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Abstract

effective therapeutic targets. Colony stimulating factors (CSFs) are cytokines that can regulate the production of blood cells and

Objective  Triple-negative breast cancer (TNBC) is the breast cancer subtype with the worst prognosis, and lacks
stimulate the growth and development of immune cells, playing an important role in the malignant progression of TNBC. This article
aims to construct a novel prognostic model based on the expression of colony stimulating factors-related genes (CRGs), and analyze
the sensitivity of TNBC patients to immunotherapy and drug therapy. Methods We downloaded CRGs from public databases and
screened for differentially expressed CRGs between normal and TNBC tissues in the TCGA-BRCA database. Through LASSO Cox
regression analysis, we constructed a prognostic model and stratified TNBC patients into high-risk and low-risk groups based on the
colony stimulating factors-related genes risk score (CRRS). We further analyzed the correlation between CRRS and patient
prognosis, clinical features, tumor microenvironment (TME) in both high-risk and low-risk groups, and evaluated the relationship
We identified 842 differentially expressed CRGs in

breast cancer tissues of TNBC patients and selected 13 CRGs for constructing the prognostic model. Kaplan-Meier survival curves,

between CRRS and sensitivity to immunotherapy and drug therapy. Results

time-dependent receiver operating characteristic curves, and other analyses confirmed that TNBC patients with high CRRS had
shorter overall survival, and the predictive ability of CRRS prognostic model was further validated using the GEO dataset.
Nomogram combining clinical features confirmed that CRRS was an independent factor for the prognosis of TNBC patients.
Moreover, patients in the high-risk group had lower levels of immune infiltration in the TME and were sensitive to chemotherapeutic
drugs such as 5-fluorouracil, ipatasertib, and paclitaxel. Conclusion We have developed a CRRS-based prognostic model
composed of 13 differentially expressed CRGs, which may serve as a useful tool for predicting the prognosis of TNBC patients and

guiding clinical treatment. Moreover, the key genes within this model may represent potential molecular targets for future therapies

of TNBC.

Key words
DOI: 10.16476/j.pibb.2024.0281

According to the latest statistics from the
International Agency for Research on Cancer (IARC),
breast cancer is the second most common cancer and
the fourth leading cause of cancer death globally, and
it is also the most prevalent cancer type among
women, both in terms of incidence and mortality!'!. As
social economy develops, the incidence and mortality
rates of breast cancer continue to rise annually,
placing a significant burden on the healthcare
system!®. Breast cancer is classified into several
subtypes, including luminal A, luminal B, HER2-
enriched, and triple-negative, based on the molecular
characteristics of the patient’s tumor tissue. Among

them, triple-negative breast cancer (TNBC) is
characterized by the absence of estrogen receptor
(ER), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2)"!. Due to
the lack of these molecular targets, TNBC patients are
insensitive to commonly used endocrine therapy or
HER2-targeted therapy used for other subtypes of
breast cancer. Additionallyy, TNBC often exhibits
higher invasiveness and metastatic potential, tending
to recur and resulting in poor prognosis for patients'*.
With  the
researchers have discovered that TNBC is also a

advancement of omics technology,

heterogeneous subtype of breast cancer. Therefore, it

triple-negative breast cancer, colony stimulating factors, prognostic model, tumor microenvironment, drug sensitivity

is crucial to classify TNBC patients based on their
genetic characteristics, analyze prognostic features,
and explore suitable treatment modalities”® ).

Colony stimulating factors (CSFs) are a group of
cytokines that stimulate the proliferation and
differentiation of hematopoietic stem cells. Depending
they are classified into
(G-CSF),
(M-CSF),
granulocyte-macrophage colony stimulating factor
(GM-CSF), stem cell factor (SCF), erythropoietin
(EPO), thrombopoietin (TPO), and so on'”!. CSFs can
promote the development and maturation of red blood
cells, platelets, macrophages, neutrophils, dendritic

cells, etc., thus playing a significant role in immune

on the targeted -cells,

granulocyte colony stimulating factor

macrophage colony stimulating factor

response and immune regulation in the body!®. In the
occurrence and development of TNBC, G-CSF can
promote the migration and invasion of TNBC cells”,
M-CSF  can
macrophages in the tumor microenvironment (TME)

promote  the accumulation of
and enhance the invasiveness of cancer cells!'”, GM-
CSF can recruit myeloid-derived suppressor cells to
shape an immunosuppressive microenvironment,
promoting tumor growth and metastasis''", and EPO
is highly expressed in tumor tissues of TNBC patients

