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Prediction of m°A Methylation Sites in Mammalian
Tissues Based on a Double—layer BiGRU Network®

LI Hui-Min™, CHEN Peng-Hui, TANG Yi", XU Quan-Feng, HU Meng, WANG Yu

(School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504, China)

Abstract Objective N°-methyladenosine (m°A) is the most common and abundant chemical modification in RNA and plays an
important role in many biological processes. Several computational methods have been developed to predict m°A methylation sites.
However, these methods lack robustness when targeting different species or different tissues. To improve the robustness of the
prediction performance of m°A methylation sites in different tissues, this paper proposed a double-layer bidirectional gated recurrent
unit (BiGRU) network model that combines reverse sequence information to extract higher-level features of the data. Methods Some
representative mammalian tissue m°A methylation site datasets were selected as the training datasets. Based on a BiGRU, a double-
layer BiGRU network was constructed by collocation of the model network, the model structure, the number of layers and the
optimizer. Results The model was applied to predict m*A methylation sites in 11 human, mouse and rat tissues, and the prediction
performance was compared with that of other methods using the same tissues. The results demonstrated that the average area under
the receiver operating characteristic curve (AUC) predicted by the proposed model reached 93.72%, equaling that of the best
prediction method at present. The values of accuracy (4CC), sensitivity (SN), specificity (SP) and Matthews correlation coefficient
(MCC) were 90.07%, 90.30%, 89.84% and 80.17%, respectively, which were higher than those of the current methods for predicting
m°A methylation sites. Conclusion Compared with that of existing research methods, the prediction accuracy of the double-layer
BiGRU network was the highest for identifying m°A methylation sites in the 11 tissues, indicating that the method proposed in this

study has an excellent generalizability.
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RNA methylation is a new field of epigenetic
regulation!' . m°A methylation is the most common
and abundant chemical in RNA,
accounting for approximately 80% of RNA
methylation modifications®*. It plays an important

modification

role in regulating RNA maturation, cleavage,
transport, degradation and Many
enzymes involved in m°A methylation can be
modified at the m°A methylation sites®®!. Therefore,

the accurate identification of m°A methylation sites

translation® 7).

from RNA sequences is crucial for understanding the
biological function of RNA methylation modifications.

Early detection methods of m°A methylation
sites were mainly based on biological experiments,
cellulose thin

such as two-dimensional

chromatography, high-performance liquid

chromatography and mass spectrometry’”. However,
due to the limitations of experimental conditions,
these methods generally have many problems, such as
being time-consuming, having a high cost and having
a small detection scale. The emergence of high-
throughput provided
strong technical support for methylation research!'®'?
and generated a large amount of m°A methylation site
data, which has led to the identification of m°A

sequencing technology has
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methylation sites from biological experiments and

computational research. Using high-throughput
experimental data and traditional machine learning
methods, some models for predicting m°A
methylation sites have been developed. Examples
iRNA-Methyl™  and ~ pRNAm-PC
predictors!'” based on base resolution technology,
SRAMP!" based on random forest (RF), and models
based on support vector machine (SVM), such as
RAM-NPPS!"® M6APred-EL!"", iMethyl-STTNC!'*]
and iRNA(m6A) -PseDNC!". Traditional machine

learning

include

algorithms require more professional
knowledge to manually extract features from datasets,
reduce the features’ dimensions and transfer the best
features to the model. The process of feature
extraction is very complicated. In recent years, many
researchers have proposed m°A methylation site

prediction algorithms

[20]

based on deep learning

algorithms'™, which can automatically obtain high-

level features based on sample datasets, and
developed methods for cross-species prediction of
m°A methylation sites.

