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Abstract　Objective  Triple-negative breast cancer (TNBC) is the breast cancer subtype with the worst prognosis, and lacks 

effective therapeutic targets. Colony stimulating factors (CSFs) are cytokines that can regulate the production of blood cells and 

stimulate the growth and development of immune cells, playing an important role in the malignant progression of TNBC. This article 

aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes (CRGs), and analyze 

the sensitivity of TNBC patients to immunotherapy and drug therapy. Methods  We downloaded CRGs from public databases and 

screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database. Through LASSO Cox 

regression analysis, we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the 

colony stimulating factors-related genes risk score (CRRS). We further analyzed the correlation between CRRS and patient 

prognosis, clinical features, tumor microenvironment (TME) in both high-risk and low-risk groups, and evaluated the relationship 

between CRRS and sensitivity to immunotherapy and drug therapy. Results  We identified 842 differentially expressed CRGs in 

breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model. Kaplan-Meier survival curves, 

time-dependent receiver operating characteristic curves, and other analyses confirmed that TNBC patients with high CRRS had 

shorter overall survival, and the predictive ability of CRRS prognostic model was further validated using the GEO dataset. 

Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients. 

Moreover, patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic 

drugs such as 5-fluorouracil, ipatasertib, and paclitaxel. Conclusion  We have developed a CRRS-based prognostic model 

composed of 13 differentially expressed CRGs, which may serve as a useful tool for predicting the prognosis of TNBC patients and 

guiding clinical treatment. Moreover, the key genes within this model may represent potential molecular targets for future therapies 

of TNBC.

Key words　triple-negative breast cancer, colony stimulating factors, prognostic model, tumor microenvironment, drug sensitivity
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According to the latest statistics from the 
International Agency for Research on Cancer (IARC), 
breast cancer is the second most common cancer and 
the fourth leading cause of cancer death globally, and 
it is also the most prevalent cancer type among 
women, both in terms of incidence and mortality[1]. As 
social economy develops, the incidence and mortality 
rates of breast cancer continue to rise annually, 
placing a significant burden on the healthcare 
system[2]. Breast cancer is classified into several 
subtypes, including luminal A, luminal B, HER2-
enriched, and triple-negative, based on the molecular 
characteristics of the patient’s tumor tissue. Among 
them, triple-negative breast cancer (TNBC) is 
characterized by the absence of estrogen receptor 
(ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2)[3]. Due to 
the lack of these molecular targets, TNBC patients are 
insensitive to commonly used endocrine therapy or 
HER2-targeted therapy used for other subtypes of 
breast cancer. Additionally, TNBC often exhibits 
higher invasiveness and metastatic potential, tending 
to recur and resulting in poor prognosis for patients[4]. 
With the advancement of omics technology, 
researchers have discovered that TNBC is also a 
heterogeneous subtype of breast cancer. Therefore, it 

is crucial to classify TNBC patients based on their 
genetic characteristics, analyze prognostic features, 
and explore suitable treatment modalities[5-6].

Colony stimulating factors (CSFs) are a group of 
cytokines that stimulate the proliferation and 
differentiation of hematopoietic stem cells. Depending 
on the targeted cells, they are classified into 
granulocyte colony stimulating factor (G-CSF), 
macrophage colony stimulating factor (M-CSF), 
granulocyte-macrophage colony stimulating factor 
(GM-CSF), stem cell factor (SCF), erythropoietin 
(EPO), thrombopoietin (TPO), and so on[7]. CSFs can 
promote the development and maturation of red blood 
cells, platelets, macrophages, neutrophils, dendritic 
cells, etc., thus playing a significant role in immune 
response and immune regulation in the body[8]. In the 
occurrence and development of TNBC, G-CSF can 
promote the migration and invasion of TNBC cells[9], 
M-CSF can promote the accumulation of 
macrophages in the tumor microenvironment (TME) 
and enhance the invasiveness of cancer cells[10], GM-
CSF can recruit myeloid-derived suppressor cells to 
shape an immunosuppressive microenvironment, 
promoting tumor growth and metastasis[11], and EPO 
is highly expressed in tumor tissues of TNBC patients 
and is correlated with prognosis[12]. Apart from their 
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significant role in the malignant progression of 
tumors, researchers have also focused on the 
therapeutic potential of CSFs. Injecting GM-CSF into 
tumors can make cancer cells sensitive to 
programmed death-1 (PD-1) treatment[13]. The use of 
PARP inhibitors combined with CSF-1R blocking 
antibodies can significantly enhance the anti-tumor 
immune response in TNBC[14]. The combination of 
GM-CSF and an HER2-targeted peptide vaccine has 
certain therapeutic efficacy in the treatment of TNBC 
patients[15-17]. Researchers have been focusing on the 
molecular mechanisms of CSFs in the pathogenesis of 
TNBC and designing treatment methods based on 
this. However, up to now, there has been no 
prognostic model based on CSFs available for guiding 
clinical treatment of TNBC.