and is correlated with prognosis''?. Apart from their
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significant role in the malignant progression of
tumors, researchers have also focused on the
therapeutic potential of CSFs. Injecting GM-CSF into
tumors can make cancer cells sensitive to
programmed death-1 (PD-1) treatment!®). The use of
PARP inhibitors combined with CSF-1R blocking
antibodies can significantly enhance the anti-tumor
immune response in TNBC!'*. The combination of
GM-CSF and an HER2-targeted peptide vaccine has
certain therapeutic efficacy in the treatment of TNBC
patients!'>'"l. Researchers have been focusing on the
molecular mechanisms of CSFs in the pathogenesis of
TNBC and designing treatment methods based on
this. However, up to now, there has been no
prognostic model based on CSFs available for guiding
clinical treatment of TNBC.

This study aimed at developing a novel
prognostic model related to CSFs in TNBC and
validating its predictive capability for TNBC patient

through comprehensive bioinformatics
of TCGA-BRCA and GEO databases.

Furthermore, the study will explore the role of this

outcomes
analysis

model in assessing the TME and evaluate patient
sensitivity to drugs based on colony stimulating
factors-related genes risk score (CRRS), thereby
providing insights for clinical treatment of TNBC
patients.

1 Materials and methods

1.1 Acquisition and processing of TNBC datasets

We downloaded the dataset of breast cancer
patient samples and normal breast samples from The
Cancer Genome Atlas (TCGA) database with a
retrieval date of 12 December 2023, and retrieved
relevant clinical information from UCSC Xena
(https://xena. ucsc. edu/). We extracted the Transcripts
Per Kilobase per Million (TPM) data, removed
low-expression genes, and normalized the sample
expressions. We screened out TNBC patients based

on the status of “breast carcinoma estrogen
receptor_status”,  “breast carcinoma_ progesterone
receptor_status”, and “lab_proc_her2 neu
immunohistochemistry receptor status” of  the

samples. A total of 120 TNBC patient samples and 99
normal samples were included in the TCGA training
set.

We downloaded the GSES58812 independent
cohort from the Gene Expression Omnibus (GEO)

database (https://www. ncbi. nlm. nih. gov/geo/) as an
external dataset. After normalization of the sample
expressions, we ultimately obtained 107 TNBC
patient samples to serve as an external test set.
1.2 Screening of the differentially expressed
colony stimulating factors—related genes

We downloaded colony stimulating factors-
related genes (CRGs) from the GeneCards database
(version 5.20) (https://www. genecards. org/) using the
keyword “Colony Stimulating Factor” retrieving
7 180 genes. We further extracted proteins with a
Relevance score>10 for subsequent analysis. We
utilized the
differential
between TNBC patient samples and normal breast
samples in TCGA. Genes with |log,FC|>0.585 and
adjusted  P-value<0.05  were
differentially expressed genes (DEGs).

The selection of DEGs for the high-risk and low-
risk groups was also conducted using the “limma” R

“limma” R package to perform

expression analysis on these genes

considered  as

package, with the screening criteria set as |log,F'C|>
0.585 and adjusted P-value<0.05.
1.3 Functional enrichment analysis of DEGs

For the functional enrichment analysis of DEGs,
we used the “org. Hs. eg. db” R package for gene
ontology  (GO) Kyoto
Encyclopedia of Genes and Genomes (KEGG) REST
API (https://www. kegg. jp/kegg/rest/keggapi. html) to
obtain the latest gene annotations for KEGG pathway,

annotation and the

which served as the background. We mapped the
genes to this background set. Enrichment analysis was
performed using the “clusterProfiler” R package to
obtain GO and KEGG enrichment results.

1.4 Construction and validation of a CSFs-—
related prognostic model

We performed univariate Cox regression analysis
on gene expression and overall survival (OS) for
TNBC patients in TCGA-BRCA. Using the
“survival” and “ggforest” R packages, we obtained
and visualized the univariate Cox results. Genes with
P-values<0.05  were  considered  statistically
significant for patient survival, and 21 survival-related
DEGs were identified for further analysis.

