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Abstract　Objective  N6-methyladenosine (m6A) is the most common and abundant chemical modification in RNA and plays an 

important role in many biological processes. Several computational methods have been developed to predict m6A methylation sites. 

However, these methods lack robustness when targeting different species or different tissues. To improve the robustness of the 

prediction performance of m6A methylation sites in different tissues, this paper proposed a double-layer bidirectional gated recurrent 

unit (BiGRU) network model that combines reverse sequence information to extract higher-level features of the data. Methods  Some 

representative mammalian tissue m6A methylation site datasets were selected as the training datasets. Based on a BiGRU, a double-

layer BiGRU network was constructed by collocation of the model network, the model structure, the number of layers and the 

optimizer. Results  The model was applied to predict m6A methylation sites in 11 human, mouse and rat tissues, and the prediction 

performance was compared with that of other methods using the same tissues. The results demonstrated that the average area under 

the receiver operating characteristic curve (AUC) predicted by the proposed model reached 93.72%, equaling that of the best 

prediction method at present. The values of accuracy (ACC), sensitivity (SN), specificity (SP) and Matthews correlation coefficient 

(MCC) were 90.07%, 90.30%, 89.84% and 80.17%, respectively, which were higher than those of the current methods for predicting 

m6A methylation sites. Conclusion  Compared with that of existing research methods, the prediction accuracy of the double-layer 

BiGRU network was the highest for identifying m6A methylation sites in the 11 tissues, indicating that the method proposed in this 

study has an excellent generalizability.
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RNA methylation is a new field of epigenetic 
regulation[1-2]. m6A methylation is the most common 
and abundant chemical modification in RNA, 
accounting for approximately 80% of RNA 
methylation modifications[3-4]. It plays an important 
role in regulating RNA maturation, cleavage, 
transport, degradation and translation[5-7]. Many 
enzymes involved in m6A methylation can be 
modified at the m6A methylation sites[8]. Therefore, 
the accurate identification of m6A methylation sites 
from RNA sequences is crucial for understanding the 
biological function of RNA methylation modifications.

Early detection methods of m6A methylation 
sites were mainly based on biological experiments, 
such as two-dimensional cellulose thin 
chromatography, high-performance liquid 

chromatography and mass spectrometry[9]. However, 
due to the limitations of experimental conditions, 
these methods generally have many problems, such as 
being time-consuming, having a high cost and having 
a small detection scale. The emergence of high-
throughput sequencing technology has provided 
strong technical support for methylation research[10-12] 
and generated a large amount of m6A methylation site 
data, which has led to the identification of m6A 
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methylation sites from biological experiments and 
computational research. Using high-throughput 
experimental data and traditional machine learning 
methods, some models for predicting m6A 
methylation sites have been developed. Examples 
include iRNA-Methyl[13] and pRNAm-PC 
predictors[14] based on base resolution technology, 
SRAMP[15] based on random forest (RF), and models 
based on support vector machine (SVM), such as 
RAM-NPPS[16], M6APred-EL[17], iMethyl-STTNC[18] 
and iRNA(m6A) -PseDNC[19]. Traditional machine 
learning algorithms require more professional 
knowledge to manually extract features from datasets, 
reduce the features’  dimensions and transfer the best 
features to the model. The process of feature 
extraction is very complicated. In recent years, many 
researchers have proposed m6A methylation site 
prediction algorithms based on deep learning 
algorithms[20], which can automatically obtain high-
level features based on sample datasets, and 
developed methods for cross-species prediction of 
m6A methylation sites.

Researchers have mainly targeted m6A 
methylation sites in different species, such as 
Arabidopsis thaliana, Saccharomyces cerevisiae, Mus 
musculus (mouse), Rattus norvegicus (rat) and Homo 
sapiens (human), to make macroscopic predictions. 
However, less attention has been given to m6A 
methylation sites in more microscopic biological 
tissues. As an example, the expression levels of m6A 
methylation were found to be different between 
diseased and unaffected tissues[21-23], while few 
methods have predicted m6A methylation sites in 
different tissues. In recent years, some researchers 
have refined m6A methylation site prediction to tissue 
sites[24-29]. For example, Dao et al. [26] and Wang          
et al. [27] proposed iRNA-m6A[26] and M6A-BiNP[27], 
respectively, which mainly rely on SVMs, to predict 
m6A methylation sites in 11 tissues of 3 species 
(human, mouse and rat). Liu et al.[28] developed im6A-
TS-CNN based on a single-layer convolutional neural 
network to further improve the values of the area 
under the receiver operating characteristic (ROC) 
curve (AUC). Zhang et al. [29] developed a tool named 
DNN-m6A using deep neural networks to identify 
m6A methylation sites in multiple human, mouse and 
rat tissues and showed an excellent generalizability. 
Although there have been an increasing number of 
computational methods for m6A methylation site 