This study aimed at developing a novel 
prognostic model related to CSFs in TNBC and 
validating its predictive capability for TNBC patient 
outcomes through comprehensive bioinformatics 
analysis of TCGA-BRCA and GEO databases. 
Furthermore, the study will explore the role of this 
model in assessing the TME and evaluate patient 
sensitivity to drugs based on colony stimulating 
factors-related genes risk score (CRRS), thereby 
providing insights for clinical treatment of TNBC 
patients.

1　Materials and methods

1.1　Acquisition and processing of TNBC datasets
We downloaded the dataset of breast cancer 

patient samples and normal breast samples from The 
Cancer Genome Atlas (TCGA) database with a 
retrieval date of 12 December 2023, and retrieved 
relevant clinical information from UCSC Xena   
(https://xena. ucsc. edu/). We extracted the Transcripts 
Per Kilobase per Million (TPM) data, removed            
low-expression genes, and normalized the sample 
expressions. We screened out TNBC patients based  
on the status of “breast_carcinoma_estrogen_
receptor_status”, “breast_carcinoma_progesterone_
receptor_status”, and “lab_proc_her2_neu_
immunohistochemistry_receptor_status” of the 
samples. A total of 120 TNBC patient samples and 99 
normal samples were included in the TCGA training 
set.

We downloaded the GSE58812 independent 
cohort from the Gene Expression Omnibus (GEO) 

database (https://www. ncbi. nlm. nih. gov/geo/) as an 
external dataset. After normalization of the sample 
expressions, we ultimately obtained 107 TNBC 
patient samples to serve as an external test set.
1.2　 Screening of the differentially expressed 
colony stimulating factors-related genes

We downloaded colony stimulating factors-
related genes (CRGs) from the GeneCards database 
(version 5.20) (https://www.genecards.org/) using the 
keyword “Colony Stimulating Factor” retrieving        
7 180 genes. We further extracted proteins with a 
Relevance score>10 for subsequent analysis. We 
utilized the “limma” R package to perform 
differential expression analysis on these genes 
between TNBC patient samples and normal breast 
samples in TCGA. Genes with |log2FC| >0.585 and 
adjusted P-value<0.05 were considered as 
differentially expressed genes (DEGs).

The selection of DEGs for the high-risk and low-
risk groups was also conducted using the “limma” R 
package, with the screening criteria set as |log2FC| >
0.585 and adjusted P-value<0.05.
1.3　Functional enrichment analysis of DEGs

For the functional enrichment analysis of DEGs, 
we used the “org. Hs. eg. db” R package for gene 
ontology (GO) annotation and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) REST 
API (https://www. kegg. jp/kegg/rest/keggapi. html) to 
obtain the latest gene annotations for KEGG pathway, 
which served as the background. We mapped the 
genes to this background set. Enrichment analysis was 
performed using the “clusterProfiler” R package to 
obtain GO and KEGG enrichment results.
1.4　 Construction and validation of a CSFs-
related prognostic model

We performed univariate Cox regression analysis 
on gene expression and overall survival (OS) for 
TNBC patients in TCGA-BRCA. Using the 
“survival” and “ggforest” R packages, we obtained 
and visualized the univariate Cox results. Genes with 
P-values<0.05 were considered statistically 
significant for patient survival, and 21 survival-related 
DEGs were identified for further analysis.

