白后是否也 增加 TRV 的基因组积累量,分别提取 TRVe2-MCS1-gfp和TRVe²-2b-gfp所侵染寄主植物系统叶 总RNA和 siRNA用于 Northern blot 分析。结果表 明: TRVe²-2b-gfp 在本氏烟中的基因组 RNA 含量是 TRVe²-MCS1-gfp 的 4.67 倍 (图 6c), 表明 TRVe²-2b-gfp引起本氏烟产生更明显的荧光表型是由于 TRVe²-2b-gfp 表达CMV 的 2b 蛋白增加病毒基因组 RNA 所导致.TRVe²-MCS1-gfp 和 TRVe²-2b-gfp 侵染 植株的gfp-siRNA杂交结果表明, siRNA在TRVe²- 质的生物学功能。

·1387·

MCS1-gfp 侵染寄主中含量高于 TRVe²-2b-gfp (图 6d)。以上结果表明,病毒 TRVe²可用于研究蛋白

Fig. 6 Application of the TRV-based dual expression vector for analysis of CMV 2b protein involved in antiviral defense response on *N. benthamiana* plants

(a) Fluorescence phenotype on the *N. benthamiana* plants infiltrated with *A. tumefaciens* mixtures carrying TRV1, TRVe²-MCS1-*gfp* and TRVe²-2*b*-*gfp* respectively was illuminated under UV light. (b) CMV 2b protein and GFP expressed from TRV vector in the systematic leaves of *N. benthamiana* was detected by protein gel blot analysis. (c) Northern blot was used to analyze the level of TRV genomic RNAs in the systematic leaves of *N. benthamiana* (d) The level of *gfp*-deried siRNA in the systematic leaves of *N. benthamiana* was assayed by Northern blot.

2.7 利用TRVe²分析XEG1和Avh52的相互作用

XEG1 是来自于大豆疫霉菌的激发子,PVX载体表达XEG1 蛋白后,在本氏烟上引发植物的防御反应,导致叶片呈现坏死症状,而预先在本氏烟中表达 RXLR 效应子 Avh52 后再表达 XEG1,XEG1 引起的细胞坏死反应则被抑制^[40]。本文利用质粒 pTRV2e²分别构建单独表达 XEG1 或 Avh52,同时 表达 XEG1 和 Avh52 的载体;农杆菌浸润接种 36 h, 接种病毒 TRVe²-XEG1-MCS2 的叶片呈现坏 死表型, TRVe²-XEG1-Avh52 侵染的叶片无明显坏 死症状, TRVe²-MCS1-gfp 和 TRVe²-MCS1-Avh52 的 接种叶均不产生坏死症状(图7a), 与Ma等^[40]报 道的结果相一致。Western blot 结果显示, TRVe²-XEG1-MCS2、TRVe²-XEG1-Avh52 和 TRVe²-MCS1-Avh52 浸润接种的叶片中均能检测到相应目的蛋白 (图7b)。以上结果表明, 病毒 TRVe²可用于分析

Fig. 7 Application of the TRV-based dual vector for analysis of suppression of XEG1-induced cell death in *N. benthamiana* leaves by RXLR effector Avh52

(a) Phenotype expression on the leaves of *N. benthamiana* plants Agro-infiltrated with TRVe²-*XEG*1 and TRVe²-*XEG*1-*Avh52* at 36 h. (b) Western blot analysis of XEG1 and Avh52 proteins in *N. benthamiana* leaves.

2个蛋白质之间的相互作用。

3 结 论

本文利用TRV基因组RNA2农杆菌侵染性克隆 pYL156构建含有2个亚基因组启动子的载体 pTRV2e²,并用于在本氏烟整个植株中同时表达2 个外源蛋白,主要结论如下:a.病毒TRVe²能系统 性侵染本氏烟,并通过病毒基因组RNA2中的2个 亚基因组启动子在整个植株中同时快速、高含量地 表达2个非融合外源蛋白;b.病毒TRVe²至少能表 达大小为70ku非融合外源蛋白;c.重组病毒 TRVe²携带外源基因后能在寄主植物保持稳定; d.病毒TRVe²可用于快速分析蛋白质的生物学功能 以及蛋白质与蛋白质的互作。本文结果为利用植物 病毒构建表达多个非融合蛋白载体提供理论指导, 表达载体TRVe²为快速研究植物的基因功能提供技 术工具。

附件 PIBB_20210180_S1. pdf 见本文网络版 (http://www.pibb.ac.cn或http://www.cnki.net)

