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Retinopathy Fundus OCT Images by Using
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Abstract Objective Diabetic retinopathy (DR) is a serious complication of diabetes that may cause vision loss or even
blindness in patients. Early examination of the choroid plays an essential role in the diagnosis of DR. However, owing to the fuzzy
choroid-sclera interface (CSI) and shadow of retinopathy in the optical coherence tomography (OCT) images of DR, most existing
algorithms cannot segment the choroid layer precisely. The present paper aims to improve the accuracy of choroid segmentation in
DR OCT images. Methods In this paper, we propose an optimized squeeze-excitation-connection (SEC) module integrated with
the UNet, called the SEC-UNet, which not only focuses on the target but also jumps out of the local optimum to enhance the overall
expressive ability. Results The experimental results show that the area under the ROC curve (4UC) of the SEC-UNet reaches up to
0.993 0, which outperforms that obtained for conventional UNet and SE-UNet models. It indicates that the SEC-UNet can obtain
accurate and complete segmentation results of the choroid layer. Statistical analysis of choroid parameter changes indicated that
compared with normal eyes, the 1 mm adjacent area of choroid fovea increased in 87.1% of DR patients. It proved that DR is likely
to cause choroid layer thickening. Conclusion Our method may become a useful diagnostic tool for doctors to explore the function

of the choroid in the prevention, pathogenesis, and prognosis of diabetic eye disease.
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Diabetic  retinopathy (DR) is a serious (OCT) B-scan image of DR. This process is time-
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DRPM. Figure 1 illustrates the manually segmented
boundaries in a fundus optical coherence tomography
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subjective judgment of the doctor. Therefore, an
automatic and precise segmentation method is

urgently needed for future clinical applications.

Fig. 1 Illustration of a manually labeled OCT B-scan of a
patient with DR

Four boundaries consist of internal limiting membrane (ILM; red

curve), inner segment/out segment (IS/OS; blue curve), Bruch’s

membrane (BM; yellow curve), and choroid-sclera interface (CSI;

green curve).

In the past, many algorithms for choroid
segmentation have been developed!'">"®), such as graph
search™, active contours and Markov random
fields™, and support vector machines (SVM) 2!,
However, these have not been adopted into the real
clinical environment; this is primarily because a. there
are too many super parameters that need to be
adjusted in the segmentation program, and b. the
segmentation results need to be manually corrected
and processed. In recent years, deep learning has been
widely used in medical image processing. Masood
et al.""" used a convolutional neural network (CNN)
Cifar-10 architecture to extract the choroid part of
OCT images into patches with or without CSL
However, it needs to deal with a large number of
overlapping windows, which can be computationally
redundant. George et al.”** used SegNet to obtain the
choroid region and used the morphology for edge
detection. Segmentation of pathological choroid
images is not ideal because of the inadequate use of
shallow features. UNet may be one of the most
popular and successful architectures for medical
image segmentation to date!”! because its fully CNN
structure requires only a small number of samples, the
encoding path of coarse-grained context detection,
and the decoding path of fine-grained location.
However, because the shape, size, or light of the target

affects the accuracy of the segmentation results, a

single UNet may not perform well. Therefore,
multiple UNets are cascaded to increase the model
performance. Oktay et al.* proposed attention gates,
which automatically learn to focus on the target, and
integrating them into the conventional UNet model
can increase the prediction accuracy without adding
attention

additional networks. Another excellent

mechanism is the
e[25]

squeeze-and-excitation (SE)
module'™’, which can focus on the target, highlight
useful features by channel, and suppress irrelevant
features. Rundo et al.*® incorporated SE modules into
UNet to segment the prostate zonal and achieved
excellent results.