prediction and some progress has been made in the 
prediction of tissue m6A methylation sites, the 
following problems remain. (1) The predicted regions 
are generally not sufficiently refined. Only a few 
algorithms, such as iRNA-m6A, im6A-TS-CNN, 
DNN-m6A and M6A-BiNP, subdivide the predicted 
regions into various tissues. (2) Most algorithms have 
low prediction accuracy in some tissues, and the 
prediction accuracy is generally below 80%.

m6A methylation site prediction is based on 
nucleotide sequences, in which nucleotides are 
associated with each other. As one of the classical 
deep learning algorithms, a recurrent neural network 
(RNN) has excellent performance in processing 
sequence data. In particular, a bidirectional RNN can 
combine the reverse characteristics of sequences. 
Therefore, based on a bidirectional gating recurrent 
unit (BiGRU), which is a variant of the bidirectional 
RNN, and selected representative mammalian tissue 
m6A methylation site datasets as training data, we 
constructed a double-layer BiGRU network. m6A 
methylation sites in 11 mammalian tissues were 
predicted using our method, and the predicted results 
show that the proposed method is superior to existing 
methods.

1　Materials and methods

1.1　Materials
The datasets used in this research were from the 

m6A methylation site benchmark datasets constructed 
by Dao et al.[26] and downloaded from their paper. The 
datasets contain m6A methylation sites in 11 
mammalian tissues from 3 species: human (brain, 
liver and kidney), mouse (brain, liver, heart, testis and 
kidney) and rat (brain, liver and kidney). Each dataset 
of the above 11 tissues contained two parts: a training 
dataset used to train the model and an independent 
test dataset used to test the performance of the model. 
In each training dataset and independent test dataset, 
the same sequence numbers of positive samples (m6A 
sites) and negative samples (non-m6A sites) were 
included. The length of each sequence in the positive 
and negative samples was 41 nt, with adenine (A) in 
the center of a sequence. The detailed sample sizes in 
the datasets are shown in Table 1[26]. It was observed 
that the sample size of human brain tissue was at a 
medium level in all datasets, so we used it to debug 
the model parameters.
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To make the original data acceptable to the 
model, the sample RNA sequences were processed by 
one-hot encoding. Let A=(1, 0, 0, 0)T, U=(0, 1, 0, 0)T, 
C= (0, 0, 1, 0)T and G= (0, 0, 0, 1)T; then, each RNA 
sequence can be represented as a numerical matrix 
that contains only 1s and 0s with 4 rows and 41 
columns.
1.2　Methods
1.2.1　 Construction of the double-layer BiGRU 

prediction model

The core model of our method is a gated 
recurrent unit (GRU). The GRU model can better and 
more automatically capture the dependence 
relationship in a sequence[30], and it is suitable for 

predicting m6A methylation sites in a sequence. The 
GRU controls the flow of information by resetting and 
updating the gate, which can effectively solve the 
gradient disappearance problem in RNNs, and the 
model has fewer parameters and is more concise. The 
network structure is shown in Figure 1. The model 
mainly includes two bidirectional GRU (BiGRU) 
layers. The first BiGRU layer (BiGRU_layer1) 
processes the data transformed by the input layer to 
obtain the initially extracted feature vector, and the 
second BiGRU layer (BiGRU_layer2) further extracts 
the features obtained from the previous layer. Hence, 
the function of BiGRU_layer2 is to capture more 
advanced information and make the model obtain 
more useful data characteristics.

Table 1　Benchmark datasets of m6A methylation sites

Species

Human

Mouse

Rat

Tissues

Brain

Kidney

Liver

Brain

Heart

Kidney

Liver

Testis

Brain

Kidney

Liver

Abbreviations

H_B

H_K

H_L

M_B

M_H

M_K

M_L

M_T

R_B

R_K

R_L

Training datasets

Positive

4 605

4 574

2 634

8 025

2 201

3 953

4 133

4 707

2 352

3 433

1 762

Negative

4 605

4 574

2 634

8 025

2 201

3 953

4 133

4 707

2 352

3 433

1 762

Independent test datasets

Positive

4 604

4 573

2 634

8 025

2 200

3 952

4 133

4 706

2 351

3 432

1 762

Negative

4 604

4 573

2 634

8 025

2 200

3 952

4 133

4 706

2 351

3 432

1 762

Fig. 1　Model structure diagram of bidirectional gated recurrent unit (BiGRU) network
(None, 41, 4) represents the data dimension from the input layer to BiGRU_layer1, (None, 41, 64) represents the data dimension entered into 

