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Abstract Parkinson’s disease (PD) is a common neurodegenerative disorder with profound impact on patients’ quality of life
and long-term health, and early detection and intervention are particularly critical. In recent years, the search for precise and reliable

biomarkers has become one of the key strategies to effectively address the clinical challenges of PD. In this paper, we systematically
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evaluated potential biomarkers, including proteins, metabolites, epigenetic markers, and exosomes, in the peripheral blood of PD
patients. Protein markers are one of the main directions of biomarker research in PD. In particular, a-synuclein and its
phosphorylated form play a key role in the pathological process of PD. It has been shown that aggregation of a-synuclein may be
associated with pathologic protein deposition in PD and may be a potential marker for early diagnosis of PD. In terms of metabolites,
uric acid, as a metabolite, plays an important role in oxidative stress and neuroprotection in PD. It has been found that changes in
uric acid levels may be associated with the onset and progression of PD, showing its potential as an early diagnostic marker.
Epigenetic markers, such as DNA methylation modifications and miRNAs, have also attracted much attention in Parkinson’s disease
research. Changes in these markers may affect the expression of PD-related genes and have an important impact on the onset and
progression of the disease, providing new research perspectives for the early diagnosis of PD. In addition, exosomes, as a potential
biomarker carrier for PD, are able to carry a variety of biomolecules involved in intercellular communication and pathological
regulation. Studies have shown that exosomes may play an important role in the pathogenesis of PD, and their detection in blood
may provide a new breakthrough for early diagnosis. It has been shown that exosomes may play an important role in the
pathogenesis of PD, and their detection in blood may provide new breakthroughs in early diagnosis. In summary, through in-depth
evaluation of biomarkers in the peripheral blood of PD patients, this paper demonstrates the important potential of these markers in
the early diagnosis of PD and in the study of pathological mechanisms. Future studies will continue to explore the clinical application

value of these biomarkers to promote the early detection of PD and individualized treatment strategies.
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methods are not yet capable of accurately diagnosing

1 Parkinson’s disease: clinical diagnosis, patients with early PD who do not exhibit obvious

etiology, and pathological mechanisms clinical symptoms. Considering the advantageous

. . . characteristics of blood biomarkers, such as non-
1.1 Clinical diagnosis and treatment approaches

in PD

invasiveness, low cost, and high sensitivity, the search
for blood markers for early diagnosis of PD has

Parkinson’s disease (PD) is the most common
extrapyramidal disease in the elderly. According to
current  research

surveys, its prevalence s

approximately 1% among individuals aged 65 and
above, and this rate gradually increases with age!'?.
The clinical diagnosis of PD typically involves a
series of clinical assessments, symptom observation,
and auxiliary examinations. Among them, the clinical
symptoms of PD patients are an important basis for
diagnosis, and are mainly divided into three core
including bradykinesia, resting
tremor, and myotonia*®. However, relying solely on
clinical assessment may lead to misdiagnosis and
missed diagnoses. Neuroimaging testing methods,
such as magnetic resonance imaging (MRI) and
single-photon computed tomography
(SPECT), can help rule out other problems that may
cause similar symptoms and improve the accuracy of
PD diagnosis’"'",

motor symptoms,

emission

However, current detection

emerged as a significant research focus.

The primary treatment for PD is medication, with
levodopa preparations such as amantadine, madopar,
most effective

and sulfonate considered the

[11-12]

drugs . However, taking levodopa may increase

the risk of dyskinesia, and this risk is higher with

(3] Surgical treatment serves as an

higher doses
adjunct to drug treatment and includes two commonly
used methods: nerve core destruction and deep brain
stimulation, both of which effectively reduce the
symptoms of PD!Y,
treatment is expensive, invasive, not suitable for all
PD patients, and is not a permanent solution.
Although current treatments can alleviate symptoms
and improve patients’ quality of life, they cannot
completely halt the progression of PD. Therefore, the
importance of finding new early PD diagnosis and
treatment targets is self-evident.