Using the LASSO Cox regression model from
the “glmnet” R package, we narrowed down the
candidate genes and established a prognostic model.
Ultimately, 13 genes and their coefficients were

retained, and the penalty parameter 4 was determined
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based on the minimum criteria. Risk scores were
calculated for the TCGA expression data using the
risk score formula. Based on the median risk score
value, TNBC patients in TCGA-BRCA were divided
into high-risk and low-risk groups. The survival time
between the two groups was then compared using
Kaplan-Meier survival curve analysis. The predictive
ability of the model in the training set was validated
using 4-year, 5-year, and 6-year time-dependent
receiver operating characteristic (ROC) curve analysis
with the “survival” and “timeROC” R packages.
Additionally, we used the external independent cohort
GSES58812 as a validation set.
1.5 Construction of nomogram

We extracted TNBC patients with complete
clinical data and performed
multivariate Cox regression analyses on the clinical
stage, T stage, N stage, and Risk Score of these
patients. We utilized the “survival” and “ggfores” R
packages to obtain and visualize the results of the
univariate and multivariate Cox regression analyses.
Features with P-values<0.05 were considered as
independent prognostic factors.

Using the “rms” R package, we integrated data

univariate and

such as survival time, survival status, N stage, and
Risk Score to construct nomogram plots with 4-year,
S-year, and 6-year OS as endpoints. We further
developed a model to predict patients’ survival time
and assessed the ability of the nomogram plots to
predict patient prognosis using calibration curves and
ROC
prognostic evaluation capability of the nomogram

curves. Additionally, we compared the
score with other clinical features using ROC curves.
1.6 Assessment of the tumor microenvironment
in the high-risk and low-risk population groups
We calculated the stromal and immune scores, as
well as tumor purity, for TNBC patients in TCGA-
BRCA using the “estimate” R package. Subsequently,
we employed the “CIBERSORT” R package to
determine the proportions of 22 immune cell types in
tumor samples, and the “ssGSEA” R package to
evaluate the infiltration levels of 28 immune cell types
in tumor samples. Furthermore, we analyzed the
expression of 17 immune checkpoint genes using
Student’s #-test.
1.7 Prediction of drug sensitivity in TNBC
patients
We used the

“oncoPredict” R package to

calculate the sensitivity of TNBC samples to 198
commonly used chemotherapeutic drugs, and then
employed Student’s #-test to compare drug sensitivity
between the high-risk and low-risk groups.
1.8 Statistical analysis

All statistical analyses were performed using R
software (version 4.3.1). Differences between two
groups were analyzed using Student’s #-test, and
P-values<0.05 was considered statistically significant.

2 Results

2.1 Identification and functional analysis of
CRGs in TNBC

First, we downloaded colony stimulating CRGs
from the GeneCards database, retrieving a total of
7 180 proteins. We then extracted 1 869 molecules
with a Relevance score>10 for subsequent analysis
(Table SI). Using the “limma” R package, we
identified 842 DEGs in normal breast and TNBC
tissues from TCGA-BRCA. A volcano plot was used
to visualize these DEGs, showing that compared to
normal breast tissues, 368 genes were upregulated and
474 genes downregulated in TNBC (Figure la). A
heatmap further revealed significant differences in the
expression of CRGs between normal and TNBC
1b). To analyze the
significance of these DEGs, we performed functional

tissues (Figure biological
enrichment analysis. GO enrichment analysis showed
that DEGs were primarily clustered in the cellular
response to chemical stimulus, the cell surface, and
the transcription regulatory region DNA binding
(Figure 1c). KEGG pathway analysis demonstrated
that DEGs were primarily enriched in the PI3K-Akt
signaling pathway, the MAPK signaling pathway, and
the cytokine-cytokine receptor interaction (Figure 1d).
These results suggest that CRGs may play an
important role in the progression of TNBC.
2.2 Construction and validation of a CRGs—
related prognostic model for TNBC

To explore the value of CRGs in the prognosis of
TNBC, we collated the survival information of TNBC
patients and performed univariate Cox regression
on 842 differentially expressed CRGs,
screening for 21 genes closely related to the prognosis
of TNBC patients (Figure 2a). Subsequently, the
LASSO Cox regression algorithm was used for

analysis

dimensionality reduction screening, and the optimal

coefficients were calculated, resulting in the
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Fig.1 Identification and functional analysis of colony stimulating factors—related genes in TNBC

(a) A volcano plot displaying the differential expression of CRGs in normal breast tissues and TNBC tissues from TCGA-BRCA. Red represents

upregulated genes, blue represents downregulated genes, and gray represents genes with no statistically significant changes. Adjusted P-value<0.05,