Using the LASSO Cox regression model from 
the “glmnet” R package, we narrowed down the 
candidate genes and established a prognostic model. 
Ultimately, 13 genes and their coefficients were 
retained, and the penalty parameter λ was determined 
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based on the minimum criteria. Risk scores were 
calculated for the TCGA expression data using the 
risk score formula. Based on the median risk score 
value, TNBC patients in TCGA-BRCA were divided 
into high-risk and low-risk groups. The survival time 
between the two groups was then compared using 
Kaplan-Meier survival curve analysis. The predictive 
ability of the model in the training set was validated 
using 4-year, 5-year, and 6-year time-dependent 
receiver operating characteristic (ROC) curve analysis 
with the “survival” and “timeROC” R packages. 
Additionally, we used the external independent cohort 
GSE58812 as a validation set.
1.5　Construction of nomogram

We extracted TNBC patients with complete 
clinical data and performed univariate and 
multivariate Cox regression analyses on the clinical 
stage, T stage, N stage, and Risk Score of these 
patients. We utilized the “survival” and “ggfores” R 
packages to obtain and visualize the results of the 
univariate and multivariate Cox regression analyses. 
Features with P-values<0.05 were considered as 
independent prognostic factors.

Using the “rms” R package, we integrated data 
such as survival time, survival status, N stage, and 
Risk Score to construct nomogram plots with 4-year, 
5-year, and 6-year OS as endpoints. We further 
developed a model to predict patients’  survival time 
and assessed the ability of the nomogram plots to 
predict patient prognosis using calibration curves and 
ROC curves. Additionally, we compared the 
prognostic evaluation capability of the nomogram 
score with other clinical features using ROC curves.
1.6　 Assessment of the tumor microenvironment 
in the high-risk and low-risk population groups

We calculated the stromal and immune scores, as 
well as tumor purity, for TNBC patients in TCGA-
BRCA using the “estimate” R package. Subsequently, 
we employed the “CIBERSORT” R package to 
determine the proportions of 22 immune cell types in 
tumor samples, and the “ssGSEA” R package to 
evaluate the infiltration levels of 28 immune cell types 
in tumor samples. Furthermore, we analyzed the 
expression of 17 immune checkpoint genes using 
Student’s t-test.
1.7　 Prediction of drug sensitivity in TNBC 
patients

We used the “oncoPredict” R package to 

calculate the sensitivity of TNBC samples to 198 
commonly used chemotherapeutic drugs, and then 
employed Student’s t-test to compare drug sensitivity 
between the high-risk and low-risk groups.
1.8　Statistical analysis

All statistical analyses were performed using R 
software (version 4.3.1). Differences between two 
groups were analyzed using Student’s t-test, and       
P-values<0.05 was considered statistically significant.

2　Results

2.1　 Identification and functional analysis of 
CRGs in TNBC

First, we downloaded colony stimulating CRGs 
from the GeneCards database, retrieving a total of 
7 180 proteins. We then extracted 1 869 molecules 
with a Relevance score>10 for subsequent analysis 
(Table S1). Using the “limma” R package, we 
identified 842 DEGs in normal breast and TNBC 
tissues from TCGA-BRCA. A volcano plot was used 
to visualize these DEGs, showing that compared to 
normal breast tissues, 368 genes were upregulated and 
474 genes downregulated in TNBC (Figure 1a). A 
heatmap further revealed significant differences in the 
expression of CRGs between normal and TNBC 
tissues (Figure 1b). To analyze the biological 
significance of these DEGs, we performed functional 
enrichment analysis. GO enrichment analysis showed 
that DEGs were primarily clustered in the cellular 
response to chemical stimulus, the cell surface, and 
the transcription regulatory region DNA binding 
(Figure 1c). KEGG pathway analysis demonstrated 
that DEGs were primarily enriched in the PI3K-Akt 
signaling pathway, the MAPK signaling pathway, and 
the cytokine-cytokine receptor interaction (Figure 1d). 
These results suggest that CRGs may play an 
important role in the progression of TNBC.
2.2　 Construction and validation of a CRGs-
related prognostic model for TNBC

