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Abstract Objective Primary liver cancer, predominantly hepatocellular carcinoma (HCC), is a significant global health issue,
ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality. Accurate and early diagnosis of
HCC is crucial for effective treatment, as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma (ICC) exhibit
different prognoses and treatment responses. Traditional diagnostic methods, including liver biopsy and contrast-enhanced ultrasound
(CEUS), face limitations in applicability and objectivity. The primary objective of this study was to develop an advanced, light-
weighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic
analysis of brightness changes in CEUS images. The ultimate goal was to create a user-friendly and cost-efficient computer-aided
diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions. Methods This retrospective
study encompassed a total of 161 patients, comprising 131 diagnosed with HCC and 30 with non-HCC malignancies. To achieve
accurate tumor detection, the YOLOX network was employed to identify the region of interest (ROI) on both B-mode ultrasound and
CEUS images. A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver
parenchyma regions within the CEUS images. These curves provided critical data for the subsequent analysis and classification
process. To analyze the extracted brightness change curves and classify the malignancies, we developed and compared several
models. These included one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt, and 1D-CNN), as well as
traditional machine-learning methods such as support vector machine (SVM), ensemble learning (EL), k-nearest neighbor (KNN),
and decision tree (DT). The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was
rigorously evaluated using four key metrics: area under the receiver operating characteristic (AUC), accuracy (ACC), sensitivity
(SE), and specificity (SP). Results The evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM, 0.56 for
ensemble learning, 0.63 for KNN, and 0.72 for the decision tree. These results indicated moderate to fair performance in classifying
the malignancies based on the brightness change curves. In contrast, the deep learning models demonstrated significantly higher
AUCs, with 1D-ResNet achieving an AUC of 0.72, 1D-ConvNeXt reaching 0.82, and 1D-CNN obtaining the highest AUC of 0.84.
Moreover, under the five-fold cross-validation scheme, the 1D-CNN model outperformed other models in both accuracy and
specificity. Specifically, it achieved accuracy improvements of 3.8% to 10.0% and specificity enhancements of 6.6% to 43.3% over

competing approaches. The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate
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classification. Conclusion

The 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC

malignancies, surpassing both traditional machine-learning methods and other deep learning models. This study successfully

developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’

diagnostic capabilities. By improving the accuracy and efficiency of clinical decision-making, this tool has the potential to positively

impact patient care and outcomes. Future work may focus on further refining the model and exploring its integration with

multimodal ultrasound data to maximize its accuracy and applicability.
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Primary liver cancer ranks as the sixth most
commonly diagnosed cancer globally and is the third
leading cause of cancer-related mortality. This
category consists predominantly of hepatocellular
carcinoma (HCC), accounting for 75%—-85% of cases;
intrahepatic cholangiocarcinoma (ICC), comprising
10%-15% of cases; and other rare types''). HCC has a
more favorable prognosis and is usually treated with
local ablation techniques, such as radiofrequency and
transarterial chemoembolization™?!. ICC, a major non-
HCC liver malignancy, is characterized by aggressive
behavior, treatment challenges, and poor prognosis.
The primary curative treatment for ICC involves
surgical methods, such as liver resection. In the
clinical setting, ICC is easily misidentified as HCC or
cancer of unknown primary origin!*”. Therefore,
precise and early diagnosis of HCC is crucial for
promptly initiating the correct treatment>-*l,

Although a liver biopsy remains the standard
method for HCC diagnosis, it is often unnecessary in
patients with typical imaging characteristics of focal
lesions'**?1. Contrast-enhanced ultrasound (CEUS) is
a commonly employed imaging modality for detecting
and assessing tumor blood flow perfusion in HCC
because of its operational simplicity, immediate
results, non-invasiveness, absence of radiation
exposure, and portability® "], Tt effectively visualizes
the blood supply to the tumor and its adjacent liver
tissue, offering insightful hemodynamic information
for differential liver cancer diagnosis®?!. HCC is
generally diagnosed using CEUS features following
standard guidelines, including typical arterial phase
hyperenhancement and late washout onset (greater
than or equal to 60 s) with mild washout intensity'® '",
Washout onset typically occurs within 1 min, sooner
in ICC than that in HCC. In addition, the washout
degree is more pronounced in ICC than in HCC!'",
Radiologists’ interpretation of features, such as

computer-aided diagnostic, deep learning, hepatocellular carcinoma, contrast-enhanced ultrasound, brightness