targeted m°A

Researchers have  mainly

methylation sites in different species, such as
Arabidopsis thaliana, Saccharomyces cerevisiae, Mus
musculus (mouse), Rattus norvegicus (rat) and Homo
sapiens (human), to make macroscopic predictions.
However, less attention has been given to m°A
methylation sites in more microscopic biological
tissues. As an example, the expression levels of m°A
methylation were found to be different between
diseased and unaffected tissues®'?), while few
methods have predicted m°®A methylation sites in
different tissues. In recent years, some researchers
have refined m°A methylation site prediction to tissue
sites?*?’). For example, Dao et al. ®¥ and Wang
et al. *"" proposed iRNA-m6A*! and M6A-BiNPP",
respectively, which mainly rely on SVMs, to predict
m°A methylation sites in 11 tissues of 3 species
(human, mouse and rat). Liu et al.™ developed im6A-
TS-CNN based on a single-layer convolutional neural
network to further improve the values of the area
under the receiver operating characteristic (ROC)
curve (AUC). Zhang et al.”™ developed a tool named
DNN-m6A using deep neural networks to identify
m°A methylation sites in multiple human, mouse and
rat tissues and showed an excellent generalizability.
Although there have been an increasing number of

computational methods for m°A methylation site

prediction and some progress has been made in the
prediction of tissue m°A methylation sites, the
following problems remain. (1) The predicted regions
are generally not sufficiently refined. Only a few
algorithms, such as iRNA-m6A, im6A-TS-CNN,
DNN-m6A and M6A-BiNP, subdivide the predicted
regions into various tissues. (2) Most algorithms have
low prediction accuracy in some tissues, and the
prediction accuracy is generally below 80%.

m°A methylation site prediction is based on
nucleotide sequences, in which nucleotides are
associated with each other. As one of the classical
deep learning algorithms, a recurrent neural network
(RNN) has excellent performance in processing
sequence data. In particular, a bidirectional RNN can
combine the reverse characteristics of sequences.
Therefore, based on a bidirectional gating recurrent
unit (BiGRU), which is a variant of the bidirectional
RNN, and selected representative mammalian tissue
m°A methylation site datasets as training data, we
constructed a double-layer BiGRU network. m°A
methylation sites in 11 mammalian tissues were
predicted using our method, and the predicted results
show that the proposed method is superior to existing
methods.

1 Materials and methods

1.1 Materials

The datasets used in this research were from the
m°A methylation site benchmark datasets constructed
by Dao et al.”** and downloaded from their paper. The
datasets contain m°A methylation sites in 11
mammalian tissues from 3 species: human (brain,
liver and kidney), mouse (brain, liver, heart, testis and
kidney) and rat (brain, liver and kidney). Each dataset
of the above 11 tissues contained two parts: a training
dataset used to train the model and an independent
test dataset used to test the performance of the model.
In each training dataset and independent test dataset,
the same sequence numbers of positive samples (m°A
sites) and negative samples (non-m°A sites) were
included. The length of each sequence in the positive
and negative samples was 41 nt, with adenine (A) in
the center of a sequence. The detailed sample sizes in
the datasets are shown in Table 17!, It was observed
that the sample size of human brain tissue was at a
medium level in all datasets, so we used it to debug
the model parameters.
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Table 1 Benchmark datasets of m°A methylation sites

Species Tissues Abbreviations Training datasets Independent test datasets
Positive Negative Positive Negative

Human Brain H B 4605 4605 4604 4604

Kidney H K 4574 4574 4573 4573

Liver HL 2634 2634 2634 2634

Mouse Brain M B 8025 8025 8025 8025

Heart M H 2201 2201 2200 2200

Kidney M_K 3953 3953 3952 3952

Liver M L 4133 4133 4133 4133

Testis MT 4707 4707 4706 4706

Rat Brain R_B 2352 2352 2351 2351

Kidney R K 3433 3433 3432 3432

Liver R L 1762 1762 1762 1762

To make the original data acceptable to the
model, the sample RNA sequences were processed by
one-hot encoding. Let A=(1, 0, 0, 0)", U=(0, 1, 0, 0)",
C=(0, 0, 1, 0)"and G=(0, 0, 0, 1)'; then, each RNA
sequence can be represented as a numerical matrix
that contains only 1s and Os with 4 rows and 41
columns.

1.2 Methods

1.2.1  Construction of the double-layer BiGRU
prediction model

The core model of our method is a gated
recurrent unit (GRU). The GRU model can better and
more capture the dependence
relationship in a sequence” and it is suitable for

automatically

BiGRU_layerl

predicting m°A methylation sites in a sequence. The
GRU controls the flow of information by resetting and
updating the gate, which can effectively solve the
gradient disappearance problem in RNNs, and the
model has fewer parameters and is more concise. The
network structure is shown in Figure 1. The model
mainly includes two bidirectional GRU (BiGRU)
The first BiGRU layer (BiGRU layerl)
processes the data transformed by the input layer to

layers.

obtain the initially extracted feature vector, and the
second BiGRU layer (BiGRU _layer2) further extracts
the features obtained from the previous layer. Hence,
the function of BiGRU layer2 is to capture more
advanced information and make the model obtain
more useful data characteristics.