motor However, surgical
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1.2 Etiological factors contributing to PD

PD is clinically categorized into two types. One
type is familial PD, which is caused by known or
unknown familial genetic abnormalities, mainly
autosomal dominant or recessive, and accounts for
10% of all cases!™.. The other type is sporadic PD,
which has no known family history and accounts for
about 90% of all cases!"”. Although it has been
established that PD is associated with certain genetic
and cellular mechanisms, the disease is highly
complex and the precise molecular mechanisms
underlying it are still not fully understood. Gene
mutations, epigenetic disorders, and exposure to
environmental toxins are all causative factors of
PDU''). For familial PD, gene mutation is a key
factor in the pathogenesis. So far, a number of genes
have been found to be related to PD, among which
SNCA gene is more deeply studied"™. Kriiger et al.!"”
demonstrated that mutations in the SNCA gene
sequence lead to the accumulation of a-synuclein
(o.-syn), which in turn gives rise to the formation of
Lewy bodies and ultimately leads to the development
of PD. The etiology of sporadic PD primarily involves
environmental factors and epigenetic disorders.
Extensive research has shown that environmental
levels of toxins, including heavy metals, rotenone,
paraquat, dichlorodiphenyltrichloroethane (DDT),
1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP),
and bisphenol A, have a positive correlation with the
risk of developing PD*?!. Apart from exogenous
neurotoxins, the gradual accumulation of endogenous
neurotoxins within the brain can also trigger PD*,
Previous studies have demonstrated that endogenous
neurotoxins like Norsalsolinol inhibits mitochondrial
activity, increase oxidative stress levels in the
substantia nigra region of the brain, and up-regulate
with
ultimately leading to specific damage to dopaminergic

proteins  associated neuroinflammation,
neurons®). PD models constructed with endogenous
neurotoxins are more consistent with long-term
chronic damage in PD than MPTP-induced PD
models? ). In addition, environmental factors have

been shown to modulate epigenetic inheritance, and

epigenetic disorders such as DNA methylation and
dysregulated expression of small molecule RNAs also
contribute to the development of sporadic PD***"],
Epigenetic disorders may be a bridge between
environmental factors and the onset and development
of PD.
1.3 Pathological mechanism underlying PD
PD s
characterized by various pathological mechanisms,
(0s),
abnormal

a chronic neurodegenerative disease

including oxidative stress mitochondrial

damage, neuroinflammation, protein
accumulation, and protein clearance impairment***”,
In response to these pathological mechanisms, several
been proposed,
lipopolysaccharide  endotoxin  hypothesis, the
mitochondrial iron homeostasis hypothesis, and the
immune dysfunction hypothesis***"!. However, due to
the complexity and long-term nature of PD, these
hypotheses alone are insufficient to fully explain the
pathogenesis of the disease. In our previous study, we
proposed and validated the triple cycle hypothesis of

in chronic

hypotheses have such as the

endogenous neurotoxins involvement
injury in PD, centered on oxidative stress response,
which is based on the various and complex etiologies
of PDP?. The triple cycle hypothesis proposes that
continued accumulation of endogenous neurotoxins,
increased mitochondrial damage, elevated levels of
dysregulated

neuroinflammation-associated proteins, and aberrant

oxidative  stress, expression  of
accumulation of a-syn contribute to the continued
deterioration of PDP?.. Therefore, interrupting any of
these cycles may alleviate the clinical symptoms of
PD and potentially slow down or reverse its
progression. Biological factors involved in the three
cycles have the potential to serve as diagnostic
markers in the development of PD, indicating the
pathological stage of PD development. Some potential
biomarkers for early PD have been discovered,
including a-syn, certain amino acid metabolites, and
non-coding RNAP*3, In this review, we will discuss
the potential of these blood biomarkers as indicators
of early PD diagnosis from the perspective of the
triple cycle hypothesis (Figure 1).
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Fig. 1 Blood biomarkers implicated in the triple cycle hypothesis of Parkinson’s disease

2 a-Synuclein  and other protein

biomarkers in PD

As a typical pathological feature PD, o-syn has
been found to undergo significant changes in the body
fluids of early PD patients. The level of total a-syn in
the cerebrospinal fluid of patients with early PD is
significantly reduced, but this downward trend is not
directly correlated with the progression of the

disease***!