CSTR: 32369.14.pibb.20240517

enhancement and washout intensity, is highly
subjective and requires extensive training. Diagnostic
accuracy is significantly influenced by the
radiologist’s experience and expertise!'*'°,

Using time-intensity curve (TIC) analysis to
interpret CEUS videos effectively solves diagnostic
challenges!"”. This method involves manually plotting
and comparing the average intensity levels on a
timescale for the following two specific areas
identified by radiologists: within the suspected tumor
and in a parenchymal region devoid of significant
vessels. This process generates two curves depicting
the contrast uptake during CEUS'"®. This method
provides accurate brightness quantification on CEUS,
thereby assisting in a more precise diagnosis!”. Pei
et al." used software to generate TICs and extracted
4 quantitative parameters (time-to-peak, rising slope,
maximum intensity, and rising time) to differentiate
between focal nodular hyperplasia and HCC. The
indicate that this

diagnostic

results method can enhance
accuracy beyond the capabilities of
standard CEUS examinations. Moreover, it is more
advantageous for differential diagnosis than analyzing
hemodynamics alone!"”’.

Numerous computer-aided diagnostic systems
using TIC analysis have emerged recently to support
clinicians?*?". For example, Liu et al.** extracted 18
quantitative parameters related to time, intensity, and
velocity from TICs and used a support vector machine
(SVM) to predict the response of forecasts with HCC
to hepatic artery chemoembolization with 81.0%
accuracy. Similarly, Kondo et al.!" trained an SVM
selected features,

enhancement

classifier using 28 manually
including TIC and
parameters, achieving an accuracy of 87.7% for HCC
across three classifications. Streba er al.!"® analyzed
TICs to categorize HCC and 4 additional liver

diseases. These methods typically rely on the

morphology
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empirical determination of  features and data from patients diagnosed with liver cancer who

established Unlike
methods relying on manually defining features, deep-

experimentally parameters.
learning methods use unsupervised feature learning.
For example, Wu et al.'”! implemented deep belief
networks to differentiate between benign and
malignant focal liver lesions using TIC analysis. Their
results indicated that the performance of the deep
learning approach surpasses that of conventional
machine learning methods.

These studies demonstrate the effectiveness of
the automated TIC analysis as a valuable technique,
offering clinicians rapid and dependable diagnostic
support'®l. However, existing methods for HCC
classification have several limitations. Labeling tumor
regions manually on B-mode ultrasound (BUS) and
CEUS images requires extensive clinical expertise

[24]

and significant time investment by radiologists'~*, and

outcomes are influenced by an individual

radiologist’s  subjective experience!'"”. Machine-
learning classification methods often depend on
handcrafted features that limit the extraction of a wide
range of features and end-to-end learning®. No deep
learning models have been designed specifically to
analyze the brightness change curves to differentiate
HCC from non-HCC malignancies.

To overcome these limitations, we used a
YOLOX network®! to identify the region of interest
(ROI), including the tumor and adjacent normal liver
tissues, on the BUS images. We then extracted
brightness change curves from CEUS images using a
custom-developed  algorithm,  which  depicts
immediate temporal brightness variations in the tumor
and liver parenchyma. We also developed one-
dimensional convolutional neural network (1D-CNN)
models and used several traditional machine-learning
methods to explore their capability to differentiate
HCC from non-HCC malignancies by analyzing

brightness change curves.
1 Materials and methods

1.1 Patients

The retrospective study protocol was approved
by the Human Research Ethics Committee of Sun Yat-
sen University Cancer Center (approval number:
GYX2020-017) and adhered to the tenets of the
Helsinki. ~ Only
retrospective data were used for research. We gathered