However, the SE module in the network can
easily fall into the local optimum while ignoring the
global features of the target, which results in a
decreased accuracy in the DR choroid boundary
segmentation task. In this paper, we propose an
optimized SE module, namely the squeeze-excitation-
connection (SEC) module, in which a skip connection
between the feature mapping layer and the conversion
output was inserted. The SEC module not only retains
the attention ability of the original SE module but also
enables the current layer to pass its own feature maps
to the subsequent layer, thereby enhancing the overall
expressive ability of the network. We integrated the
SEC module with UNet and compared it with
conventional UNet and SE-UNet
segmentation of the choroid boundary in DR OCT
images. The results indicated that SEC-UNet achieved
the best performance (i. e., an area under the ROC
curve (AUC) value of 0.993 0). The qualitative and
quantitative comparisons demonstrated that the SEC
module is effective and that the proposed model can
achieve precise segmentation of DR choroid images.
In this paper, we measure the foveal choroidal
thickness and the volume of the adjacent area. In the
future, it may become a useful diagnostic tool for
doctors to explore the mechanism for the pathogenesis
of DR.

models for

1 Methods

In this study, the SEC-UNet was developed to
segment the choroid boundaries in OCT images of
DR, where the UNet structure serves as the backbone
and the SEC module serves as an attention mechanism
to strengthen the discriminative representation ability,
thereby making the network more adaptive to DR
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choroid segmentation tasks.
1.1 Network architecture

SEC-UNet combines an encoder and a decoder
path, as shown in Figure 2. The network starts with an
input image with dimensions 320x320x3. The first
layer of the encoder path is a convolutional layer with
a stride of 1. The second layer is the SEC module with
a channel size of 128. The third layer comprises
maxpooling layers with a stride of 2. We repeated the

64 128

H

same steps 3 times, and the channel sizes of these
modules were 256, 512, and 1 024, respectively. The
decoder path takes the output of the encoder path as
the input; the two paths are similar except that the
maxpooling layers are replaced by upsampling layers
with a stride of 2 in the decoder path. The features
obtained through the encoder and decoder paths are
combined by the skip connection. At the end of the
net, the choroid and background areas are segmented
using the SoftMax activation function.
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Fig.2 Architecture of the proposed SEC—UNet model

1.2 SEC module

The SEC module is an optimized version of the
SE module, as shown in Figure 3. The SE module is a
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lightweight gating mechanism!®. It can enhance the
representational power of the network by modeling
channel-wise relationships.
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T
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Fig. 3 Squeeze—excitation—connection module

In the SE module, the input maps X’ e R "' *¢

are transformed (/) to feature maps X € R
Before feeding X into the next transformation, it

HxWxC

undergoes 3 successive steps: squeeze, excitation, and
connection. The global spatial information is squeezed
(F,) into a channel descriptor by global average
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pooling, and the gating mechanism is employed to
tackle the issue of exploiting channel dependencies:
F(X)=o0(W25(W1)) ()

where o denotes the Sigmoid function, 6 refers to the
¢
. . . . —xC
rectified linear unit (ReLU) 2" function, W1 € R"
c

and W2 e R are fully connected layers, and r is
the reduction rate in the dimensionality reduction
layer (set as 16). The transformation output of the SE
module is obtained by rescaling (F_.) of F(X).

The SE module recalibrates the features through
the internal gating structure to focus the attention of
the network on the target. However, it easily falls into
the local optimum, ignoring the global features of the
which
segmentation in the choroid segmentation task. In this

target, results in inaccurate boundary
study, we modified the original structure of the SE
module. We took

connectivity in DenseNet, which takes a feed-forward

inspiration from the dense
mode to connect the current layer to the subsequent
layer, thus encouraging feature reuse and enhancing
feature expression capabilities’®®). We inserted a skip
connection (F,, .. between the feature mapping
layer and the transform output:

KXo = F e (X, F (X)) 2)

This feed-forward connection mode can take

connect

advantage of the context information and can
effectively enhance the global and local expression
capabilities at the same time. It also encourages
feature reuse throughout the network and makes the
module more compact.

2 Experiments and results

In this section, we introduced the database used
to evaluate networks followed by detailed network
parameters and training details and displayed the
segmentation results and comparison among different
networks.