参考文献

- [1] 常敬礼,郭玉双,杨德光,等.植物功能基因组学研究进展.玉米 科学,2008,16(2):56-59
 Chang J L, Guo Y S, Yang D G, *et al.* Journal of Maize Sciences, 2008,16(2):56-59
- [2] Wang H, Cimen E, Singh N, et al. Deep learning for plant genomics and crop improvement. Curr Opin Plant Biol, 2020, 54:34-41
- [3] Luo C, Fernie A R, Yan J. Single-cell genomics and epigenomics: technologies and applications in plants. Trends Plant Sci, 2020, 25(10):1030-1040
- [4] Rommens C M, Salmeron J M, Baulcombe D C, et al. Use of a gene expression system based on potato virus X to rapidly identify and characterize a tomato Pto homolog that controls fenthion sensitivity. Plant Cell, 1995, 7(3):249-2457
- [5] Tian J, Pei H, Zhang S, *et al.* TRV-GFP: a modified tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot, 2014, 65(1): 311-322
- [6] 年洪娟,杨淑慎,张锡梅.外源基因在植物病毒表达载体中表达 策略的研究进展.西北植物学报,2002,22(5):1268-1274
 Nian H J, Yang S Z, Zhang X M. Acta Botanica Boreali-Occidentalia Sinica, 2002,22(5):1268-1274
- [7] Gleba Y, Marillonnet S, Klimyuk V. Engineering viral expression vectors for plants: the 'full virus' and the 'deconstructed virus' strategies. Curr Opin Plant Biol, 2004,7(2):182-188
- [8] Baulcombe D C, Chapman S, Santa Cruz S. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J, 1995, 7(6):1045-1053

- [9] Shivprasad S, Pogue G P, Lewandowski D J, et al. Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology. 1999, 255(2):312-323
- [10] Roy G, Weisburg S, Foy K, et al. Co-expression of multiple target proteins in plants from a tobacco mosaic virus vector using a combination of homologous and heterologous subgenomic promoters. Arch Virol, 2011, 156(11):2057-2061
- [11] Wang Y, Cong Q Q, Lan Y F, et al. Development of new potato virus X-based vectors for gene over-expression and gene silencing assay. Virus Res, 2014, 191:62-69
- [12] Cheuk A, Houde M. A new barley stripe mosaic virus allows large protein overexpression for rapid function analysis. Plant Physiol, 2018, 176(3):1919-1931
- [13] Jiang N, Zhang C, Liu J Yet al. Development of Beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. Plant Biotechnol J, 2019, 17(7):1302-1315
- [14] Seo J K, Choi H S, Kim K H. Engineering of soybean mosaic virus as a versatile tool for studying protein-protein interactions in soybean. Sci Rep, 2016, 6:22436
- [15] Kelloniemi J, Mäkinen K, Valkonen J P. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: infectivity, stability and the correlation of genome and virion lengths. Virus Res, 2008, 135(2):282-291
- [16] Zhao F, Lim S, Igori D, et al. Development of tobacco ringspot virus-based vectors for foreign gene expression and virus-induced gene silencing in a variety of plants. Virology, 2016, 492:166-178
- [17] Gao Q, Xu W Y, Yan T, et al. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. New Phytologist, 2019, 223(4):2120-2133
- [18] Feng M F, Cheng R X, Chen M L, et al. Rescue of tomato spotted wilt virus entirely from complementary DNA clones. Proc Natl Acad Sci USA, 2020, 117(2):1181-1190
- [19] Peng X X, Ma X N, Lu S T, et al. A versatile plant rhabdovirusbased vector for gene silencing, miRNA expression and depletion, and antibody production. Front Plant Sci, 11: 627880
- [20] Angenent G C, Posthumus E, Brederode F T, et al. Genome structure of tobacco rattle virus strain PLB: further evidence on the occurrence of RNA recombination among tobraviruse. Virology, 1989, 171(1):271-274
- [21] Yin Z, Pawełkowicz M, Michalak K, et al. Single-nucleotide polymorphisms and reading frame shifts in RNA2 recombinant regions of tobacco rattle virus isolates Slu24 and Deb57. Arch Virol, 2014, 159(11):3119-3123
- [22] Kirk W W, Gieck S L, Crosslin J M, et al. First report of corky ringspot caused by tobacco rattle virus on potatoes (Solanum tuberosum) in Michigan. Plant Dis, 2008, 92(3):485
- [23] Deng X, Kelloniemi J, Haikonen T, et al. Modification of tobacco rattle virus RNA1 to serve as a VIGS vector reveals that the 29K movement protein is an RNA silencing suppressor of the virus. Mol Plant Microbe Interact, 2013, 26(5):503-514
- [24] Yin Z, Pawełkowicz M, Michalak K, et al. The genomic RNA1 and

RNA2 sequences of the tobacco rattle virus isolates found in polish potato fields. Virus Res, 2014, **185**:110-113