Declaration  of anonymized

underwent CEUS at the Sun Yat-sen University
Cancer Center. The inclusion criteria for this study
were: (1) patients presenting with hypervascular liver
nodules as verified through CEUS; (2) available BUS
and CEUS data; (3) lesions confirmed to be HCC via
histological analysis or identified as non-HCC based
on histological or clinical evidence. The exclusion
(1) patients who had
interventional treatment, or local

criteria were: received
chemotherapy,
treatment; (2) patients whose CEUS videos shook
excessively; (3) difficult tumor location; (4) tumors
obscured by shadows; (5) tumors extended beyond the
view boundary. Based on these criteria, 161 patients
were included in this study. The cohort included 131
HCC cases (121 males and 10 females, aged (52+
12.38) years) and 30 non-HCC malignancies (15
males and 15 females, aged (51.23+10.43) years). In
the HCC group, 5.34% (7 patients) had multiple
tumors, and 99.2% were >10 mm in diameter.
Similarly, 26.7% (8 patients) in the non-HCC group
had multiple tumors, with 91.7% exceeding 10 mm.
1.2 Ultrasound data collection

BUS examinations were performed by expert
radiologists specializing in abdominal imaging using
the Acuson Sequoia 512 system (Siemens; Mountain
View, CA, USA). The quantification of the lesions,
including their count, dimensions, spatial distribution,
and sonographic appearance, as well as the

characteristics of the hepatic backdrop, was
meticulously recorded. CEUS was performed by
using a 4Cl1 convex array probe (Siemens). Low-
mechanical index CEUS, with a dynamic range set to
80 dB, was conducted subsequent to the intravenous
administration of 2.0 ml of SonoVue contrast agent
(Bracco Imaging; Milan, Italy), followed by a saline
solution flush of 5 ml. A timer was started when the
contrast agent was injected. Imaging was recorded at
8 frames/s on cine clips for 80 s. After an 80-second
interval, the lesion underwent periodic scanning over
a 5-min duration to delineate washout characteristics.
1.3 ROI extraction

This study employs YOLOX network® to
automatically label tumor ROI. This model consists of
5 fundamental feature

components: the input,

extraction, convolution block attention module,
feature fusion, and prediction. It outputs the tumor’s

central coordinates (x, y) and delineates its dimensions
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using a bounding box, which was used to obtain the
ROI on the BUS la). These
coordinates were mapped directly on CEUS, and
superfluous borders were removed systematically. The
identified ROI encompassed the tumor and a portion
of the surrounding liver parenchyma. We defined the

images (Figure

8 corners as the liver parenchyma region, constituting
1% of the ROI, and the remainder as the tumor

(a) Extracting ROI

Chronological order

(Figure 1b). The dataset contains a total of 4 830 BUS
images, which are divided into training, verification
and prediction sets in the ratio of 6 1 2 I 2. The
YOLOX annotation results were manually verified by
experienced radiologists. The YOLOX demonstrated
an accuracy of 95.13% in test set, confirming its
superior capability in identifying liver tumors and
their surrounding tissues.

(b) Definiting ROI

B :Tumor region

M :Liver parenchyma

Fig. 1 Region of interest (ROI) extraction

(a) Extracting ROI on BUS and CEUS. (b) The blue area is defined as the liver parenchyma; the remaining area is defined as the tumor. ROI: region

of interest.

1.4 Generating the brightness change curves
dataset

The production process comprised the following
steps.

(1) CEUS ROIs were converted to grayscale and
organized chronologically. The pixel values were
averaged over the tumor and liver parenchyma
regions, generating two curves representing the
brightness change over time.

(2) Gaussian
interpolation were used to refine the curves. Besides,
refer to the radiologists’ diagnostic protocols™ ',

filtering and cubic spline

~=

Brightness
(pixel value)

| —— :Tumor region
—— :Liver parenchyma

0 45 90 135 180
t/s

the first 180-second brightness change curve (Figure 2)
were intercepted, for this time window can effectively
capture the brightness variation of tumor, while
minimize the redundant information.