2.1 Dataset

The collection and analysis of image data were
approved by the Human Research Ethics Committee
of Nanfang Hospital of Southern Medical University
and adhered to the tenets of the Declaration of
Helsinki. The dataset was acquired using Heidelberg
OCTSPECTRALIS S200 and consisted of EDI-OCT
images from 40 DR eyes (25 patients). Each EDI-
OCT cube has 128 B-scans, and a given B-scan
contains 512 A-scans, each of which comprises 596

pixels. We randomly selected 30 B-scans from each
volume and manually annotated them by experienced
doctors. For each B-scan, we used the graph search
method*”! to obtain the IS/OS boundary, removed the
region above it to retain region of interest (ROI) for
reducing the choroid-independent information, and
then cropped it into 10 patches (320x320) in the
horizontal direction to expand the data. The new
dataset was divided into training set, validation set,
and test set in the ratio 7 : 2 : 1.
2.2 Implementation

The proposed method was built on Keras with
TensorFlow as the backend®”. The experiments were
run on a single GPU (NVIDIA GeForce GTX
2080T1). The model was trained for 100 epochs. Each
convolution layer in the model had a kernel size of
3x3. The weights and biases of SEC-UNet were
initialized using the He normal scheme. We used the
Adam optimizer with a mini-batch size of 8 to update
the network weights and biases. The learning rate for
training the model was 107. In the training stage, we
placed a dropout layer with a probability of 0.2 after
the convolution layer to prevent the network from
overfitting.
2.3 Evaluation metrics

The choroid segmentation results can be
evaluated by accuracy (ACC), sensitivity (SE),
specificity (SP), and Fl-score (F1) BY which are
defined as

TP + TN

ACC = TP + FP + TN + FN ()

TP
SE = TP + FN “)

TN
PN rp ©)

2 x TP

Fl1 (6)

T 2XTP+FP+FN
where TP, TN, FP, and FN represent the number of
true positive, true negative, false positive, and false
negative pixels, respectively. Other evaluation
metrics, such as receiver operating characteristic
(ROC) curve and AUC, were also used in this study.

2.4 Comparison between different networks

To validate the performance of the proposed
algorithm, we tested SEC-UNet for DR choroid
segmentation and compared it with the conventional
UNet™ and SE-UNet® models. These networks
were trained on the same parameter settings, including
initial

the Adam optimizer, learning rate, and
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maximum epoch number, to ensure a fair comparison.
As shown in Figure 4, the ROC curve of the proposed
model reaches the upper left corner, and the AUC is (a
value of 0.993 0) larger than that of the other two
models. In contrast, the ROC curves of the UNet and
SE-UNet were entangled, which reveals that SE-UNet
cannot improve the performance of UNet in this
segmentation task. For the complex features of DR
choroid images, the SE module overfocuses on the
boundary and falls into the local optimum, while
ignoring the overall expression of the target.

Table 1 lists the evaluation metrics of the models.
The highlighted
performance. It can be observed that despite an SE
value lower than the SE-UNet model, the ACC, SP,
and F'1 values of the proposed model are higher than

numbers represent the best

those of the other two, indicating its superiority in the
segmentation performance. SEC-UNet has the slowest
speed, which
superior segmentation

training and prediction trades
computational cost for

performance. The higher SE value but lower SP value

Turbidity area receiver operating characteristic example
1.001 ———

The positive rate
=)
o0
=

——: UNet (4UC=0.988 8)
0.70F ——: SE-UNet (4UC=0.991 2)
: SEC-Unet (4UC=0.993 0)

0.60t 1 I L |
0 0.2 0.4 0.6 0.8

False positive rate

Fig. 4 ROC curve and AUC analysis of different models

of the SE-UNet model indicates that it tends to
oversegment the choroid region. The F1 values of
UNet and SE-UNet are similar, which verifies the
drawbacks of over-focus on the boundary in the SE
module.