. However, the a-syn content in plasma
gradually increases as the condition of PD patients
worsens, and the change in total o-syn content is
closely associated with the degree of cognitive

39401 The low content of

impairment in PD patients
a-syn in cerebrospinal fluid may be attributed to its
accumulation in nerve cells and subsequent release
into the cerebrospinal fluid following cell damage™'.
Subsequently, these o-syn molecules traverse the
damaged blood-brain barrier and enter the peripheral
blood (21,

associated with PD as it is also implicated in the

circulation a-syn is not exclusively
progression of other neurodegenerative diseases such
as Alzheimer’s disease (AD), Lewy body disease
(LBD), and multiple system atrophy (MSA) 43,

While the expression trends of a-syn in cerebrospinal

fluid and plasma may vary, phosphorylated a-syn has
been shown to exhibit high levels of up-regulation in
both body fluids"***? . Zhang et al."*! demonstrated
that soluble a-syn undergoes a conformational change
when phosphorylated, which in turn affects the
diffusion of a-syn .

regulate
conformational

Phosphorylated a-syn has been
aggregation in a
and phosphorylation

found to a-syn
site-specific
manner, thus playing a role in the o-syn aggregation
cycle!®. Consequently, phosphorylated a-syn shows
potential as a diagnostic marker for early PD.

In addition to a-syn, various proteins have been
identified as contributing to the pathological
progression of PD. One such protein is DJ-1, which
has antioxidant properties and functions as an anti-
oxidative stressor in organisms®”. Studies have
revealed that levels of DJ-1 in cerebrospinal fluid and
plasma are significantly lower in PD patients
compared to healthy individuals®'™¥. The DIJ-1
protein exerts its antioxidative stress function by
upregulating the expression of antioxidative genes,
through  the

transcription factor Nrf2, thereby playing a role in the

particularly modulation of the
aldehyde stress cycle®*!. Tau proteins are associated
with the pathology of AD and are considered potential
biomarkers for ADP®. Recent studies have revealed
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that Tau protein can interact with a-syn protein,
leading to changes in the fiber structure of o-syn,
promoting its aggregation and precipitation, and
participating in the o-syn aggregation cyclel’”.,
Furthermore, it has been reported that plasma levels
of Tau were significantly higher in PD patients with
cognitive impairment compared to healthy controls,
but significantly lower compared to patients with
MSAP*] These findings suggest that Tau proteins
may serve as markers

potential of cognitive

impairment in PD. The lysosomal enzyme
glucocerebrosidase (GCase) is a protease encoded by
the GBA gene that breaks down glucosylceramide
sphingosine  (GlcCer) and glucosylsphingosine
(GleSph) 1 Mutations in the GBA gene are a
common genetic mutation in PD, leading to a
decrease in GCase activity. This decrease in activity
results in the accumulation of GlcCer, triggering
lysosomal  dysfunction

and promoting a-syn

aggregation, which is involved in the a-syn

aggregation cycle!® . Previous studies have shown
that GCase activity in the cerebrospinal fluid of PD
patients is significantly decreased compared to
healthy controls'®***). However, similar trends in these

observed in other

[66-68]

proteins  have  been

neurodegenerative diseases . Therefore, proteins
such as DJ-1, Tau, and GCase may not be definitive
PD diagnostic biomarkers. Further discussion is
required to determine their potential as early PD

diagnostic indicators.