To explore the value of CRGs in the prognosis of 
TNBC, we collated the survival information of TNBC 
patients and performed univariate Cox regression 
analysis on 842 differentially expressed CRGs, 
screening for 21 genes closely related to the prognosis 
of TNBC patients (Figure 2a). Subsequently, the 
LASSO Cox regression algorithm was used for 
dimensionality reduction screening, and the optimal 
coefficients were calculated, resulting in the 
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construction of a prognostic model utilizing 13 genes 
(Figure 2b). Based on the expression levels of 
candidate genes, the CRRS was calculated:              
CRRS=0.342×EIF4EBP1﹣ 0.288×RASGRP1+0.194×
GRHL2 ﹣ 0.088×S100B+0.211×DCAF4 ﹣ 0.306×
TWIST1+0.642×HMOX1 ﹣ 0.701×ETV1+0.268×
KLF10+0.017×SOCS2﹣0.196×GZMB+0.255×KRT18
﹣0.056×IGFBP1.

Subsequently, scores were assigned to each 
TNBC patient in TCGA-BRCA based on the risk 
calculation formula, and patients were divided into 

high-risk and low-risk groups using the median score. 
Kaplan-Meier survival curves revealed that the high-
risk group had a lower OS rate and worse prognosis 
compared to the low-risk group (Figure 2c). 
Additionally, the number of deaths in the high-risk 
group was higher than that in the low-risk group 
(Figure 2e). The area under the curve (AUC) of the 
receiver operating characteristic (ROC) curve at       
4- , 5- , and 6-years was 0.94, 0.90, and 0.92, 
respectively (Figure 2g). We used GSE58812 from the 
GEO database for external validation, assigning risk 
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Fig. 2　Construction and validation of a CRGs-related prognostic model for TNBC
(a) Univariate Cox regression analysis of DEGs in the prognosis of TNBC. (b) LASSO Cox regression analysis to identify the DEGs for constructing 

the prognostic model. (c, d) The differences in overall survival between the high-risk and low-risk groups of TNBC patients in the TCGA-BRCA 

database (c) and the GEO58812 database (d) using Kaplan-Meier survival curves. (e, f) Distribution of Risk Score and survival status of TNBC 

patients in the TCGA-BRCA database (e) and the GEO58812 database (f). (g, h) The prognostic value of CRRS in the TCGA-BRCA database (g) and 

the GEO58812 database (h) using ROC curves.
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scores to 107 TNBC patients and grouping them 
based on the median score. The prognostic analysis 
yielded consistent results with the training set, 
showing worse prognosis in the high-risk group. The 
AUC of the ROC curve for 4- , 5- , and 6-years was 
0.74, 0.77, and 0.75, respectively (Figure 2d, f, h). 
These results demonstrate the accuracy and reliability 
of the prognostic model constructed using CRGs in 
TNBC.

We further analyzed the expression profiles of 
the CRGs involved in the prognostic model, and we 
found that, compared with normal breast tissues in the 
TCGA-BRCA cohort, EIF4EBP1, RASGRP1, 
GRHL2, DCAF4, HMOX1, GZMB, and KRT18 were 
upregulated in TNBC, while S100B, TWIST1, ETV1, 
KLF10, SOCS2, and IGFBP1 were downregulated in 
TNBC (Figure 3a). Subsequently, we used Kaplan-
Meier survival curves to analyze the role of these 
molecules in the prognosis of TNBC, and the results 
revealed that high expression of EIF4EBP1, GRHL2, 
DCAF4, HMOX1, KLF10, SOCS2, and KRT18 was 
associated with poor prognosis in TNBC patients 
(Figure 3b), while low expression of RASGRP1, 
S100B, TWIST1, ETV1, GZMB, and IGFBP1 was 
related to poor prognosis in TNBC patients 
(Figure 3c).
2.3　 The construction and validation of a 
nomogram for the CRGs-related prognostic model