[log,FC|>0.585. (b) A heatmap showing the DEGs related to CRGs. (c, d) Functional enrichment analysis of DEGs performed using GO (c) and

KEGG (d) analyses.

construction of a prognostic model utilizing 13 genes
(Figure 2b). Based on the expression levels of
candidate genes, the CRRS was calculated:
CRRS=0.342xEIF4EBP1 — 0.288xRASGRP1+0.194x
GRHL2 — 0.088xS100B+0.211xDCAF4 — 0.306%
TWISTI40.642xHMOX1  —  0.701xETVI1+0.268%
KLF10+0.017xSOCS2 — 0.196xGZMB+0.255xKRT18
—0.056xIGFBPI.

Subsequently, scores were assigned to each
TNBC patient in TCGA-BRCA based on the risk
calculation formula, and patients were divided into

high-risk and low-risk groups using the median score.
Kaplan-Meier survival curves revealed that the high-
risk group had a lower OS rate and worse prognosis
compared to the low-risk group (Figure 2c).
Additionally, the number of deaths in the high-risk
group was higher than that in the low-risk group
(Figure 2e). The area under the curve (AUC) of the
receiver operating characteristic (ROC) curve at
4- , 5-, and 6-years was 0.94, 0.90, and 0.92,
respectively (Figure 2g). We used GSE58812 from the
GEO database for external validation, assigning risk
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Fig. 2 Construction and validation of a CRGs-related prognostic model for TNBC

(a) Univariate Cox regression analysis of DEGs in the prognosis of TNBC. (b) LASSO Cox regression analysis to identify the DEGs for constructing
the prognostic model. (c, d) The differences in overall survival between the high-risk and low-risk groups of TNBC patients in the TCGA-BRCA
database (c¢) and the GEO58812 database (d) using Kaplan-Meier survival curves. (e, f) Distribution of Risk Score and survival status of TNBC
patients in the TCGA-BRCA database (¢) and the GEOS58812 database (f). (g, h) The prognostic value of CRRS in the TCGA-BRCA database (g) and
the GEO58812 database (h) using ROC curves.
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scores to 107 TNBC patients and grouping them
based on the median score. The prognostic analysis
yielded consistent results with the training set,
showing worse prognosis in the high-risk group. The
AUC of the ROC curve for 4-, 5-, and 6-years was
0.74, 0.77, and 0.75, respectively (Figure 2d, f, h).
These results demonstrate the accuracy and reliability
of the prognostic model constructed using CRGs in
TNBC.

We further analyzed the expression profiles of
the CRGs involved in the prognostic model, and we
found that, compared with normal breast tissues in the
TCGA-BRCA  cohort, EIF4EBPI, RASGRPI,
GRHL2, DCAF4, HMOXI, GZMB, and KRTI18 were
upregulated in TNBC, while S100B, TWISTI, ETV1,
KLF10, SOCS2, and IGFBPI were downregulated in
TNBC (Figure 3a). Subsequently, we used Kaplan-
Meier survival curves to analyze the role of these
molecules in the prognosis of TNBC, and the results
revealed that high expression of EIF4EBPI1, GRHL2,
DCAF4, HMOXI1, KLF10, SOCS2, and KRTI18 was
associated with poor prognosis in TNBC patients
(Figure 3b), while low expression of RASGRPI,
S100B, TWIST1, ETVI, GZMB, and IGFBPI was
related to poor prognosis in TNBC patients
(Figure 3c¢).

2.3 The construction and validation of a
nomogram for the CRGs-related prognostic model

To further analyze the clinical value of this
prognostic model, we first investigated the expression
differences of risk scores in TNM and clinical stages
among TNBC patients in the TCGA-BRCA database.
We found that patients with higher clinical stage, T
stage, and N stage exhibited higher risk scores (Figure
4a—c). Subsequently, we explored whether CRRS and
clinical characteristics were independent prognostic
factors for patients through univariate and
multivariate Cox analyses. The results of univariate
Cox regression analysis indicated that clinical stage, T
stage, N stage, and CRRS were significant prognostic
risk factors (Figure 4d). Multivariate Cox regression
analysis revealed that N stage and CRRS were
independent prognostic risk factors (Figure 4e).
Therefore, we chose N stage and CRRS to further
establish a prognostic nomogram to predict the
survival rate of TNBC patients (Figure 4f). The
predictive ability of the nomogram was analyzed