BiGRU_layer2 Flatten

Output

—00

OO O0O00OO

(None, 41, 4)

(None, 41, 64)

(None, 64) (None, 1)

Fig. 1 Model structure diagram of bidirectional gated recurrent unit (BiGRU) network

(None, 41, 4) represents the data dimension from the input layer to BiGRU_layerl, (None, 41, 64) represents the data dimension entered into

BiGRU_layer2 after the BIGRU_layerl operation, (None, 64) represents the data dimension entered into the flatten layer after the BIGRU_layer2

operation, and (None, 1) is the data dimension calculated by flattening to the output layer. The regular fonts hl, h2, h3, ...... , ht indicate the hidden

status of the forward GRU network, and the italics fonts 21, h2, h3, ......

each sequence is 41 nt, with adenine (A) in the center of a sequence.

, ht indicate the hidden status of the backward GRU network. The length of
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1.2.2 Detailed algorithm procedure

(1) The nucleotide sequence data were converted
into the form of one-hot encoding, and each sample
RNA sequence with dimension (4, 41) was fed into
the model.

(2) Two BiGRU layers were added using the
Python library Keras. Since the previous data input
dimension is (4, 41), we set ‘input_shape’ to (4, 41)
in BiGRU layerl and the number of neurons in both
BiGRU layers to 32.

(3) The results of BiGRU layerl and BiGRU _
layer2 were passed to the ‘Flatten layer’, and a high-
dimensional data input vector was converted into a
one-dimensional output vector.

(4) In the output layer, ‘sigmoid’ was selected as
the activation function, and its formula is given in
Equation (1):

1
@) =1= (D

In Equation (1), x is the output value of the

previous flattened layer processing, and the range of
f(x)is [0, 1], which is similar to the probability value.
The prediction was positive samples (m°A sites) when
f(x)> 0.5, and the prediction was negative samples
(non-m°A sites) when f(x) < 0.5.
1.2.3 Design of model and parameters

The prediction of m°A methylation sites in this
work was treated as a classification problem;
therefore, the loss function of the model was the

binary cross-entropy function, as shown in
Equation (2):
1 1
L= NZLL = NZ -
I:yi'lnpi'i'(l_yi)'ln(l_Pi)] )

where y, represents the label of the sample i, the
positive class is 1, and the negative class is 0; p,
represents the probability of the sample i being
predicted to be a positive class.

In the model, the epoch number was set to 150,
the batch size was set to 32, and the ‘Adam’
optimizer was used. When the initial learning rate was
not applicable, the accuracy of the model did not
improve after a certain number of epoch iterations.

Therefore, the callback
‘ReduceLROnPlateau’ was added to optimize the

function

learning rate. The monitoring variable in the callback
function was ‘Val loss’, and ‘patience’ was set to
20. That is, when the model loss value did not
decrease after 20 epochs, the mechanism of learning
rate reduction in the callback function was triggered.
A “‘factor’ value of 0.1 was used to reduce the
learning rate in the training process, thus improving
the accuracy of the model. Because the callback
‘ReduceLROnPlateau’
iterations to optimize the learning rate to make the

function needs  several
model reach the best state, to achieve higher accuracy

and  accelerate  the model training, the
‘EarlyStopping’ strategy was added to stop the model
training in advance. The monitoring variable in
‘EarlyStopping” was ‘val binary accuracy’, and
‘patience’ was set to 30. Training was stopped when
the accuracy of the model after 30 epochs had not
changed. In this situation, ‘EarlyStopping’ will not
be triggered early, so the model can be fully trained
while avoiding overfitting.

A 10-fold cross-validation test was used in the
experiments. That is, the datasets were randomly
divided into 10 subsets. In turn, 8 of them were used
as a training set, 1 of them was used as a validation
set, and the remaining one was used as a test set. In
each experiment, a correct rate was obtained, and
finally, the average correct rate of the 10 results was
used as the estimation of the accuracy of the model or
algorithm.