BiGRU_layer2 after the BiGRU_layer1 operation, (None, 64) represents the data dimension entered into the flatten layer after the BiGRU_layer2 

operation, and (None, 1) is the data dimension calculated by flattening to the output layer. The regular fonts h1, h2, h3, ......, ht indicate the hidden 

status of the forward GRU network, and the italics fonts h1, h2, h3, ......, ht indicate the hidden status of the backward GRU network. The length of 

each sequence is 41 nt, with adenine (A) in the center of a sequence.
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1.2.2　Detailed algorithm procedure

(1) The nucleotide sequence data were converted 
into the form of one-hot encoding, and each sample 
RNA sequence with dimension (4, 41) was fed into 
the model.

(2) Two BiGRU layers were added using the 
Python library Keras. Since the previous data input 
dimension is (4, 41), we set ‘input_shape’  to (4, 41) 
in BiGRU_layer1 and the number of neurons in both 
BiGRU layers to 32.

(3) The results of BiGRU_layer1 and BiGRU_
layer2 were passed to the ‘Flatten layer’ , and a high-
dimensional data input vector was converted into a 
one-dimensional output vector.

(4) In the output layer, ‘sigmoid’  was selected as 
the activation function, and its formula is given in 
Equation (1):

f (x) = 1
1 + e-x (1)

In Equation (1), x is the output value of the 
previous flattened layer processing, and the range of 
f (x) is [0, 1], which is similar to the probability value. 

The prediction was positive samples (m6A sites) when 
f (x) > 0.5, and the prediction was negative samples 

(non-m6A sites) when f (x) ≤ 0.5.
1.2.3　Design of model and parameters

The prediction of m6A methylation sites in this 
work was treated as a classification problem; 
therefore, the loss function of the model was the 
binary cross-entropy function, as shown in 
Equation (2):

L = 1
N∑i

Li = 1N∑i

-
[ ]yi ⋅ ln pi + ( )1 - yi ⋅ ln ( )1 - pi (2)

where yi represents the label of the sample i, the 

positive class is 1, and the negative class is 0; pi 

represents the probability of the sample i being 
predicted to be a positive class.

In the model, the epoch number was set to 150, 
the batch size was set to 32, and the ‘Adam’  
optimizer was used. When the initial learning rate was 
not applicable, the accuracy of the model did not 
improve after a certain number of epoch iterations. 

Therefore, the callback function 
‘ReduceLROnPlateau’  was added to optimize the 
learning rate. The monitoring variable in the callback 
function was ‘Val_loss’ , and ‘patience’  was set to 
20. That is, when the model loss value did not 
decrease after 20 epochs, the mechanism of learning 
rate reduction in the callback function was triggered. 
A ‘factor’  value of 0.1 was used to reduce the 
learning rate in the training process, thus improving 
the accuracy of the model. Because the callback 
function ‘ReduceLROnPlateau’  needs several 
iterations to optimize the learning rate to make the 
model reach the best state, to achieve higher accuracy 
and accelerate the model training, the 
‘EarlyStopping’  strategy was added to stop the model 
training in advance. The monitoring variable in 
‘EarlyStopping’  was ‘val_binary_accuracy’ , and 
‘patience’  was set to 30. Training was stopped when 
the accuracy of the model after 30 epochs had not 
changed. In this situation, ‘EarlyStopping’  will not 
be triggered early, so the model can be fully trained 
while avoiding overfitting.

A 10-fold cross-validation test was used in the 
experiments. That is, the datasets were randomly 
divided into 10 subsets. In turn, 8 of them were used 
as a training set, 1 of them was used as a validation 
set, and the remaining one was used as a test set. In 
each experiment, a correct rate was obtained, and 
finally, the average correct rate of the 10 results was 
used as the estimation of the accuracy of the model or 
algorithm.
1.2.4　Evaluation metrics

Four classical evaluation metrics, including 
sensitivity (SN), specificity (SP), accuracy (ACC), and 
Matthews correlation coefficient (MCC) [31], were 
implemented to assess the performance of the model. 
The corresponding metrics can be expressed as 
formulas (3)-(6):

SN = TP
TP + FN

(3)

SP = TN
TN + FP

(4)

ACC = TP + TN
TP + FN + TN + FP

(5)

MCC = TP × TN - FP × FN

( )TP + FP × ( )TP + FN × ( )TN + FN × ( )TN + FP
(6)

        where TP, FP, FN and TN represent the number 
of correctly predicted positive samples, incorrectly 

predicted negative samples, incorrectly predicted 
positive samples and correctly predicted negative 
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samples[32], respectively. The AUC [33] was also 
introduced to evaluate the overall performance of the 
model[34]. The value range of AUC is [0, 1], and the 
AUC is positively correlated with the prediction 
performance. The larger the AUC value is, the better 
the overall performance of the predictor. In the aspect 
of code implementation, the encapsulation function 
for the prediction model of Chen et al.[35-36] was used.