To further analyze the clinical value of this 
prognostic model, we first investigated the expression 
differences of risk scores in TNM and clinical stages 
among TNBC patients in the TCGA-BRCA database. 
We found that patients with higher clinical stage, T 
stage, and N stage exhibited higher risk scores (Figure 
4a-c). Subsequently, we explored whether CRRS and 
clinical characteristics were independent prognostic 
factors for patients through univariate and 
multivariate Cox analyses. The results of univariate 
Cox regression analysis indicated that clinical stage, T 
stage, N stage, and CRRS were significant prognostic 
risk factors (Figure 4d). Multivariate Cox regression 
analysis revealed that N stage and CRRS were 
independent prognostic risk factors (Figure 4e). 
Therefore, we chose N stage and CRRS to further 
establish a prognostic nomogram to predict the 
survival rate of TNBC patients (Figure 4f). The 
predictive ability of the nomogram was analyzed 
using time-dependent ROC curves, and we found that 

the AUC for the 4- , 5- , and 6-years was 0.97, 0.94, 
and 0.96, respectively (Figure 4g). The calibration 
curves demonstrated the predictive accuracy of the 
model for the 4- , 5- , and 6-years (Figure 4h). Then, 
we analyzed the predictive differences between the 
nomogram and other parameters, showing that the 
AUC of the nomogram was 0.944, which was higher 
than the predictive abilities of CRRS (AUC=0.922) 
and N stage (AUC=0.735) (Figure 4i). These results 
suggest that CRRS is an independent prognostic 
factor that can accurately assess the prognosis of 
TNBC patients.
2.4　 Functional analysis of the CSFs-related 
prognostic model

To explore the reasons for the different 
prognoses of TNBC patients with varying CRRS, we 
used the “limma” R package to screen for DEGs 
between the high-risk and low-risk groups. Based on 
the criteria of adjusted P-value<0.05 and |log2FC| >
0.585, we identified 39 upregulated genes and 27 
downregulated genes in the TNBC cohort (Figure 5a). 
We further displayed the expression of the DEGs 
between the high-risk and low-risk groups using a 
heatmap (Figure 5b). Subsequently, GO enrichment 
analysis and KEGG pathway analysis were performed 
on the aforementioned DEGs. The GO enrichment 
analysis demonstrated that the DEGs were mainly 
related to the cellular developmental process, the 
vesicle, and the laminin binding (Figure 5c). The 
KEGG pathway analysis revealed that the DEGs were 
primarily associated with the pentose phosphate 
pathway, the AMPK signaling pathway, and the PI3K-
Akt signaling pathway (Figure 5d).
2.5　 Differences in the tumor microenvironment 
between the high-risk and low-risk groups of 
TNBC patients

TME contains a large number of infiltrating 
immune cells, with each immune cell type performing 
a unique regulatory function, which may be an 
important reason for the different prognoses of TNBC 
patients. We used the ESTIMATE algorithm to 
analyze the stromal score, immune score, ESTIMATE 
score, and tumor purity of the high-risk and low-risk 
groups in the TNBC cohort of TCGA-BRCA. 
Compared to the low-risk group, the high-risk group 
had a lower stromal score and an increasing trend in 
tumor purity (Figure 6a, b). We then used the 
CIBERSORT algorithm to explore the differences in 
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Fig. 3　The expression profiles of CRGs in TNBC and their association with prognosis
(a) Expression differences of EIF4EBP1, RASGRP1, GRHL2, S100B, DCAF4, TWIST1, HMOX1, ETV1, KLF10, SOCS2, GZMB, KRT18, and 

IGFBP1 between TNBC cancer tissues and normal breast tissues in the TCGA-BRCA database. **P<0.01, ****P<0.000 1. (b, c) Kaplan-Meier 

survival curves were used to analyze molecules that are unfavorable (b) or favorable (c) for the prognosis of TNBC patients.
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Fig. 4　Construction and validation of a nomogram for the CRGs-related prognostic model
(a-c) The risk scores of TNBC patients in the TCGA-BRCA database with the progression of clinical stage (a), T stage (b), and N stage (c).             