using time-dependent ROC curves, and we found that

the AUC for the 4-, 5-, and 6-years was 0.97, 0.94,
and 0.96, respectively (Figure 4g). The calibration
curves demonstrated the predictive accuracy of the
model for the 4-, 5-, and 6-years (Figure 4h). Then,
we analyzed the predictive differences between the
nomogram and other parameters, showing that the
AUC of the nomogram was 0.944, which was higher
than the predictive abilities of CRRS (4UC=0.922)
and N stage (AUC=0.735) (Figure 4i). These results
suggest that CRRS is an independent prognostic
factor that can accurately assess the prognosis of
TNBC patients.

2.4  Functional analysis of the CSFs-related
prognostic model

the different
prognoses of TNBC patients with varying CRRS, we

To explore the reasons for
used the “limma” R package to screen for DEGs
between the high-risk and low-risk groups. Based on
the criteria of adjusted P-value<0.05 and [log,F'C|>
0.585, we identified 39 upregulated genes and 27
downregulated genes in the TNBC cohort (Figure 5a).
We further displayed the expression of the DEGs
between the high-risk and low-risk groups using a
heatmap (Figure 5b). Subsequently, GO enrichment
analysis and KEGG pathway analysis were performed
on the aforementioned DEGs. The GO enrichment
analysis demonstrated that the DEGs were mainly
related to the cellular developmental process, the
vesicle, and the laminin binding (Figure 5c). The
KEGG pathway analysis revealed that the DEGs were
primarily associated with the pentose phosphate
pathway, the AMPK signaling pathway, and the PI3K-
Akt signaling pathway (Figure 5d).
2.5 Differences in the tumor microenvironment
between the high-risk and low-risk groups of
TNBC patients

TME contains a large number of infiltrating
immune cells, with each immune cell type performing
a unique regulatory function, which may be an
important reason for the different prognoses of TNBC
patients. We used the ESTIMATE algorithm to
analyze the stromal score, immune score, ESTIMATE
score, and tumor purity of the high-risk and low-risk
groups in the TNBC cohort of TCGA-BRCA.
Compared to the low-risk group, the high-risk group
had a lower stromal score and an increasing trend in
tumor purity (Figure 6a, b). We then used the
CIBERSORT algorithm to explore the differences in
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Fig.3 The expression profiles of CRGs in TNBC and their association with prognosis
(a) Expression differences of EIF4EBPI1, RASGRPI, GRHL2, S100B, DCAF4, TWISTI, HMOXI, ETVI, KLF10, SOCS2, GZMB, KRT18, and
IGFBPI between TNBC cancer tissues and normal breast tissues in the TCGA-BRCA database. **P<0.01, ****P<0.000 1. (b, c¢) Kaplan-Meier

survival curves were used to analyze molecules that are unfavorable (b) or favorable (c) for the prognosis of TNBC patients.
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Fig.4 Construction and validation of a nomogram for the CRGs-related prognostic model
(a—c) The risk scores of TNBC patients in the TCGA-BRCA database with the progression of clinical stage (a), T stage (b), and N stage (c).
(d, e) Univariate (d) and multivariate (¢) Cox regression analyses of clinicopathological characteristics and CRRS in the TNBC cohort from the
TCGA-BRCA database. (f) A nomogram to demonstrate the ability of N stage and CRRS to evaluate prognosis. (g) ROC curves were used to predict
the predictive ability of the nomogram at 4-, 5-, and 6-years. (h) Calibration curves displaying the 4-year, 5-year, and 6-year OS probabilities in the

TCGA cohort. (i) ROC curves demonstrating the predictive ability of the nomogram, risk score, and clinical characteristics for patient prognosis.
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Fig .5 Functional analysis of DEGs between the high—risk and low-risk groups in the TCGA-BRCA TNBC cohort
(a) A volcano plot displaying the DEGs between the high-risk and low-risk groups in the TNBC cohort of TCGA-BRCA. (b) A heatmap showing the
DEGs between the high-risk and low-risk groups. (¢, d) GO functional enrichment (c) and KEGG pathway (d) analyses of the DEGs between the

high-risk and low-risk groups.