3  Metabolite biomarkers in peripheral

blood: wuric acid and beyond

Elevated levels of OS are a prominent
pathological feature of PD. Uric acid (UA), which is
produced during purine metabolism, possesses natural
antioxidant properties that aid in maintaining stable
blood pressure and combating oxidative stress!®.
Recent studies conducted in vivo and in vitro have
demonstrated that UA can effectively eliminate
intracellular  oxygen free radicals, maintain
intracellular calcium ion homeostasis, and preserve
mitochondrial function””®". As a result, UA reduces
the extent of cellular damage caused by oxidative
stress.  Numerous  experimental results have
consistently demonstrated that the levels of UA in the
plasma and serum of individuals with PD are notably

lower compared to those of healthy controls™*,

Furthermore, it has been observed that blood UA
levels can differentiate between different motor
subtypes of PD, such as PD patients with tremor
subtype exhibiting significantly higher blood UA
levels when compared to PD patients with tonic
subtype!>""]. UA is also effective in identifying other
neurodegenerative diseases. Progressive supranuclear
palsy (PSP) is a rare neurodegenerative disease, and
recent studies have discovered that patients with PSP
have significantly lower serum UA concentrations
compared to patients with PDU"*7) Therefore, UA is
crucial in preventing the onset and progression of the
aldehyde stress cycle in PD. Blood UA levels have the
potential to serve as a diagnostic biomarker for early
PD.

The aldehyde stress cycle, the inflammatory
cycle, and the a-syn aggregation cycle are vital
components of the triple cycle hypothesis of PD.
Throughout this triple cycle, numerous metabolites
are produced, which have the potential to serve as
diagnostic ~ biomarkers during the pathological
progression of PD. Glutathione is an amino acid
metabolite that possesses antioxidant properties. Early
found that

synergistically with intracellular enzymes to reduce

studies  have glutathione  acts

the production of superoxide radicals, hydroxyl
radicals, and peroxynitrite®®™. Furthermore, research
has indicated that plasma glutathione levels are
significantly lower in PD patients than in healthy
controls, suggesting that glutathione may contribute to
the pathological process of PD by regulating the
aldehyde stress cycle®". Dopamine has the ability to
bind to aldehydes generated in response to oxidative
stress, leading to the production of endogenous
neurotoxins that contribute to the aldehyde stress
cycleP?. 3,4-Dihydroxyphenylacetic acid (DOPAC), a
common dopamine oxidative metabolite, has been
found to be significantly lower in the cerebrospinal
fluid of patients with PD compared to healthy
controls®™. However, there is currently no clear
evidence of significant differences in DOPAC levels
in the blood of PD patients, and further discussion is
needed to determine whether dopamine metabolites
can be used as diagnostic markers for early PD.
Previous studies in metabolomics have primarily
focused on specific metabolites in the pathological
processes of diseases. However, the pathological
mechanisms of PD are complex. Therefore, non-
targeted metabolomics techniques that can provide a
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comprehensive metabolic fingerprint may be helpful

in the search for diagnostic and therapeutic
biomarkers for early PD. Currently, researchers have
demonstrated by means of untargeted metabolomics
that amino acid-related metabolites (e. g., threonine,
tyrosine,

putrescine, trans-4-hydroxyproline,

dimethylglycine,  dimethylarginine, —and  a-N-
glycogen-related

metabolites (e.g., dehydroascorbic acid, fructose), and

phenylacetyl-L-glutamine),

fat-related metabolites (e. g., short-chain fatty acids,
long-chain fatty acids) show a consistent trend in the
cerebrospinal fluid and blood of PD patients showed
trends®*”.  The
correlation of various metabolites exhibit significant

consistent composition  and
potential for diagnosis of early PD and could
potentially be a groundbreaking development in the
diagnosis and treatment of PD in the future®,

Moreover, studies have demonstrated notable
variations in amino acid-related metabolites, fat-
related metabolites, and glycogen-related metabolites
in the peripheral blood of individuals with PD and
MSA. These

molecules could serve as direct evidence for the
[89-90]

findings suggest that metabolic
development of distinct disease pathologies
However, it is still unclear which specific cycle these
diverse metabolites are involved in within the PD
triple cycle hypothesis, as well as their regulatory
role. Therefore, further investigations are necessary to
of these metabolites as

explore the potential

diagnostic biomarkers for PD.