1.2.4 Evaluation metrics

Four classical evaluation metrics, including
sensitivity (SN), specificity (SP), accuracy (ACC), and
Matthews correlation coefficient (MCC) BY, were
implemented to assess the performance of the model.
The corresponding metrics can be expressed as
formulas (3)—(6):

P
SN = Tp v FN ®)
TN
T )
+
ACC = TP+;;+%+FP )
TP X TN - FP x FN ©

McC =

(TP + FP)x (TP + FN) X (TN + FN) x (TN + FP)

where TP, FP, FN and TN represent the number
of correctly predicted positive samples, incorrectly

predicted negative samples, incorrectly predicted
positive samples and correctly predicted negative
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samples”, respectively. The AUCP?! was also
introduced to evaluate the overall performance of the
model®*. The value range of AUC is [0, 1], and the
AUC 1is positively correlated with the prediction
performance. The larger the AUC value is, the better
the overall performance of the predictor. In the aspect
of code implementation, the encapsulation function

1135-36]

for the prediction model of Chen ef a was used.

2 Results and discussion

Our method was compared with several existing
methods?**’). These methods include iRNA-m6A and
M6A-BIiNP based on SVM, im6A-TS-CNN based on
a single-layer convolutional neural network, and
DNN-m6A based on a deep neural network. At
present, these 4 methods have achieved good
performance in m°A methylation site prediction in
mammalian tissues. Since M6A-BiNP had the better
comprehensive performance among the methods, we
only reported comparison results with M6A-BiNP in
each tissue.

2.1 Prediction results on human tissues

For the human independent test datasets (Table

2), our method showed the best ACC values (H_B:

87.48%, H K: 90.87% and H_L: 90.72%) and MCC
values (H B: 74.96%, H K: 81.76% and H L:
81.47%). The AUC value of our method for H L
showed the best performance simultaneously with that
of M6A-BINP (our method: 94.04% and M6A-BiNP:
94.80%); for H B and H_K, our method had the best
performance (H B: 91.97% and H K: 94.51%).
Although the model SN values for H K and H L were
lower than those of M6A-BINP (H K: 96.4% and
H L: 92%), both were higher than 90% (H _K:
90.94% and H L: 90.77%). The SP value of our
method for H B was lower than that of M6A-BiNP
(95.40%), but it reached 87.46%. Compared with the
test results of the other methods, the performance of
our method was stable for different tissues. For
example, although M6A-BiNP achieved a better SP
value (95.4%) for H B, its SP value for H K was
only 40%. One of the greatest advantages of our
method is its universality. It had high ACC and AUC
values for all 3 human tissues, but the other methods
did not have such high performance. For example,
although the ACC value of M6A-BINP for H L was
86.20%, ACC values of only 76.70% and 68.20%
were obtained for H B and H_K, respectively.

Table 2 Evaluation metrics on human independent test datasets

Tissue Model ACC/% SNI% SP/% MCC/l% AUCI%
H B Our method 87.48 87.49 87.46 74.96 91.97
M6A-BiNP 7] 76.70 58.00 95.40 57.60 89.40
iRNA-m6A 2] 71.10 69.50 73.00 42.00 78.50
im6A-TS-CNN (28] 72.70 75.20 70.20 45.40 80.60
DNN-m6A 21 73.30 75.00 71.50 47.00 81.50
H K Our method 90.87 90.94 90.79 81.76 94.51
M6A-BIiNP 27 68.20 96.40 40.00 44.10 87.90
iRNA-m6A 12 77.80 77.10 78.40 56.00 85.70
im6A-TS-CNN (2% 79.20 80.00 78.50 58.50 87.30
DNN-m6A %1 79.90 83.20 76.60 60.00 87.80
H L Our method 90.72 90.77 90.66 81.47 94.04
M6A-BINP (27! 86.20 92.00 80.50 73.00 94.80
iRNA-m6A 2] 79.00 78.20 79.90 58.00 86.80
im6A-TS-CNN (28] 79.90 84.80 75.00 60.10 88.10
DNN-m6A 1 81.00 81.80 80.10 62.00 88.50