2　Results and discussion

Our method was compared with several existing 
methods[26-29]. These methods include iRNA-m6A and 
M6A-BiNP based on SVM, im6A-TS-CNN based on 
a single-layer convolutional neural network, and 
DNN-m6A based on a deep neural network. At 
present, these 4 methods have achieved good 
performance in m6A methylation site prediction in 
mammalian tissues. Since M6A-BiNP had the better 
comprehensive performance among the methods, we 
only reported comparison results with M6A-BiNP in 
each tissue.
2.1　Prediction results on human tissues

For the human independent test datasets (Table 
2), our method showed the best ACC values (H_B: 

87.48%, H_K: 90.87% and H_L: 90.72%) and MCC 
values (H_B: 74.96%, H_K: 81.76% and H_L: 
81.47%). The AUC value of our method for H_L 
showed the best performance simultaneously with that 
of M6A-BiNP (our method: 94.04% and M6A-BiNP: 
94.80%); for H_B and H_K, our method had the best 
performance (H_B: 91.97% and H_K: 94.51%). 
Although the model SN values for H_K and H_L were 
lower than those of M6A-BiNP (H_K: 96.4% and 
H_L: 92%), both were higher than 90% (H_K: 
90.94% and H_L: 90.77%). The SP value of our 
method for H_B was lower than that of M6A-BiNP 
(95.40%), but it reached 87.46%. Compared with the 
test results of the other methods, the performance of 
our method was stable for different tissues. For 
example, although M6A-BiNP achieved a better SP 
value (95.4%) for H_B, its SP value for H_K was 
only 40%. One of the greatest advantages of our 
method is its universality. It had high ACC and AUC 
values for all 3 human tissues, but the other methods 
did not have such high performance. For example, 
although the ACC value of M6A-BiNP for H_L was 
86.20%, ACC values of only 76.70% and 68.20% 
were obtained for H_B and H_K, respectively.

2.2　Prediction results on mouse tissues
For the mouse independent test datasets (Table 

3), our method showed a better prediction effect. 
Except for the lower SP and AUC values for M_H and 
M_L than those of M6A-BiNP, our method achieved 

the best ACC, SN, SP, MCC and AUC values for the 
other tissues. At the same time, compared with those 
of M6A-BiNP, the evaluation metrics of our method 
for different tissues had smaller fluctuation ranges. 
For example, for 5 mouse tissues, the SP values of 

Table 2　Evaluation metrics on human independent test datasets

Tissue

H_B

H_K

H_L

Model

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

ACC/%

87.48

76.70

71.10

72.70

73.30

90.87

68.20

77.80

79.20

79.90

90.72

86.20

79.00

79.90

81.00

SN/%

87.49

58.00

69.50

75.20

75.00

90.94

96.40

77.10

80.00

83.20

90.77

92.00

78.20

84.80

81.80

SP/%

87.46

95.40

73.00

70.20

71.50

90.79

40.00

78.40

78.50

76.60

90.66

80.50

79.90

75.00

80.10

MCC/%

74.96

57.60

42.00

45.40

47.00

81.76

44.10

56.00

58.50

60.00

81.47

73.00

58.00

60.10

62.00

AUC/%

91.97

89.40

78.50

80.60

81.50

94.51

87.90

85.70

87.30

87.80

94.04

94.80

86.80

88.10

88.50
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M6A-BiNP ranged from 67.40% to 99.60%, and those 
of our method ranged from 88.09% to 90.96%. The 
ACC values of M6A-BiNP and our method ranged 
from 75.60% to 85.10% and 87.81% to 91.18%, 
respectively. On the one hand, these results 
demonstrate that our method has higher accuracy; on 

the other hand, it has smaller fluctuation in terms of 
each evaluation criterion. Therefore, it was concluded 
that the prediction performance of our method was 
more stable and more universal for mouse tissue m6A 
methylation site prediction.