4 Epigenetic markers in PD: methylation
modifications and non—coding RNA

Epigenetics research delves into how enduring,
inheritable, and non-genetic elements can affect gene
function and cellular traits. This includes aspects like
non-coding RNA (ncRNA), methylation of DNA and
RNA, and alterations to histones!”' 2.

4.1 Methylation modifications

DNA methylation is a process that involves the
covalent binding of methyl groups to the cytosine 5
carbon sites of genomic CpG dinucleotides, catalyzed
by DNA methylation transferase. Extensive validation
has been conducted on the phenomenon of DNA
methylation modification of PD-related genes in the
cerebrospinal fluid and blood of PD patients.
Compared to healthy controls, PD patients exhibit a

decreasing trend in DNA methylation in whole
blood”**¥. For instance, in both blood and substantia
nigra regions of the brain of PD patients, the
of SNCA gene is
reduced”™. This reduction leads to an increase in

methylation significantly
a-syn expression, which may be one of the most
significant factors contributing to the promotion of the
a-syn aggregation cycle. Furthermore, studies have
demonstrated that as PD pathology progresses, there
are significant changes in DNA methylation, and the
trend of methylation changes at certain gene loci
remains consistent in both the brain and blood”®.

In addition, for other neurological diseases such
as MSA, PSP, and AD, the blood DNA methylation
sites and changing trends will also vary as the disease
progresses”” !l Therefore, it is crucial to investigate
the DNA methylation of PD-related genes to
comprehend its role in the pathological process of PD,
which can aid in the diagnosis and treatment of early
PD. Another form of DNA methylation is DNA
hydroxymethylation, where 5-methylcytosine (5mC)
is oxidized to form 5-hydroxymethylcytosine (ShmC)
catalyzed by TET family enzymes!"®. Currently, the
research on DNA hydroxymethylation as a biomarker
for PD diagnosis is limited, but studies have found a
significant increase in ShmC levels in the cerebellum
of PD patients!'”. This finding suggests the potential
role of DNA hydroxymethylation, but further in-depth
research is still needed to confirm its accuracy and
feasibility in the diagnosis of early PD.

4.2 The non—coding RNA

microRNAs (miRNAs) are a class of non-coding,
evolutionarily conserved RNA molecules that have
been extensively utilized in the study of PD
pathogenesis®”. Long-term studies have demonstrated
that miRNA molecules present in body fluids play a
crucial role in the intricate pathogenesis and
progression of PD!'*'%] Numerous experimental data
revealed that miRNAs such as miR-7-1-5p, miR-105-
5p, and miR-223-3p were significantly up-regulated
in the blood of PD patients compared to healthy
controls, while miRNAs such as miR-29¢, miR-153,
and miR-221 were significantly down-
regulated'”'"*]. Notably, some miRNAs exhibited
similar expression trends in both cerebrospinal fluid
and peripheral blood of PD patients. For instance,
miR-433 demonstrated a significant down-regulation
trend in both cerebrospinal fluid and plasma of PD
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Table 1 Peripheral blood miRNA expression in patients with PD
miRNAs miRNA expression Molecular mechanisms The triple cycle References
PDws HC (1/])
miR-7-1-5p 1 Regulate SNCA transcription o-syn aggregation cycle [109]
miR-223-3p 1 Negative regulator of NLRP3 expression Inflammatory cycle
miR-22-3p 1 Target the GBA locus a-syn aggregation cycle [111]
miR-154-5p 1 Regulate superoxide dismutase levels Aldehyde stress cycle
miR-23b-3p 1 Target the 3'-UTR of SNCA a-syn aggregation cycle [115]
miR-223-3p 1 Target the NF-kB pathway Inflammatory cycle [108]
miR-204-5p 1 Regulate a-syn a-syn aggregation cycle [110]
miR-105-5p 1 Target NF-kB pathway Inflammatory cycle [112]
miR-132 1 Target Nurrl nuclear protein a-syn aggregation cycle [114]
miR-30b-5p 1 Regulate SNCA transcription a-syn aggregation cycle [115]
miR-195 1 Target Rho-associated kinase 1 Inflammatory cycle [107]
miR-185 ! Target IGF1 and activates PI3K/AKT signaling pathway Aldehyde stress cycle
miR-221 ! Inhibit expression of pro-apoptotic proteins and BIM Aldehyde stress cycle
miR-181a ! Modulate a-syn-induced DA neuronal damage a-syn aggregation cycle
miR-221 ! Regulate transferrin receptor Inflammatory cycle [106]
miR-29¢ } Target SP1 to inhibit inflammatory cytokines Inflammatory cycle
miR-153 } Inhibit Nrf2/ARE cascade response Aldehyde stress cycle [113]