(3) The quantitative parameters for the machine-
learning methods were derived from the brightness
change curves. For example, the CEUS4 dataset!'”
was formed by extracting the following four features:
time to peak, rising slope, maximum intensity, and

rising time. The TJ18 dataset*”

was constructed by
extracting 18 important features, including 5 time-

related features, 6 intensity-related features, and 7

S

‘Tumor region
:Liver parenchyma

0 45 90 135 180

speed-related features.

non-HCC

Brightness
(pixel valug

Fig. 2 Examples of brightness change curves for HCC and non—-HCC cases

The red curves indicate the brightness change in the tumor region over time. The blue curves indicate the brightness change in the liver parenchyma

region over time.
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(4) To emulate the radiologist’s diagnostic
pattern of comparing the brightness changes in the
tumor and liver parenchyma!'”*! the two brightness
change curves were divided point-by-point to generate
a third composite curve. These curves were inputted
into a 1D-CNN model for training and verification.

1.5 Building the classification models

This study developed 3 deep learning models and
four machine-learning methods to differentiate HCC
from non-HCC malignancies by analyzing the
brightness change curves (Figure 3).

The architecture of 1D-CNN is depicted in
Figure 4. It encompasses four 1D convolutional layers
and a 1D pooling layer. Convolutional layers were
employed to extract features from the input curves.
The pooling layer reduces the computational demands
and minimizes the of nonessential
information®”). Batch normalization was implemented
following each convolutional

influence

which can

layer,

significantly accelerate training and improve the
learning rate®™. The softmax and LeakyReLU
activation functions applied after batch
normalization. Global average pooling condenses
multichannel features into a 1D vector®”**1, A dropout
layer was implemented with a dropout rate set at 0.2
to mitigate the risk of overfitting. The final layer was
equipped with a sigmoid activation layer to generate
scores to distinguish between HCC and non-HCC
cases.

weEre

Besides, two mainstream deep learning models,
Residual Network (ResNet) B” and ConvNeXt®!
were converted into one-dimensional classification
networks, designated ID-ResNet and 1D-
ConvNeXt, respectively, and 4 machine learning
methods: SVMP? ensemble learning (EL) *, K-
nearest neighbor (KNN) B4 decision tree (DT) 1%,
have been developed to classify HCC and non-HCC
under the same datasets.

as

Machine learning

Brightness

Non-HCC

»

change curves

N
SVM
1D ResNet

Deep learning 1D dataset

1D ConvNeXt |

1D CNN

Fig.3 Schematic diagram of the analysis of the brightness change curves

CEUS4: a machine learning dataset called CEUS4; TJ18: a machine learning dataset called TJ18; EL: ensemble learning; DT:

decision tree; KNN:

K-nearest neighbor; SVM: support vector machine; CNN: convolutional neural network.

a a a
X x 2 =
g E‘Q - ;cé 9‘9 Z § E
> — E > — =
ey E= [ Pa? <€ EL a8
= S = ) S = ~“
= =¥
UE n UE S %
v/ 2 - 2

ConvlD

3 3

o)
& 3 A e -
X Q — X Q -9
~blzlelg i 2 bzl 2
= /m = S = /M = @)
§ 3178 g
[} Q
M N

Fig. 4 Architecture diagram of a 1ID-CNN model

Conv 1D: one-dimensional convolutional layer, BN: batch normalization, GAP: global average pooling.

1.6 Experimental design and analysis scheme

The computational experiments were conducted
on a laptop equipped with a 64-bit Windows 10
operating system, 16 GB of RAM, and an AMD

Ryzen 55500U processor with integrated Radeon
Graphics, operating at a base frequency of 2.10 GHz.
The machine learning classification models were
developed using MATLAB’s Classification Learner
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application (R2022a), while the deep learning models
were designed using the Keras framework in the
Python 3.6 environment.

The 1D-CNN model contains 22 882 parameters,
representing a 91.45% reduction compared to the
benchmark 1D-ResNet model, which has 267 618
parameters. In terms of computational speed, our
method processed 32 cases in just 0.265s. The
model's weight storage space is only 338 KB.