Table 1 Comparison with different models

Result
Method —
ACC/% SE/% SP/% F1/% Training speed/(img-s™") Testing speed/(img-s™") Parameters
UNet 2 92.38 83.67 92.74 68.49 5.92 5.50 29.90 M
SE-UNet 2] 91.80 86.63 91.75 67.13 5.12 3.67 30.76 M
SEC-UNet 94.06 85.85 94.27 73.02 3.47 2.75 4570 M

Figure 5 shows 4 sample results to visually
compare our method with other models. The original
images, choroid ROI images, and ground-truth masks
are presented in Figure S5a-c. The segmentation
results obtained by UNet, SE-UNet, and SEC-UNet
are shown in Figure 5d-f. It can be observed that BM
is better than CSI in the segmentation results of each
model because of the fuzzy gradient feature of CSIL
The shadow of retinopathy in the DR choroid image is
projected into the choroid, which makes it difficult to
distinguish the features of the choroid internal vessels
and the sclera. This leads to the UNet and SE-UNet
mistaking the internal vessel pixels as scleral pixels,
as shown in Figure 5d, e. Moreover, the CSI in
UNet’s segmentation results deviate greatly from the
correct one; this is because its main purpose is to
recover the global information of the target object,

ignoring detailed features such as boundaries. The
segmentation results of SE-UNet are slightly better
compared with UNet’s, but the accuracy of boundary
segmentation is lower because of its tendency to
easily fall into the local optimum, ignoring the global
features of the target. SEC-UNet obtained the most
accurate and complete segmentation results (Figure
5f) compared with the ground-truth masks (Figure
5¢), which proves that the SEC module can not only
focus on the target object but also jump out the local
optimum to take advantage of the global feature
information. The qualitative and quantitative results
demonstrate that the proposed SEC module is
effective and the SEC-UNet can achieve automatic
and precise segmentation of choroid layer in DR OCT
images.
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(a)

(b)

(d)

(e) ®

—

Fig. 5 Sample results

From left to right: (a) original choroid OCT images; (b) choroid ROI images: removed the region above choroid to reduce independent information;

(c) ground-truth masks; (d—f) results obtained by UNet, SE-UNet, and our proposed method.

2.5 Statistical

parameters variation

analyses of the choroidal

According to clinical findings, DR may cause

choroidal ~ changes'”.  Thus the quantitative
measurement of choroidal parameters is of great
significance for the diagnosis and preventive

treatment of DR. This paper calculated 38 sets of
choroid foveal thickness (CFT) and volume of
(CFV) within
respectively, from 28 DR patients. The average values
of 7 normal people served as the threshold to judge
choroidal change. Results showed in Table 2 indicated
that most CF7, 1 mm CFV increased in DR eyes
compared with normal eyes. And the 1 mm CFV
performed the highest correlation with DR. So it can

adjacent area I mm diameter,

be used to characterize the choroidal changes caused
by DR more accurately and comprehensively.
Statistical analysis of choroid parameter changes
indicated that compared with normal eyes, the 1 mm
adjacent area of choroid fovea increased in 87.1% of

Table 2 The performance of CFT,1 mm CFV (x + s)

Group CFT/um 1 mm CVF/mm?®
Normal 288+59.968 0.283+0.056
DR 297+68.256 0.388+0.138
Ratio 83.90% 87.10%

Ratio: the ratio of choroidal reduction number to the total.

DR patients. It proved that DR is likely to cause
choroid layer thickening.

3 Conclusion

In this paper, we presented a new SEC-UNet
the of
segmentation in DR OCT images. Compared with the
conventional UNet and SE-UNet models, this model
achieved the best performance (AUC value of 0.993 0).
Our algorithm can obtain automatic and precise

model to improve accuracy choroid

segmentation of the choroid layer in DR images,
which may be helpful for doctors in diagnosing
fundus diseases related to the choroid state. The
statistical analysis of choroid parameter presented the
1 mm adjacent area of choroid fovea increased in
87.1% of DR patients, which means DR may thicken
the choroid layer. In addition, the proposed SEC
module can also be incorporated into other network

frameworks, such as VGGP?, ResNet®| and
DenseNet™ to accomplish tasks such as image
classification, scene classification, and object
detection.
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