2.3　Prediction results on rat tissues
The model prediction results of m6A methylation 

sites on three independent test datasets of rat tissues 
were compared with those of other methods (Table 4). 
Our method achieved the best prediction AUC value 
for R_K tissue, and although the AUC values were 
lower than those of M6A-BiNP for R_B and R_L 
tissues, they exceeded 92%. However, the ACC values 
of our method were highest for 3 tissues. This 
indicated that our method could improve the 
prediction accuracy of m6A methylation sites on rat 
datasets. Moreover, similar to those for the mouse 
tissues, the 9 prediction results of our method for 3 
different rat tissues also had smaller fluctuation. For 

example, in the mentioned 3 tissues, the SP values of 
M6A-BiNP ranged from 57.50% to 90.78%, and those 
of our method ranged from 89.22% to 0.78%. The 
ACC values of M6A-BiNP and our method ranged 
77.10%-88.70% and 89.51%-91.47%, respectively. 
This further demonstrates the universality of the 
proposed method.
2.4　Model summary

To illustrate the overall comparison between our 
method and other state-of-the-art methods, the 
prediction results of 11 tissues were averaged. It can 
be seen from the results of the training datasets 
(Figure 2a) that the AUC value of our method was 
almost equal to that of M6A-BiNP and higher than 

Table 3　Evaluation metrics on mouse independent test datasets

Tissue

M_B

M_H

M_K

M_L

M_T

Model

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

ACC/%

91.02

75.60

78.30

78.50

78.60

88.05

83.80

71.30

73.60

75.10

91.18

83.20

79.30

80.80

80.90

87.81

82.80

68.80

71.60

73.00

88.83

85.10

73.50

76.20

77.10

SN/%

91.06

83.80

77.20

86.20

75.10

87.99

68.10

70.50

75.80

77.30

91.85

90.60

78.40

80.50

81.20

87.71

69.90

67.80

75.60

76.40

89.05

85.70

72.20

83.50

80.10

SP/%

90.96

67.40

79.40

70.70

82.10

88.09

99.60

72.10

71.40

73.00

90.50

75.80

80.30

81.00

80.60

87.90

95.70

69.90

67.60

69.50

88.61

84.50

75.10

68.90

74.20

MCC/%

82.04

51.80

57.00

57.70

57.00

76.11

71.20

43.00

47.20

50.00

82.37

67.20

59.00

61.50

62.00

75.66

68.00

38.00

43.30

46.00

77.69

70.20

47.00

52.90

54.00

AUC/%

94.52

84.90

86.10

87.20

87.60

92.05

98.30

78.80

81.60

83.40

94.67

92.50

87.00

88.60

88.90

91.98

93.70

76.20

79.30

80.80

92.94

92.80

81.80

84.70

85.40
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Fig. 2　The overall performance of different methods on 11 tissues
(a) The performance of different methods on the training datasets. (b) The performance of different methods on the independent test datasets. The bars 

represent the evaluation metrics under different methods, which are averaged by the same evaluation metrics in the 11 tissues.

Table 4　Evaluation metrics on rat independent datasets

Tissue

R_B

R_K

R_L

Model

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

Our method

M6A-BiNP［27］

iRNA-m6A［26］

im6A-TS-CNN［28］

DNN-m6A［29］

ACC/%

89.51

86.60

75.10

77.00

78.00

91.47

77.10

81.40

82.70

83.00

90.04

88.70

79.90

80.20

81.60

SN/%

89.06

98.80

73.90

78.10

77.70

92.15

96.60

80.20

84.90

85.30

90.86

98.90

77.70

84.50

82.80

SP/%

89.95

74.40

76.50

75.80

78.30

90.78

57.50

82.80

80.60

80.70

89.22

78.60

82.30

75.90

80.50

MCC/%
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that of the other methods. The values of ACC, SN, SP, 
MCC of our method were higher than those of M6A-
BiNP, iRNA-m6A, im6A-TS-CNN and DNN-m6A. 
The results for 11 tissues in the independent test 
datasets were also averaged (Figure 2b). The AUC 
value of our method was also equal to that of M6A-
BiNP, but the other prediction results of our method 
were significantly higher than those of the other 4 
methods. This demonstrates that our method can more 
effectively predict m6A methylation sites than other 
state-of-the-art methods.
2.5　Ten-fold cross validation ROC curves

To visually show the prediction effect of each 
cross-validation, the 10-fold cross-validation results 
of the independent test datasets were plotted as ROC 

curves (Figure 3-5). As shown in Figure 3-5, for 
human tissues, the average AUC values of our method 
exceeded 92%. For example, for the H_B, H_K and 
H_L tissues, the model AUC values on the 
independent test datasets were (92±4)%, (94±3)% and 
(94±3)% , respectively. For the mouse tissues, the 
average AUC values of our method also exceeded 
92%. The AUC values of our method with the 
independent test datasets for the M_B, M_H, M_K, 
M_L, and M_T tissues were (95±2)% , (92±4)% ,    
(95±2)% , (92±4)% and (93±3)% , respectively. The 
average AUC values of our method were greater than 
93% for rat tissues. They were (93±3)%, (95±2)% and 
(94±2)% for the R_B, R_K and R_L tissues, 
respectively.