“|” indicates decrease and “ T ” indicates increase. HC: healthy control.

patients!"'*'"®l This is one of the most important
reasons for the elevated expression of a-syn in the
brain of PD patients and may also serve as a potential
biomarker for the early diagnosis of PD. However,
miR-136-3p was significantly down-regulated in the
cerebrospinal fluid and up-regulated in the plasma of
(L1181 - Some reports suggest that miR-
136-3p may be associated with neuroinflammation

PD patients

and brain damage, but the exact mechanism requires
further exploration!''”). Additionally, certain miRNAs,
including miR-9-3p, miR-106b-5p, miR-223-3p, and
miR-451, have the ability to distinguish PD from
other neurodegenerative disorders, such as MSA, PSP,
AD, and amyotrophic lateral sclerosis (ALS), with

high sensitivity!'® 2121,

Circulating miRNAs are
involved in different cycles in the triple cycle
hypothesis of PD injury, and their stability, tissue
specificity, and ease of detection make circulating
miRNAs a potential biomarker for early diagnosis of
PD. These characteristics present unique opportunities
to enhance the accuracy and effectiveness of early PD
detection, providing crucial information for earlier
intervention and treatment. A summary of studies
investigating peripheral blood miRNAs for PD are

listed in Table 1.

5 The exosome as novel biomarkers in PD

5.1 The total exosomes in cerebrospinal fluid and
blood

Exosomes are extracellular vesicles that have a
diameter of approximately 40-160 nm (with an
average of around 100nm) and contain various
cellular components, including DNA, RNA, lipids,
proteins, and glycoconjugates'*?. They have a crucial
their

pathological transmission is closely associated with
[123]

role in cell-to-cell communication, and

the progression of PD"*". Exosomes can be released
from intracellular multivesicular bodies (MVBs) into
the extracellular space through exocytosis!'Y. They
have the ability to cross the blood-brain barrier and
move in both directions within the cerebrospinal fluid
and blood!"*. Therefore, the
exosome biomarkers in the cerebrospinal fluid and
blood is expected to significantly contribute to the
clinical auxiliary diagnosis of PD.

Studies have shown that exosomal a-syn plays a
role in promoting the formation of Lewy bodies in the
brain. The ratio of a-syn content in cerebrospinal fluid

identification of

exosomes to the number of exosomes is significantly



2025; 52 (D

TWE, %F: WMERHIMEAMEDREY: DESRE 79+

lower in patients with PD compared to patients with
DLB and PSP'*!. However, the concentration of
a-syn in plasma exosomes of PD patients was
significantly higher than in healthy controls!"**'*",
Furthermore, the activity of acetylcholinesterase
(AChE) in plasma exosomes of PD patients was
significantly lower than in healthy controls!'**. AChE
has the ability to activate nicotinic acetylcholine
receptors, thereby reducing neuroinflammation and
participating  in  cholinergic  anti-inflammatory
pathways!'*’l, Changes in acetylcholinesterase activity
effect of