2.2 Prediction results on mouse tissues

For the mouse independent test datasets (Table
3), our method showed a better prediction effect.
Except for the lower SP and AUC values for M_H and
M _L than those of M6A-BiNP, our method achieved

the best ACC, SN, SP, MCC and AUC values for the
other tissues. At the same time, compared with those
of M6A-BINP, the evaluation metrics of our method
for different tissues had smaller fluctuation ranges.
For example, for 5 mouse tissues, the SP values of
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M6A-BiINP ranged from 67.40% to 99.60%, and those
of our method ranged from 88.09% to 90.96%. The
ACC values of M6A-BiNP and our method ranged
from 75.60% to 85.10% and 87.81% to 91.18%,
respectively. On the one hand, these results
demonstrate that our method has higher accuracy; on

the other hand, it has smaller fluctuation in terms of
each evaluation criterion. Therefore, it was concluded
that the prediction performance of our method was
more stable and more universal for mouse tissue m°A
methylation site prediction.

Table 3 Evaluation metrics on mouse independent test datasets

Tissue Model ACCI% SNI% SP/% MCC/% AUCI%
M B Our method 91.02 91.06 90.96 82.04 94.52
M6A-BIiNP (27! 75.60 83.80 67.40 51.80 84.90
iRNA-m6A 2] 78.30 77.20 79.40 57.00 86.10
im6A-TS-CNN (28] 78.50 86.20 70.70 57.70 87.20
DNN-m6A 1 78.60 75.10 82.10 57.00 87.60
M H Our method 88.05 87.99 88.09 76.11 92.05
M6A-BiNP 7] 83.80 68.10 99.60 71.20 98.30
iRNA-m6A 2] 71.30 70.50 72.10 43.00 78.80
im6A-TS-CNN (28] 73.60 75.80 71.40 47.20 81.60
DNN-m6A 21 75.10 77.30 73.00 50.00 83.40
M K Our method 91.18 91.85 90.50 82.37 94.67
M6A-BIiNP (271 83.20 90.60 75.80 67.20 92.50
iRNA-m6A 2] 79.30 78.40 80.30 59.00 87.00
im6A-TS-CNN (2% 80.80 80.50 81.00 61.50 88.60
DNN-m6A 1 80.90 81.20 80.60 62.00 88.90
M L Our method 87.81 87.71 87.90 75.66 91.98
M6A-BIiNP (27 82.80 69.90 95.70 68.00 93.70
iRNA-m6A 2] 68.80 67.80 69.90 38.00 76.20
im6A-TS-CNN (2% 71.60 75.60 67.60 43.30 79.30
DNN-m6A 21 73.00 76.40 69.50 46.00 80.80
M T Our method 88.83 89.05 88.61 77.69 92.94
M6A-BiNP 7] 85.10 85.70 84.50 70.20 92.80
iRNA-m6A 20 73.50 72.20 75.10 47.00 81.80
im6A-TS-CNN (28] 76.20 83.50 68.90 52.90 84.70
DNN-m6A 1 77.10 80.10 74.20 54.00 85.40

2.3 Prediction results on rat tissues

The model prediction results of m°A methylation
sites on three independent test datasets of rat tissues
were compared with those of other methods (Table 4).
Our method achieved the best prediction AUC value
for R_K tissue, and although the AUC values were
lower than those of M6A-BINP for R B and R L
tissues, they exceeded 92%. However, the ACC values
of our method were highest for 3 tissues. This
indicated that our method could improve the
prediction accuracy of m°®A methylation sites on rat
datasets. Moreover, similar to those for the mouse
tissues, the 9 prediction results of our method for 3
different rat tissues also had smaller fluctuation. For

example, in the mentioned 3 tissues, the SP values of
M6A-BiINP ranged from 57.50% to 90.78%, and those
of our method ranged from 89.22% to 0.78%. The
ACC values of M6A-BINP and our method ranged
77.10%—-88.70% and 89.51%-91.47%, respectively.
This further demonstrates the universality of the
proposed method.
2.4 Model summary

To illustrate the overall comparison between our
method and other state-of-the-art methods, the
prediction results of 11 tissues were averaged. It can
be seen from the results of the training datasets
(Figure 2a) that the AUC value of our method was
almost equal to that of M6A-BINP and higher than
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Table 4 Evaluation metrics on rat independent datasets