Fig. 3　The 10-fold cross-validation receiver operating characteristic （ROC） curves on the independent test datasets of 
human tissues

(a-c) represent 10-fold cross-validation ROC curves on the human brain (H_B), human kidney (H_K) and human liver (H_L) independent test 

datasets with our method, respectively. The horizontal axis represents false positive rate and the vertical axis represents true positive rate.
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Fig. 4　The 10-fold cross-validation receiver operating characteristic (ROC) curves on the independent test datasets of 
mouse tissues

(a-e) represent 10-fold cross-validation ROC curves on the mouse brain (M_B), mouse heart (M_H), mouse kidney (M_K), mouse liver (M_L) and 

mouse testis (M_T) independent test datasets with our method, respectively. The horizontal axis represents false positive rate and the vertical axis 

represents true positive rate.
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Based on the above analysis, it can be seen that 
the predicted AUC values ranged from (92±3)% to 
(95±2)% . That is, under 10-fold cross-validation, our 
method can stably predict m6A methylation sites 
among different tissues.

3　Conclusion

Since m6A plays an important role in many 
biological processes, the accurate prediction of m6A 
methylation sites is an essential task in research on 
RNA methylation modification. Although a large 
number of state-of-the-art prediction methods for m6A 
methylation sites have been developed in previous 
studies, most of them have widely varying predictive 
performance across different tissues.

In this work, based on a double layer 

bidirectional gate recurrent network, we developed a 
model that can simultaneously and effectively predict 
m6A methylation sites in 11 mammalian tissues. The 
overall prediction performance of the proposed 
method was superior to that of the other state-of-the-
art methods. For example, the proposed model 
achieved relatively excellent ACC or AUC values for 
each tissue, and the average ACC and AUC values on 
the independent test sets were 89.73% and 93.39%, 
respectively. Compared with the best model, M6A-
BiNP, on the training datasets and independent test 
datasets, although the average AUC values of the 
proposed method were almost equal to those of M6A-
BiNP, the average ACC values were increased by 
3.45% and 8.46%, respectively. Compared with those 
of the remaining methods (iRNA-m6A, im6A-TS-
CNN and DNN-m6A), the average ACC values on the 

Fig. 5　The 10-fold cross-validation receiver operating characteristic （ROC） curves on the independent test datasets of 
rat tissues

(a-c) represent 10-fold cross-validation ROC curves on the rat brain (R_B), rat kidney (R_K) and rat liver (R_L) independent test datasets with our 

method, respectively. The horizontal axis represents false positive rate and the vertical axis represents true positive rate.
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training datasets or independent test datasets were 
improved by 10.36%-19.13%, and the prediction 
ACC values were 87.27%-92.08%. Our method not 
only has excellent prediction performance but also has 
good generalizability. The source code and datasets   
in this study are freely available in the               
GitHub   repositoryhttps://github. com/cph222/Predict-
m6A-methylation-sites-a-double-layer-BiGRU.git.

Although the proposed method is capable of 
predicting m6A methylation sites in 11 mammalian 
tissues, it is currently restricted to humans, mice and 
rats. It would be intriguing to test the performance of 
the proposed method on other species, such as 
Arabidopsis thaliana and Saccharomyces cerevisiae. 
Even with the increase in biological data and the 
development of intelligent computing, it is necessary 
to establish a model that is applicable to more species, 
more tissues and even more RNA modification sites. 
In future studies, we will attempt to make efforts in 
this direction and establish a more generalized RNA 
modification site identification method.

References

[1] Hong K. Emerging function of N6-methyladenosine in cancer. 