involved 1in the

can regulate the anti-inflammatory

acetylcholine and may be
inflammatory cycle in the triple cycle hypothesis of
PD'"Y, In addition, proteomic analysis of blood
exosomes in PD patients revealed upregulation of
proteins such as apolipoprotein D, gelsolin, and
afamin, while proteins such as complement Clq,
complement Clr, clusterin, and apolipoprotein Al

showed downregulation!*'""**!

. However, the precise
mechanism of action of these proteins in the
pathological progression of PD remains unknown,
necessitating further in-depth studies to explore their
potential as diagnostic and therapeutic targets for PD.

miRNAs  are

degradation by endoribonuclease (RNase) in body

Exosomal protected  from
fluids due to the presence of the exosome bilayer lipid
stable.

Consequently, plasma exosomal miRNAs have been

membrane, allowing them to remain

extensively investigated as potential diagnostic
biomarkers for neurodegenerative diseases!'**). In the
total exosomes of body fluids of PD patients,
miRNAs such as miR-10a-5p, miR-151a-3p, and miR-
223-3p showed significant upregulation, whereas
miRNAs such as miR-1, miR-125a-5p, and miR-
423-5p exhibited significant upregulation!'® 3413,
Among them, miR-24, miR-151a-5p, miR-214, miR-
331-5p, and miR-485-5p showed an up-regulated
trend in both cerebrospinal fluid and serum of PD
patients!*. Additionally, miRNAs such as miR-
425-5p, miR-21-3p, miR-199a-5p, miR-135a, and
miR-384 in total exosomes can
PD from

diseases!"*"1*!1. Therefore, the total exosomal miRNAs

effectively

differentiate other neurodegenerative

in peripheral circulation have the potential to diagnose
early PD.
5.2 The brain—derived exosomes in blood

The brain is the primary site of pathologic injury

in neurodegenerative diseases, and damage to nervous
tissue accurately reflects the progression of these
diseases. However, most current research primarily
focuses on exosomes derived from nervous systems.
While these exosomes can provide insights into the
condition of various tissues and organs in the body,
they are unable to accurately reflect minor brain
damage and therefore cannot effectively characterize
early PD damage. Therefore, a more accurate search
for early PD diagnostic biomarkers can be conducted
by focusing on brain-derived exosomes. Brain-derived
exosomes consist of neuronal, astrocyte, microglia,
and oligodendrocyte exosomes, which all play a role
in different stages of the triple cycle. The method for
(NDEs) in
plasma or serum involves using the neuronal target

obtaining neuronal-derived exosomes

molecule transmembrane protein L1 cell adhesion
molecule (LICAM) for isolation!"*. Research has
shown that the expression of a-syn is significantly
increased in NDEs of patients with PD!14¢,
Furthermore, Zou et al. "*" discovered that GCase
activity is notably decreased in NDEs of PD patients,
and this decrease in GCase activity is negatively
correlated with a-syn. The reduced GCase activity
may disrupt the intracellular autophagy-lysosome
system, thereby promoting the release of a-syn!'*’!. In
order to obtain oligodendrocyte-derived exosomes
(ODEs), the myeloid oligodendrocyte glycoprotein
(MOG) is used as a target molecule for isolation!'*.
Several studies have highlighted that differences in
the expression of a-syn, pS129-a-syn, and tau
proteins in NDEs and ODEs can effectively
distinguish PD  from neurodegenerative
diseases!"* "5, The acquisition of exosomes of
astrocyte (ADEs) and microglia (MDEs) origin is
instead achieved by two target molecules, glutamate
aspartate  transporter  protein  (GLAST) and
transmembrane  protein 119 (TMEMI119) [,
However, current research only indicates that the
quantity of ADEs in the plasma of PD patients is
significantly higher than that of healthy controls'*".

other

Further investigation is needed to explore ADEs and
MDE:s in the pathological process of PD.