(d, e) Univariate (d) and multivariate (e) Cox regression analyses of clinicopathological characteristics and CRRS in the TNBC cohort from the 

TCGA-BRCA database. (f) A nomogram to demonstrate the ability of N stage and CRRS to evaluate prognosis. (g) ROC curves were used to predict 

the predictive ability of the nomogram at 4-, 5-, and 6-years. (h) Calibration curves displaying the 4-year, 5-year, and 6-year OS probabilities in the 

TCGA cohort. (i) ROC curves demonstrating the predictive ability of the nomogram, risk score, and clinical characteristics for patient prognosis.
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the composition of immune cells in the TME, and we 
found that B naive cells were enriched in the low-risk 
group (Figure 6c). Subsequently, we used the ssGSEA 
algorithm to analyze the differences in immune cells 
infiltration between the two groups, and we found that 
the high-risk group had more infiltration of CD56dim 
natural killer cells, while the low-risk group had more 
infiltration of activated B cells, immature B cells, 
eosinophils, mast cells, plasmacytoid dendritic cells, 
and type 2 helper cells (Figure 6d). Finally, we 
analyzed the expression of some immune checkpoint 
molecules in the high-risk and low-risk groups[18], and 
we found that CEACAM1 and VTCN1 molecules were 

upregulated in the low-risk group (Figure 6e). The 
above results indicate that after grouping TNBC 
patients into high-risk and low-risk groups based on 
CRRS, there are certain differences in immune cell 
infiltration between the two groups, which may be 
potential targets for future precision therapy.
2.6　 Drug sensitivity in the high-risk and low-
risk groups of TNBC patients

To analyze the appropriate treatment options for 
TNBC patients and how this model can guide drug 
administration, we calculated the sensitivity scores 
(IC50-like values) of TNBC patients to each drug. We 
found that patients in the high-risk group were more 
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Fig .5　Functional analysis of DEGs between the high-risk and low-risk groups in the TCGA-BRCA TNBC cohort
(a) A volcano plot displaying the DEGs between the high-risk and low-risk groups in the TNBC cohort of TCGA-BRCA. (b) A heatmap showing the 
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Fig. 6　Differences in the TME between the high-risk and low-risk groups of TNBC patients
(a, b) The ESTIMATE algorithm used to score the TME (a) and tumor purity (b) in the high-risk and low-risk groups. (c) The CIBERSORT algorithm 

employed to analyze differences in the abundance of 22 immune cell types between the high-risk and low-risk groups. (d) The ssGSEA algorithm 
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immune checkpoints between the high-risk and low-risk groups. *P<0.05; **P<0.01.
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sensitive to 5-fluorouracil, ipatasertib, and paclitaxel 
(Figure 7a), while patients in the low-risk group were 
more sensitive to PCI-34051, JQ1, and trametinib 
(Figure 7b). These results suggest that TNBC patients 

can be scored based on CRRS, and individual targeted 
therapy can be administered with reference to the 
scoring results.

3　Discussion

TNBC is currently considered the most 
challenging subtype of breast cancer for clinical 
treatment, primarily due to the significant 
heterogeneity among patients, which hampers the 
selection of appropriate treatment methods. Therefore, 
it is crucial to categorize and perform targeted therapy 
based on patients’  molecular characteristics[5]. With 
the advancement of sequencing technology, 
researchers have gained a deeper understanding of the 
heterogeneity among TNBC patients. By integrating 
clinical information and bioinformatics analysis, 
researchers can now predict the prognosis, immune 
infiltration, and drug sensitivity of individual 
patients[19-20]. However, the current gene prognostic 
models for TNBC are not entirely satisfactory, 
necessitating the development of a novel classification 

method to better guide clinical treatment.
CSFs are cytokines that accumulate significantly 

in the TME of TNBC patients and play an important 
role in TNBC tumorigenesis[21]. In this study, we 
extracted CRGs with differential expression in 120 
TNBC patients and 99 normal people from TCGA-
BRCA data. The results of GO and KEGG functional 
enrichment analysis suggest that CRGs may affect the 
growth and metastasis of TNBC by influencing gene 
transcription and regulating signaling pathways such 
as PI3K-Akt and MAPK. Using univariate Cox 
regression analysis and LASSO analysis, we 
constructed a prognostic model based on the CSFs-
related genes, including EIF4EBP1, RASGRP1, 
GRHL2, S100B, DCAF4, TWIST1, HMOX1, ETV1, 
KLF10, SOCS2, GZMB, KRT18, and IGFBP1. The 
prognostic ability of this model was validated using 
TNBC cohorts from TCGA and GEO databases, 
demonstrating that the model can predict the 
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Fig. 7　Drug sensitivity in high/low-risk groups of TNBC patients
(a) Sensitivity scores of the high-risk and low-risk groups of patients to 5-fluorouracil, ipatasertib, and paclitaxel. (b) Sensitivity scores of the high-