Oncol Lett, 2018, 16(5): 5519-5524

[2] Deng X, Su R, Feng X, et al. Role of N6-methyladenosine 

modification in cancer. Curr Opin Genet Dev, 2018, 48: 1-7

[3] Luo G Z, MacQueen A, Zheng G, et al. Unique features of the m6A 

methylome in  Arabidopsis thaliana. Nat Commun, 2014, 5: 5630

[4] Wei C M, Gershowitz A, Moss B. Methylated nucleotides block 5' 

terminus of HeLa cell messenger RNA. Cell, 1975, 4(4): 379-386

[5] Roundtree I A, Luo G Z, Zhang Z, et al. YTHDC1 mediates nuclear 

export of N6-methyladenosine methylated mRNAs. Elife, 2017,    

6: e31311

[6] Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A reader 

YTHDC1 regulates mRNA splicing. Mol Cell, 2016, 61(4): 

507-519

[7] Hsu P J, Zhu Y, Ma H, et al. Ythdc2 is an N6-methyladenosine 

binding protein that regulates mammalian spermatogenesis. Cell 

Res, 2017, 27(9): 1115-1127

[8] Zhang X, Li M J, Xia L, et al. The biological function of m6A 

methyltransferase KIAA1429 and its role in human disease. PeerJ, 

2022, 10: e14334

[9] Kellner S, Burhenne J, Helm M. Detection of RNA modifications. 

RNA Biol, 2010, 7(2): 237-247

[10] Ma S Q, Peng J Y, Yi C Q. RNA modification detection technology. 

Chinese Science Bulletin, 2018, 30(4): 440-446

马士清, 彭金英, 伊成器 .生命科学, 2018, 30(4): 440-446

[11] Meyer K D, Saletore Y, Zumbo P, et al. Comprehensive analysis of 

mRNA methylation reveals enrichment in 3' UTRs and near stop 

codons. Cell, 2012, 149(7): 1635-1646

[12] Schwartz S, Agarwala S D, Mumbach M R, et al. High-resolution 

mapping reveals a conserved, widespread, dynamic mRNA 

methylation program in yeast meiosis. Cell, 2013, 155(6): 1409-

1421

[13] Chen W, Feng P, Ding H, et al. iRNA-Methyl: identifying N(6) -

methyladenosine sites using pseudo nucleotide composition. Anal 

Biochem, 2015, 490: 26-33

[14] Liu Z, Xiao X, Yu D J, et al. pRNAm-PC: Predicting N(6) -

methyladenosine sites in RNA sequences via physical-chemical 

properties. Anal Biochem, 2016, 497: 60-67

[15] Zhou Y, Zeng P, Li Y H, et al. SRAMP: prediction of mammalian 

N6-methyladenosine (m6A) sites based on sequence-derived 

features. Nucleic Acids Res, 2016, 44(10): e91

[16] Xing P, Su R, Guo F, et al. Identifying N6-methyladenosine sites 

using multi-interval nucleotide pair position specificity and 

support vector machine. Sci Rep, 2017, 7: 46757

[17] Wei L, Chen H, Ran S. M6APred-EL: a sequence-based predictor 

for identifying N6-methyladenosine sites using ensemble 

learning. Mol Ther Nucleic Acids, 2018, 12: 635-644

[18] Akbar S, Hayat M. iMethyl-STTNC: identification of N6-

methyladenosine sites by extending the idea of SAAC into Chou’s 

PseAAC to formulate RNA sequences. J Theor Biol, 2018,           

455: 205-211

[19] Chen W, Ding H, Zhou X, et al. iRNA(m6A)-PseDNC: identifying 

N6-methyladenosine sites using pseudo dinucleotide composition. 

Anal Biochem, 2018, 561-562: 59-65

[20] Tahir M, Hayat M, Chong KT. Prediction of N6-methyladenosine 

sites using convolution neural network model based on distributed 

feature representations. Neural Netw, 2020, 129: 385-391

[21] Fang F, Wang X, Li Z, et al. Epigenetic regulation of mRNA N6-

methyladenosine modifications in mammalian gametogenesis. 

Mol Hum Reprod, 2021, 27(5): gaab025

[22] Ju W, Liu K, Ouyang S, et al. Changes in N6-methyladenosine 

modification modulate diabetic cardiomyopathy by reducing 

myocardial fibrosis and myocyte hypertrophy. Front Cell Dev 

Biol, 2021, 9: 702579

[23] Han W, Wang S, Qi Y, et al. Targeting HOTAIRM1 ameliorates 

glioblastoma by disrupting mitochondrial oxidative 

phosphorylation and serine metabolism. iScience, 2022, 25(8): 

104823

[24] Cheng W, Liu F, Ren Z, et al. Parallel functional assessment of m6A 

sites in human endodermal differentiation with base editor screens. 