the composition of immune cells in the TME, and we
found that B naive cells were enriched in the low-risk
group (Figure 6¢). Subsequently, we used the ssGSEA
algorithm to analyze the differences in immune cells
infiltration between the two groups, and we found that
the high-risk group had more infiltration of CD56dim
natural killer cells, while the low-risk group had more
infiltration of activated B cells, immature B cells,
eosinophils, mast cells, plasmacytoid dendritic cells,
and type 2 helper cells (Figure 6d). Finally, we
analyzed the expression of some immune checkpoint
molecules in the high-risk and low-risk groups'®), and
we found that CEACAM]I and VTCNI molecules were

upregulated in the low-risk group (Figure 6e). The
above results indicate that after grouping TNBC
patients into high-risk and low-risk groups based on
CRRS, there are certain differences in immune cell
infiltration between the two groups, which may be
potential targets for future precision therapy.
2.6 Drug sensitivity in the high-risk and low—
risk groups of TNBC patients

To analyze the appropriate treatment options for
TNBC patients and how this model can guide drug
administration, we calculated the sensitivity scores
(IC,-like values) of TNBC patients to each drug. We
found that patients in the high-risk group were more
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Fig. 6 Differences in the TME between the high—risk and low-risk groups of TNBC patients
(a, b) The ESTIMATE algorithm used to score the TME (a) and tumor purity (b) in the high-risk and low-risk groups. (¢) The CIBERSORT algorithm
employed to analyze differences in the abundance of 22 immune cell types between the high-risk and low-risk groups. (d) The ssGSEA algorithm
used to analyze differences in the degrees of immune cell infiltration between the high-risk and low-risk groups. (e) Expression differences of

immune checkpoints between the high-risk and low-risk groups. *P<0.05; **P<0.01.
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sensitive to 5-fluorouracil, ipatasertib, and paclitaxel
(Figure 7a), while patients in the low-risk group were
more sensitive to PCI-34051, JQI, and trametinib
(Figure 7b). These results suggest that TNBC patients

can be scored based on CRRS, and individual targeted
therapy can be administered with reference to the
scoring results.
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Fig. 7 Drug sensitivity in high/low—risk groups of TNBC patients

(a) Sensitivity scores of the high-risk and low-risk groups of patients to 5-fluorouracil, ipatasertib, and paclitaxel. (b) Sensitivity scores of the high-

risk and low-risk groups of patients to PCI-34051, JQ1, and trametinib.

3 Discussion

TNBC is
challenging subtype of breast cancer for -clinical

currently considered the most

treatment, primarily due to the significant
heterogeneity among patients, which hampers the
selection of appropriate treatment methods. Therefore,
it is crucial to categorize and perform targeted therapy
based on patients’ molecular characteristics™. With
sequencing

researchers have gained a deeper understanding of the

the advancement of technology,

heterogeneity among TNBC patients. By integrating

clinical information and bioinformatics analysis,

researchers can now predict the prognosis, immune

infiltration, individual

[19-20]

and drug sensitivity of

patients . However, the current gene prognostic
models for TNBC are not entirely satisfactory,

necessitating the development of a novel classification

method to better guide clinical treatment.

CSFs are cytokines that accumulate significantly
in the TME of TNBC patients and play an important
role in TNBC tumorigenesis®!!. In this study, we
extracted CRGs with differential expression in 120
TNBC patients and 99 normal people from TCGA-
BRCA data. The results of GO and KEGG functional
enrichment analysis suggest that CRGs may affect the
growth and metastasis of TNBC by influencing gene
transcription and regulating signaling pathways such
as PI3K-Akt and MAPK. Using univariate Cox
and LASSO
constructed a prognostic model based on the CSFs-
related genes, including FEIF4EBPI, RASGRPI,
GRHL2, S100B, DCAF4, TWISTI, HMOXI, ETV1I,
KLF10, SOCS2, GZMB, KRTI18, and IGFBPI. The
prognostic ability of this model was validated using
TNBC cohorts from TCGA and GEO databases,
demonstrating that the model