risk and low-risk groups of patients to PCI-34051, JQ1, and trametinib.
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prognosis of TNBC patients. Among them, eukaryotic 
translation initiation factor 4E-binding protein 1 
(EIF4EBP1) participates in regulating the translation 
process of mRNA, which is upregulated in TNBC and 
promotes the metastasis and proliferation of cancer 
cells[22-23]. RAS guanyl releasing protein 1 
(RASGRP1) is highly expressed in TNBC, but Kaplan-
Meier analysis results suggest that high expression of 
RASGRP1 leads to better prognosis, indicating that 
RASGRP1 plays a complex regulatory role in 
TNBC[24-25]. Grainyhead-like transcription factor 2 
(GRHL2) is a transcription factor closely related to 
EMT, which is upregulated in TNBC and correlated to 
poor prognosis in patients[26]. S100 calcium binding 
protein B (S100B) is a potential diagnostic and 
prognostic biomarker for TNBC[27-28]. DDB1 and 
CUL4 associated factor 4 (DCAF4) is highly 
expressed in TNBC patients and is associated with 
poor prognosis, but there are currently few studies on 
DCAF4 in TNBC. Twist family bHLH transcription 
factor 1 (TWIST1) is a key transcription factor in the 
EMT process, promoting the metastasis, angiogenesis, 
stemness maintenance, and chemotherapy resistance 
of TNBC[29-31]. The TCGA-BRCA database shows that 
TWIST1 is expressed at low levels in TNBC patients, 
but immunohistochemical experiment results suggest 
that TWIST1 is upregulated in TNBC cancer tissues, 
which may be due to post-translational modifications 
leading to inconsistent expression levels between its 
mRNA and protein[30]. Heme oxygenase 1 (HMOX1) 
promotes ferroptosis in TNBC cells, affecting the 
effectiveness of immunotherapy[32-33]. ETS variant 
transcription factor 1 (ETV1) may affect the growth 
and invasion of TNBC, but the specific molecular 
mechanism is unclear[34-35]. KLF transcription      
factor 10 (KLF10) is involved in cell differentiation, 
but there are currently few studies on it in TNBC[36]. 
Suppressor of cytokine signaling 2 (SOCS2) serves as 
a tumor suppressor in breast cancer, and the study on 
it in TNBC is rare[37]. Granzyme B (GZMB) is mainly 
secreted by cytotoxic T cells, which can induce the 
death of cancer cells in the microenvironment, and 
TNBC patients with high expression of GZMB have 
better prognosis[38-39]. Keratin 18 (KRT18) is a marker 
for TNBC cell differentiation[40]. Insulin-like growth 
factor binding protein 1 (IGFBP1) regulates 
angiogenesis and radiosensitivity in TNBC[41-42]. 
Interestingly, we observed that the expression of some 
CRGs in TNBC patients is inconsistent with their 

prognostic outcomes. This could be attributed to the 
complex regulation mechanisms governing gene 
expression, encompassing epigenetic regulation, 
genetic background, environmental factors, and more. 
Consequently, the relationship between gene 
expression and tumor prognosis is not a simple linear 
one but rather a result of the intricate interplay of 
multiple factors. Therefore, the research on the 
expression and function of the above-mentioned 
molecules in TNBC is limited, this study provides a 
direction for further exploration.