Nat Commun, 2022, 13(1): 478

[25] Zhang Q, Zhang Y, Chen H, et al. METTL3-induced DLGAP1-

AS2 promotes non-small cell lung cancer tumorigenesis through 

m6A/c-Myc-dependent aerobic glycolysis. Cell Cycle, 2022,           

21(24): 2602-2614

[26] Dao FY, Lv H, Yang YH, et al. Computational identification of N6-

Methyladenosine sites in multiple tissues of mammals. Comput 

Struct Biotechnol J, 2020, 18: 1084-1091

[27] Wang M, Xie J, Xu S. M6A-BiNP: predicting N6-methyladenosine 



李慧敏，等：基于双层BiGRU网络的哺乳动物组织m6A甲基化位点预测2023；50（12） ·3043·

sites based on bidirectional position-specific propensities of 

polynucleotides and pointwise joint mutual information. RNA 

Biol, 2021, 18(12): 2498-2512

[28] Liu K, Cao L, Du P, et al. im6A-TS-CNN: identifying the N6-

methyladenine site in multiple tissues by using the convolutional 

neural network. Mol Ther Nucleic Acids, 2020, 21: 1044-1049

[29] Zhang L, Qin X, Liu M, et al. DNN-m6A: a cross-species method 

for identifying RNA N6-methyladenosine sites based on deep 

neural network with multi-information fusion. Genes (Basel), 

2021, 12(3): 354

[30] Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase 

representations using RNN encoder-decoder for statistical 

machine translation. EMNLP//Moschitti A, Pang B, Daelemans. 

Proceedings of the 2014 Conference on Empirical Methods in 

Natural Language Processing (EMNLP). Doha, Qatar: 

Association for Computational Linguistics, 2014: 1724-1734

[31] Hanley J A. Receiver operating characteristic (ROC) 

methodology: the state of the art. Crit Rev Diagn Imaging, 1989,  

29(3): 307-335

[32] Basith S, Manavalan B, Hwan Shin T, et al. Machine intelligence 

in peptide therapeutics: a next-generation tool for rapid disease 

screening. Med Res Rev, 2020, 40(4): 1276-1314

[33] Wu Y, He K. Group normalization. Int J Comput Vis, 2020, 128(3): 

742-755

[34] Hanley J A, McNeil B J. The meaning and use of the area under 

a receiver operating characteristic (ROC) curve. Radiology, 1982, 

143(1): 29-36

[35] Chen W, Lv H, Nie F, et al. i6mA-Pred: identifying DNA N6-

methyladenine sites in the rice genome. Bioinformatics, 2019,       

35(16): 2796-2800

[36] Lv H, Dao F Y, Guan Z X, et al. iDNA6mA-Rice: a computational 

tool for detecting N6-methyladenine sites in rice. Front Genet, 

2019, 10: 793



·3044· 2023；50（12）生物化学与生物物理进展  Prog. Biochem. Biophys.

基于双层BiGRU网络的哺乳动物组织
m6A甲基化位点预测*

李慧敏** 陈鹏辉 唐 轶** 徐权峰 胡 梦 王 煜
（云南民族大学数学与计算机科学学院，昆明 650504）

摘要 目的　N6-甲基化腺苷（N6-methyladenosine，m6A）是RNA中最常见、最丰富的化学修饰，在很多生物过程中发挥着

重要作用。目前已经发展了一些预测m6A甲基化位点的计算方法。然而，这些方法在针对不同物种或不同组织时，缺乏稳

健性。为了提升对不同组织中m6A甲基化位点预测的稳健性，本文提出一种能结合序列反向信息来提取数据更高级特征的

双层双向门控循环单元（bidirectional gated recurrent unit，BiGRU）网络模型。方法　本文选取具有代表性的哺乳动物组织

m6A甲基化位点数据集作为训练数据，通过对模型网络、网络结构、层数和优化器等进行搭配，构建双层BiGRU网络。  

结果　将模型应用于人类、小鼠和大鼠共11个组织的m6A甲基化位点预测上，并与其他方法在这11个组织上的预测能力进

行了全面的比较。结果表明，本文构建的模型平均预测接受者操作特征曲线下面积 （area under the receiver operating 

characteristic curve，AUC） 达到 93.72%，与目前最好的预测方法持平，而预测准确率 （accuracy，ACC）、敏感性

（sensitivity，SN）、特异性（specificity，SP）和马修斯相关系数（Matthews correlation coefficient，MCC）分别为 90.07%、

90.30%、89.84%和80.17%，均高于目前的m6A甲基化位点预测方法。结论　和已有研究方法相比，本文方法对11个哺乳

动物组织的m6A甲基化位点的预测准确性均达到最高，说明本文方法具有较好的泛化能力。

关键词 N6-甲基化腺苷位点，双向门控循环单元，碱基序列，深度学习
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