- [25] Becker A, Lange M. VIGS--genomics goes functional. Trends Plant Sci, 2010,15(1):1-4
- [26] Senthil-Kumar M, Mysore K S. New dimensions for VIGS in plant functional genomics. Trends Plant Sci, 2011, 16(12):656-665
- [27] Ali Z, Abul-Faraj A, Piatek M, et al. Activity and specificity of TRV-mediated gene editing in plants. Plant Signal Behav, 2015, 10(10):e1044191
- [28] Ghoshal B, Vong B, Picard C L, et al. A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in *Arabidopsis thaliana*. PLoS Genet, 2020, 16(12):e1008983
- [29] Ellison E, Nagalakshmi U, Gamo M, et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat Plants, 2020, 6(6): 620-624
- [30] 刘妮娜,程晓东,卢冉,等.ToMV番茄坏死株系农杆菌侵染性克
 隆构建及其表达.农业生物技术学报,2014,22(8):1027-1034
 Liu N N, Cheng X D, Lu R, *et al.* Journal of Agricultural
 Biotechnology,2014,22(8):1027-1034
- [31] 廖乾生,杜志游,张华荣,等.黄瓜花叶病毒CB7株系引起心叶 烟坏死反应与RNA2相关.生物化学与生物物理进展,2007, 34(8):824-829

Liao Q S, Du Z Y, Zhang H R, *et al*. Prog Biochem Biophys, 2007, **34**(8):824-829

[32] Du Z, Chen A, Chen W, *et al.* Using a viral vector to reveal the role of microRNA159 in disease symptom induction by a severe strain

of cucumber mosaic virus. Plant Physiol, 2014, 164(3):1378-1388

- [33] Du Z, Chen A, Chen W, et al. Nuclear-cytoplasmic partitioning of cucumber mosaic virus protein 2b determines the balance between its roles as a virulence determinant and an RNA-silencing suppressor. J Virol, 2014, 88(10):5228-5241
- [34] Liu Y, Schiff M, Marathe R, et al. Tobacco Rar1, EDS1 and NPR1/ NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J, 2002, 30(4):415-429
- [35] Sha A, Zhao J, Yin K, et al. Virus-based microRNA silencing in plants. Plant Physiol, 2014, 164(1): 36-47
- [36] MacFarlane S A, Popovich A H. Efficient expression of foreign proteins in roots from tobravirus vectors. Virology, 2000, 267(1): 29-35
- [37] Marton I, Zuker A, Shklarman E, et al. Nontransgenic genome modification in plant cells. Plant Physiol, 2010, 154(3):1079-1087
- [38] 程维舜,徐秋芳,黎飞,等.适于烟草脆裂病毒诱导的本氏烟基 因沉默分析的对照载体构建.浙江大学学报(农业与生命科学 版),2012, 38(1):10-20 Cheng W S, Xu Q F, Li F, et al. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 10-20
- [39] Yin Z, Pawełkowicz M, Michalak K, et al. The genomic RNA1 and RNA2 sequences of the tobacco rattle virus isolates found in Polish potato fields. Virus Res, 2014, 185:110-113
- [40] Ma Z, Song T, Zhu L, et al. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell, 2015, 27(7): 2057-2072

Construction of Dual Expression Vector Based on Tobacco Rattle Virus and Its Application for Analysis of Protein Function in *Nicotiana benthamiana**

GUO Ge¹, CHANG Fa-Guang¹, LAI Jia-Liang¹, ZHANG Xian-Wen², DU Zhi-You¹, LIAO Qian-Sheng^{1)**}

(¹⁾College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
²⁾The Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China)

Abstract Objective In order to construct a viral vector that can simultaneously express two non-fusion proteins in the whole host plants. **Methods** *Agrobacterium* infectious clone pYL156 containing tobacco rattle virus (TRV) genomic RNA2 was used to construct dual expression vector pTRV2e² by deleting 279 bp of 5' end of *2b* gene, changing initiation codon of *2b* gene ATG to AGG, and introducing the subgenomic promoter of pea early-browning virus (PEBV) coat protein (cp) gene. Different exogenous genes were cloned into the downstream of *2b* and PEBV *cp* subgenomic promoters to measure the ability of virus TRVe² to express two foreign proteins, assess the stability of reconstructed TRVe² and analyze the function of proteins in the seedlings of *Nicotiana benthamiana*. **Results** TRVe² could simultaneously and rapidly produce two non-fused target proteins and express at least a 70 ku foreign protein in the whole host plants; TRVe² harboring 2.0 kb exogenous gene could stably exist in *N. benthamina* plants and could be served as technical means for analyzing the biological function of the proteins and the interaction between two proteins. **Conclusion** Recombinant virus TRVe² constructed in this study provide a toolbox for fast and efficient production of double foreign proteins and for analysis of the interaction between two proteins.

Key words tobacco rattle virus, genomic RNA2, dual expression vector, analysis of protein function, *Nicotiana benthamiana*

DOI: 10.16476/j.pibb.2021.0180

^{*} This work was supported by a grant from Genetically Modified Organisms Breeding Major Projects (2018ZX08001-03B).

^{**} Corresponding author.

Tel: 86-571-86843195, E-mail:qshliao@aliyun.com

Received: June 23, 2021 Accepted: August 31, 2021