Tissue Model ACC/% SNI% SP/% MCC/% AUCI%
R B Our method 89.51 89.06 89.95 79.08 92.73
M6A-BiNP [27] 86.60 98.80 74.40 75.50 98.20
iRNA-m6A 2] 75.10 73.90 76.50 50.00 82.70
im6A-TS-CNN 2% 77.00 78.10 75.80 53.90 85.20
DNN-m6A 1 78.00 77.70 78.30 56.00 86.20
R K Our method 91.47 92.15 90.78 82.99 94.88
M6A-BiNP [27] 77.10 96.60 57.50 58.80 93.60
iRNA-m6A 126 81.40 80.20 82.80 63.00 89.70
im6A-TS-CNN 2] 82.70 84.90 80.60 65.50 90.80
DNN-m6A 7 83.00 85.30 80.70 66.00 91.10
RL Our method 90.04 90.86 89.22 80.13 93.91
M6A-BiNP 7] 88.70 98.90 78.60 79.10 98.60
iRNA-m6A ¢ 79.90 77.70 82.30 60.00 87.60
im6A-TS-CNN 28 80.20 84.50 75.90 60.70 88.50
DNN-m6A 7 81.60 82.80 80.50 63.00 89.60
(a) M : Ourmethod [l : M6A-BiNP [l : iRNA-m6A [l : im6A-TS-CNN [I : DNN-m6A
93.72 93.77
B
8
g
£
L5
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g
5
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() B : Our method [ : M6A-BiNP [ : iRNA-m6A [l : im6A-TS-CNN [ : DNN-m6A
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Fig. 2 The overall performance of different methods on 11 tissues

AUC

(a) The performance of different methods on the training datasets. (b) The performance of different methods on the independent test datasets. The bars

represent the evaluation metrics under different methods, which are averaged by the same evaluation metrics in the 11 tissues.
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that of the other methods. The values of ACC, SN, SP,
MCC of our method were higher than those of M6A-
BiNP, iRNA-m6A, im6A-TS-CNN and DNN-m6A.
The results for 11 tissues in the independent test
datasets were also averaged (Figure 2b). The AUC
value of our method was also equal to that of M6A-
BiNP, but the other prediction results of our method
were significantly higher than those of the other 4
methods. This demonstrates that our method can more
effectively predict m°A methylation sites than other
state-of-the-art methods.

2.5 Ten—fold cross validation ROC curves

To visually show the prediction effect of each
cross-validation, the 10-fold cross-validation results
of the independent test datasets were plotted as ROC
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curves (Figure 3-5). As shown in Figure 3-5, for
human tissues, the average AUC values of our method
exceeded 92%. For example, for the H B, H K and
H L tissues, the model AUC values on the
independent test datasets were (924+4)%, (94+3)% and
(94+3)% , respectively. For the mouse tissues, the
average AUC values of our method also exceeded
92%. The AUC values of our method with the
independent test datasets for the M B, M H, M K,
M L, and M T tissues were (95+£2)% , (92+4)% ,
(95+2)% , (92+4)% and (93£3)% , respectively. The
average AUC values of our method were greater than
93% for rat tissues. They were (93+3)%, (95+2)% and
(94+£2)% for the R B, R K and R L tissues,
respectively.
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Fig.3 The 10-fold cross—validation receiver operating characteristic ( ROC ) curves on the independent test datasets of

human tissues

(a—c) represent 10-fold cross-validation ROC curves on the human brain (H_B), human kidney (H_K) and human liver (H_L) independent test

datasets with our method, respectively. The horizontal axis represents false positive rate and the vertical axis represents true positive rate.
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Fig. 4 The 10—fold cross—validation receiver operating characteristic (ROC) curves on the independent test datasets of

mouse tissues

(a—e) represent 10-fold cross-validation ROC curves on the mouse brain (M_B), mouse heart (M_H), mouse kidney (M_K), mouse liver (M_L) and

mouse testis (M_T) independent test datasets with our method, respectively. The horizontal axis represents false positive rate and the vertical axis

represents true positive rate.
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Fig.5 The 10-fold cross—validation receiver operating characteristic ( ROC ) curves on the independent test datasets of

rat tissues

(a—c) represent 10-fold cross-validation ROC curves on the rat brain (R_B), rat kidney (R_K) and rat liver (R_L) independent test datasets with our

method, respectively. The horizontal axis represents false positive rate and the vertical axis represents true positive rate.