The analysis results of DEGs between the high-
risk and low-risk groups suggest that the different 
prognostic outcomes of the two patient groups may be 
closely related to intracellular or intercellular signal 
transduction and cellular metabolic status. In addition, 
the low-risk group has more immune cell infiltration, 
which may suppress tumor immune evasion and 
inhibit the progression of TNBC. Regarding changes 
in immune checkpoint molecules, we only observed 
upregulated expression of CEACAM1 and VTCN1 in 
the low-risk group. These changes indicate that, 
although they can serve as therapeutic targets, CRGs 
may regulate tumor progression in patients through 
non-immunomodulatory means. Currently, commonly 
used drugs for TNBC treatment include 
doxorubicin[43], paclitaxel[44], and cisplatin[45], but they 
have not achieved the expected therapeutic efficacy. 
Therefore, we further analyzed the drug sensitivity of 
high-risk and low-risk groups. High-risk patients are 
more sensitive to DNA synthesis inhibitor                 
(5-fluorouracil), AKT enzyme inhibitor (ipatasertib), 
and microtubule depolymerization inhibitor 
(paclitaxel). Low-risk patients are more sensitive to 
HDAC8 inhibitor (PCI-34051), BET bromodomain 
inhibitor (JQ1), and MEK inhibitor (trametinib). The 
possible reason is that the changes in signaling 
pathways are different between the two groups. The 
drug sensitivity analysis results in this study may 
provide insights for the selection of targeted drugs for 
TNBC patients and for the development of new 
targeted therapeutic drugs. In the future, the specific 
molecular mechanism of CRGs regulating the 
progression of TNBC needs to be investigated.

4　Conclusion

In this study, we constructed a prognostic model 
composed of 13 CRGs, which effectively predicted 
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the prognosis of TNBC patients in TCGA and GEO 
cohorts. We also explored the changes in signaling 
pathways and immune infiltration levels in different 
risk groups, and predicted the sensitivity of patients to 
various drugs, thus providing guidance for clinical 
treatment of TNBC.

Supplementary  Available online (http://www. pibb.
ac.cn, http://www.cnki.net ):
PIBB_20240281_Table_S1.xlsx
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基于集落刺激因子相关基因开发三阴性乳腺癌的
预后模型*

郭雨轩 1） 王智禹 1） 肖沛瑶 1） 郑婵娟 1） 付淑君 1） 贺光春 1） 龙 俊 4） 

汪 婕 3） 邓锡云 1）** 王忆安 1，2）**

（1）湖南师范大学医学院，模式动物与干细胞生物学湖南省重点实验室，长沙 410013；
2）湖南省生殖与转化医学工程技术研究中心，长沙 410013；

3）福建医科大学基础医学院肿瘤研究所病理学系及诊断病理中心，福州 350122；
4）深圳大学材料科学与工程学院，深圳市能源电催化材料重点实验室，深圳市高分子科学与技术重点实验室，

广东省新能源材料服务安全重点实验室，深圳518055）

摘要 目的　三阴性乳腺癌（TNBC）是目前预后最差的乳腺癌亚型，并且缺乏有效的治疗靶点。集落刺激因子（CSFs）

是一类能调节血细胞生成和刺激免疫细胞生长发育的细胞因子，在TNBC的恶性进展中发挥重要作用。本文旨在根据集落

刺激因子相关基因（CRGs）的表达情况，构建一种新的预后模型，并且分析 TNBC 对免疫治疗和药物治疗的敏感性。      

方法　从公共数据库中下载CRGs，在TCGA-BRCA数据库中筛选在正常和TNBC组织中表达差异的CRGs。通LASSO Cox

回归分析确定用于构建模型的差异基因并建立CRGs风险评分（CRRS）。进一步在高低风险组中分析了CRRS与患者预后、

临床特征、肿瘤微环境之间的相关性，并评估了CRRS与免疫治疗和药物敏感性之间的关系。结果　鉴定了842个在TNBC

患者乳腺癌组织中存在表达差异的CRGs，并确立了13个CRGs用于构建预后模型。Kaplan-Meier生存曲线、时间依赖性受

试者工作特征曲线等证实了高CRRS的TNBC患者总生存期更短，并且在GEO数据库中进一步证实了CRRS预后模型的预

测能力。结合临床特征的列线图证实CRRS是TNBC患者预后的独立因素。并且高风险组患者肿瘤微环境中免疫浸润水平

较低，对部分化疗药物敏感。结论　本文开发了由13个DEGs组成的CRRS模型，该模型可能成为预测TNBC患者预后和

指导临床治疗的有用工具，并且其中的关键基因可能是未来治疗的潜在分子靶标。

关键词 三阴性乳腺癌，集落刺激因子，预后模型，肿瘤微环境，药物敏感性
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