Although only a limited number of studies have
been reported, several studies have investigated the
clinical diagnostic value of brain-derived exosomal
miRNAs in PD. Researchers have observed that miR-
155 and miR-4639-5p were significantly up-regulated
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in NDEs from PD patients, while miR-212 and miR-
132  were significantly down-regulated in AD
patients!'>*'53), miR-155 is involved in the aggregation
of a-syn protein, while miR-4639-5p affects the
These two

PD patients. Exosomal biomarkers secreted by central
nervous system (CNS) cells in the blood are involved
in different cycles of the three cycles of the PD injury
hypothesis, and the changes of these biomarkers
reflect the changes in the central nervous system,

expression and translation of DIJ-1.
miRNAs play crucial roles in regulating the
pathological progression of PD!*>'*% More research
is needed to determine whether brain-derived
exosomal miRNA can be a reliable clinical diagnostic
indicator for PD. However, there have been no studies
reported on exosomal miRNAs derived from other
nervous tissue in the blood or cerebrospinal fluid of

which to a certain extent reflect the
physiopathological state of different types of cells in
the CNS, which is an important indicator for
monitoring the pathological progression of PD, and
may be an important direction of research for
realizing the early diagnosis of PD (Figure 2).
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Fig.2 Exosomal biomarkers are involved in different stages of the triple cycle hypothesis of Parkinson’s disease

selection and application of biomarkers. Various
biomarkers such as a-syn, phosphorylated o-syn,
DJ-1, Tau, GCase, UA, other metabolites, DNA
methylation sites, and miRNA in blood have been

6 Conclusion

Early diagnosis and treatment of PD have always
faced significant challenges, particularly in the
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considered for diagnosing PD. There is a strong link
between protein markers, metabolite markers, and
epigenetic markers. abnormal aggregation of o-syn
may lead to changes in the intracellular environment,
affecting the levels of metabolites such as glutathione
and uric acid, which interact to reflect the complex
pathology of PD. Epigenetic changes may affect the
expression of proteins such as a-syn, which in turn are
involved in the pathologic process. At the same time,
regulation of non-coding RNAs may also affect the
function and expression of these proteins.
epigenetic
markers, may indirectly influence metabolite levels,

Environmental factors, by affecting
reflecting the interaction between environmental and
genetic factors in PD. However, there are still issues
with the diagnostic accuracy of these markers,
especially in early PD patients. Furthermore, their
ability to effectively and accurately distinguish PD
from other neurodegenerative diseases requires
further investigation. In the current study, it was found
that brain-derived exosomes may hold promise as
more accurate markers for distinguishing PD from
their

potential as diagnostic biomarkers for early PD still

other neurodegenerative diseases. However,
requires further exploration.

The complex nature of the pathomechanisms of
PD presents challenges in identifying accurate early
diagnostic markers. However, focusing on the
pathomechanisms of PD may help in identifying
precise diagnostic and therapeutic targets during the
development of PD pathology. Currently, most PD
pathology models used are MPTP-based polar injury
models, which do not accurately mimic the chronic
injury process of PD. A chronic injury model induced
by endogenous neurotoxins could provide a more
accurate simulation of the pathological development
process of PD. Therefore, exploring chronic injury
models could be an important direction in the search
for diagnostic markers of early PD.

In addition, due to the complex pathologic
mechanisms of PD, the complexity of PD biomarkers
has also increased. It is now understood that a single
biomarker may not be sufficient to accurately
diagnose PD. Therefore, the future development trend
is towards the combined use of multiple diagnostic
markers. Based on research utilizing big data, the
integration of diverse omics data and large-scale
cohort study findings may facilitate the discovery and

validation of biomarkers for the early diagnosis of PD.
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