Based on the above analysis, it can be seen that
the predicted AUC values ranged from (92+3)% to
(95£2)% . That is, under 10-fold cross-validation, our
method can stably predict m°A methylation sites
among different tissues.

3 Conclusion

Since m°A plays an important role in many
biological processes, the accurate prediction of m°A
methylation sites is an essential task in research on
RNA methylation modification. Although a large
number of state-of-the-art prediction methods for m°A
methylation sites have been developed in previous
studies, most of them have widely varying predictive
performance across different tissues.

In this

work, based on a double layer

bidirectional gate recurrent network, we developed a
model that can simultaneously and effectively predict
m°A methylation sites in 11 mammalian tissues. The
overall prediction performance of the proposed
method was superior to that of the other state-of-the-
art methods.
achieved relatively excellent ACC or AUC values for

For example, the proposed model

each tissue, and the average ACC and AUC values on
the independent test sets were 89.73% and 93.39%,
respectively. Compared with the best model, M6A-
BiNP, on the training datasets and independent test
datasets, although the average AUC values of the
proposed method were almost equal to those of M6A-
BiNP, the average ACC values were increased by
3.45% and 8.46%, respectively. Compared with those
of the remaining methods (iIRNA-mo6A, im6A-TS-
CNN and DNN-m6A), the average 4CC values on the
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training datasets or independent test datasets were
improved by 10.36%-19.13%, and the prediction
ACC values were 87.27%-92.08%. Our method not
only has excellent prediction performance but also has
good generalizability. The source code and datasets
in this study are freely available in the
GitHub repositoryhttps://github. com/cph222/Predict-
mo6A-methylation-sites-a-double-layer-BiGRU.git.

Although the proposed method is capable of
predicting m°A methylation sites in 11 mammalian
tissues, it is currently restricted to humans, mice and
rats. It would be intriguing to test the performance of
the proposed method on other species, such as
Arabidopsis thaliana and Saccharomyces cerevisiae.
Even with the increase in biological data and the
development of intelligent computing, it is necessary
to establish a model that is applicable to more species,
more tissues and even more RNA modification sites.
In future studies, we will attempt to make efforts in
this direction and establish a more generalized RNA
modification site identification method.
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ETXNEBIGRUM % HIEZL Zh 4 2B 21
m°A BB AL L S Foil)

EHHT OHMIE B BT SRS W O O
(= B Rer SR, BB 650504 )

HE BRY N-HIMEIRE (N°-methyladenosine, m°A) J&RNA HiH L. IFET LM, TERZEYEET KIEE
WEAEH . BRIC AR T —2 il meA HEARO SRR Tk 2R, XS AR R R AP sl M ZH 20T, Bz A
. o THRFEXIAS R LU meA B IEAA, S 0 S g, A SCHR H —FIREZS &3 51 I 1) 45 B R P BRI B S U RRTIE 1)
FUZ ] [ THENGFRHTT  (bidirectional gated recurrent unit, BiGRU) MIZEAREAL J7ik  ASCEBUEA M FLsh 44
m°A LA SR AR ISR , W AR R 4% | LR E5H . R BRI AR S5 TR AL, AU BiGRU %5 .
SR BN T A DERR I 1142 moA LA ST L, IF 5 AR A 11420 R FO aE 7
T RMP . G5RRM, A SO HE 0 A SF 25 7500 422 32 25 ¥ VE IR i & 18 #L (area under the receiver operating
characteristic curve, AUC) ik 3| 93.72%, 5 B §if 5 & 19 B T 35 155, 1 8000 4 4% % (accuracy, ACC) . UM
(sensitivity, SN). R4k (specificity, SP) FHEEHIAHIE R %L (Matthews correlation coefficient, MCC) 433l 90.07% .
90.30%. 89.84% F180.17%, i T FHTHI m'A HUREALAL G fN U5 ik, 518 FICAOITEMIL, At 11 FL
S LUN meA BN, S AU AE R PR B B, BEIIAS SO B B iz fhRe

KR N-HIEAGMRE LA, Ul G, TS, e
FESYES TP391, Q52 DOI: 10.16476/j.pibb.2023.0011
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