regression  analysis analysis, we

can predict the
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prognosis of TNBC patients. Among them, eukaryotic
translation initiation factor 4E-binding protein 1
(EIF4EBPI) participates in regulating the translation
process of mRNA, which is upregulated in TNBC and
promotes the metastasis and proliferation of cancer
cells¥**1.  RAS guanyl releasing protein 1
(RASGRPI) is highly expressed in TNBC, but Kaplan-
Meier analysis results suggest that high expression of
RASGRP1 leads to better prognosis, indicating that
RASGRP1 plays a complex regulatory role in
TNBCP**l. Grainyhead-like transcription factor 2
(GRHL?2) is a transcription factor closely related to
EMT, which is upregulated in TNBC and correlated to
poor prognosis in patients®. S100 calcium binding
protein B (S/00B) is a potential diagnostic and
prognostic biomarker for TNBC?**, DDBI and
CUL4 associated factor 4 (DCAF4) is highly
expressed in TNBC patients and is associated with
poor prognosis, but there are currently few studies on
DCAF4 in TNBC. Twist family bHLH transcription
factor 1 (TWISTI) is a key transcription factor in the
EMT process, promoting the metastasis, angiogenesis,
stemness maintenance, and chemotherapy resistance
of TNBC™®-!, The TCGA-BRCA database shows that
TWIST1 is expressed at low levels in TNBC patients,
but immunohistochemical experiment results suggest
that TWISTT1 is upregulated in TNBC cancer tissues,
which may be due to post-translational modifications
leading to inconsistent expression levels between its
mRNA and protein®®”. Heme oxygenase 1 (HMOXI)
promotes ferroptosis in TNBC cells, affecting the
effectiveness of immunotherapy™**¥. ETS variant
transcription factor 1 (ETVI) may affect the growth
and invasion of TNBC, but the specific molecular
mechanism is unclear® . KLF transcription
factor 10 (KLF'10) is involved in cell differentiation,
but there are currently few studies on it in TNBCP¢,
Suppressor of cytokine signaling 2 (SOCS?2) serves as
a tumor suppressor in breast cancer, and the study on
it in TNBC is rare®”. Granzyme B (GZMB) is mainly
secreted by cytotoxic T cells, which can induce the
death of cancer cells in the microenvironment, and
TNBC patients with high expression of GZMB have
better prognosis®**’!. Keratin 18 (KRT18) is a marker
for TNBC cell differentiation'*”). Insulin-like growth
(IGFBPI) regulates
in TNBCH'*,
Interestingly, we observed that the expression of some
CRGs in TNBC patients is inconsistent with their

factor binding protein 1

angiogenesis and radiosensitivity

prognostic outcomes. This could be attributed to the
complex regulation mechanisms governing gene
epigenetic

genetic background, environmental factors, and more.

expression, encompassing regulation,

Consequently, the relationship between gene
expression and tumor prognosis is not a simple linear
one but rather a result of the intricate interplay of
multiple factors. Therefore, the research on the
expression and function of the above-mentioned
molecules in TNBC is limited, this study provides a
direction for further exploration.

The analysis results of DEGs between the high-
risk and low-risk groups suggest that the different
prognostic outcomes of the two patient groups may be
closely related to intracellular or intercellular signal
transduction and cellular metabolic status. In addition,
the low-risk group has more immune cell infiltration,
which may suppress tumor immune evasion and
inhibit the progression of TNBC. Regarding changes
in immune checkpoint molecules, we only observed
upregulated expression of CEACAMI and VTCNI in
the low-risk group. These changes indicate that,
although they can serve as therapeutic targets, CRGs
may regulate tumor progression in patients through
non-immunomodulatory means. Currently, commonly
TNBC
doxorubicin®, paclitaxel™, and cisplatin/*), but they

used drugs for treatment  include
have not achieved the expected therapeutic efficacy.
Therefore, we further analyzed the drug sensitivity of
high-risk and low-risk groups. High-risk patients are
DNA  synthesis
(5-fluorouracil), AKT enzyme inhibitor (ipatasertib),
and  microtubule  depolymerization
(paclitaxel). Low-risk patients are more sensitive to
HDACS inhibitor (PCI-34051), BET bromodomain
inhibitor (JQ1), and MEK inhibitor (trametinib). The
possible reason is that the changes in signaling
pathways are different between the two groups. The
drug sensitivity analysis results in this study may
provide insights for the selection of targeted drugs for
TNBC patients and for the development of new

more  sensitive  to inhibitor

inhibitor

targeted therapeutic drugs. In the future, the specific

molecular mechanism of CRGs regulating the

progression of TNBC needs to be investigated.
4 Conclusion

In this study, we constructed a prognostic model
composed of 13 CRGs, which effectively predicted
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the prognosis of TNBC patients in TCGA and GEO
cohorts. We also explored the changes in signaling
pathways and immune infiltration levels in different
risk groups, and predicted the sensitivity of patients to
various drugs, thus providing guidance for clinical
treatment of TNBC.
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