Metrics of area under the receiver operating
characteristic curves (AUC), accuracy, sensitivity, and
specificity, were used to assess the effectiveness of the
classification models. The closer the AUC is to 1.0,
the better the model performs. Accuracy quantifies the
ratio of correctly classified samples to the total sample
count, corresponding to the model’s overall
classification power. Sensitivity and specificity
measure the model’s accuracy in correctly identifying
HCC and non-HCC cases. These indicators are
calculated by the following formulas:

| ~ TP + TN 0
Curacy = rp L FP + TN + FN
TP
Sensitivity = TP+ FN 2)
TN
Speciﬁcity = W (3)
1
AUC = [ 1, (£, = P @)

Among them, TP, TN, FP, and FN represent the
quantities of true positives, true negatives, false
positives, and false negatives, respectively. ¢, denotes
the true positive rate, f,, denotes the false positive rate,
and ¢, is a function of f . All models underwent
fivefold cross-validation to ensure the stability of the

classification results. The datasets were divided into
training and testing sets with an 8 I 2 ratio. In each
trial, 129 of the 161 participants were allocated to the
training set, and 32 were designated for testing.

2 Results

The performance metrics of the 1D-CNN models
and machine learning methods, including accuracy,
sensitivity, and specificity, are summarized in Table 1.
The results are presented as average values with
corresponding ranges and 95% confidence intervals.
In the testing cohort, the 1D-CNN model achieved an
accuracy of 83.9%, sensitivity of 89.3%, and
specificity of 60.0% in distinguishing HCC from non-
HCC malignancies.

Compared to traditional machine learning
methods, the 1D-CNN model
significant improvements in accuracy (increased by
5.6%-10.0%) and specificity (increased by 23.3%
-43.3%), although its sensitivity was 1.5% lower than
that of the DT method. Moreover, the 1D-CNN
outperformed the 1D-ResNet and 1D-ConvNeXt
models in terms of accuracy (enhanced by 3.8%
-5.6%), sensitivity (enhanced by 2.3%-5.3%), and
specificity (enhanced by 6.6%-10.0%).

As illustrated in Figure 5, the AUC values for
EL, DT, KNN, SVM, 1D-ResNet, 1D-ConvNeXt, and
1D-CNN were 0.70, 0.56, 0.63, 0.72, 0.72, 0.82, and
0.84, respectively. These results indicate that the 1D-
CNN model exhibits best overall performance among
the evaluated methods. Notably, the substantial

demonstrated

increase in specificity achieved by the 1D-CNN can
significantly reduce the rate of misdiagnosis of HCC,
thereby enhancing diagnostic reliability.

Table 1 Comparison of performance metrics between the EL, DT, KNN, SVM, and 1D-CNN, 1D-ResNet, 1D-ConvNeXt

models in testing cohorts

Model

Accuracy/%

Sensitivity/%

Specificity/%

EL
DT
KNN
SVM
1D-ResNet
1D-ConvNeXt
ID-CNN (in this study)

77.0 (71.7-82.4)
77.0 (75.3-78.7)
73.9 (72.4-75.5)
78.3 (70.1-86.5)
80.1 (70.3-89.9)
78.3 (68.2-88.2)
83.9 (78.0-89.6)

87.0 (73.8-100)
90.8 (87.4-94.1)
84.7 (81.6-87.9)
87.8 (81.2-94.4)
87.0 (75.4-98.6)
84.0 (71.6-96.3)
89.3 (82.5-96.0)

33.4(1.9-64.8)
16.7 (0.65-32.7)
26.7 (10.8-42.6)
36.7 (19.8-53.5)
50.0 (35.4-64.6)
53.3 (30.6-76.0)
60.0 (50.4-69.6)

The 95% confidence intervals for quantitative data are indicated in brackets when applicable. EL: ensemble learning; DT: decision tree; KNN:

K-nearest neighbor; SVM: support vector machine; 1D-ResNet: one-dimensional residual network; 1D-ConvNeXt: one-dimensional ConvNeXt;

1D-CNN: one-dimensional convolutional neural network.
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Receiver operating characteristic classification,  requiring less memory  and
tor | i computational resources. Our method reduces the
r— = { ___J' equipment requirements for model training and
0.8 N 'T H enhances the model’s suitability for implementation
S R _|r — in medical devices.
206 —Ij Besides, our 1D-CNN model proposed in this
>
@ : study exhibited 60.0% specificity for classifying HCC
§0,4_-____! EL model (AUC = 0.70) from non-HCC, which is slightly lower than that
a %\1 Eodeh(fli 51%26 0-506)63) reported in comparable liver cancer
B mode =u.
02k :SVM model (4UC = 0.72) studies!'® #1231 'We attributed these differences to
— —:1D-ResNet model (4UC = 0.72 . . >
__:ID_CZ;VKICI;&EO&CI ( AUC=0).82) the following two factors: (1) differentiating HCC
——1D-CNN model (4UC=0.84) from non-HCC based solely on imaging data is

0 012 0.4 0.6 0.8 1.0
False positive rate
Fig. 5 The receiver operating characteristic curves of EL,
DT, KNN, SVM, 1D-CNN, 1D-ResNet and 1D-ConvNeXt

models in the testing cohort

3 Discussion

In this section, we will explore 4 key topics: the
differences between brightness change curves and
TIC curves, the advantages of our approach compared
to 2D and 3D liver cancer classification models, the
reasons for the lower specificity in HCC and non-
HCC classification, and the limitations of this study.

TIC and brightness change curves are two
methods for analyzing CEUS. TIC relies on manual
ROI delineation by radiologists, which is subjective
and time-consuming, focusing on early-phase
perfusion within the first 60 s. In contrast, brightness
change curves use YOLOX for automatic annotation,

enabling real-time analysis with an extended 180-

second  acquisition  window. This  captures
comprehensive tumor perfusion dynamics, including
late-phase  washout. The automated approach
enhances consistency and diagnostic accuracy,

especially in distinguishing HCC from non-HCC
malignancies.

A lot of 2D and 3D-CNN models have been
recently applied to liver cancer classification**7,
However, these experiments have limitations. For
example, they require manual ROI labeling by
radiologists  and data  storage,
computational volume, and computational
complexity™. The present study used YOLOX to
automate the annotation of ROIs and one-dimensional
brightness change curves for HCC and non-HCC

substantial

clinically challenging for radiologists'*”, and (2) non-

46
461 and

HCC belongs to a rare cancer category
experiments face challenges due to insufficient non-
HCC data. Nevertheless, our 1D-CNN model
outperformed the machine learning models. This

superior performance can be attributed to the 1D-

CNN model’s capability to automatically learn
discriminative features from the brightness change
curves24,

This study had a few limitations. The sample size
was small, and patients evaluated at multiple centers
with different instruments were not included. This
could potentially lead to the model’s diminished
ability to generalize, an over-reliance on the sampling
instrument, and a lack of model specificity. Moving
forward, we aim to gather more robust and extensive
case data to enhance the model’s training, thereby
addressing the issue at hand. Our findings are
preliminary. However, our model can be integrated
with the BUS and CEUS models to establish a
multimodal ultrasound network for improved HCC
detection.

4 Conclusion

This study presents an innovative automated
diagnostic method for differentiating HCC from non-
HCC
technologies to address key challenges: it uses the
YOLOX network for
generates brightness change curves without manual

cases. The system integrates advanced

automatic ROI labeling,
parameter extraction, and employs a lightweight 1D-
CNN to reduce computational costs. The 1D-CNN
outperforms traditional machine learning methods,
with improvements of 5.6%-10.0% in accuracy,
23.3%-43.3% in specificity, and 0.12-0.28 in AUC. It
previous 1D-ResNet and 1D-

also surpasses
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ConvNeXt models by 3.8%-5.6% in accuracy, 2.3%
-5.3% in sensitivity, and 6.6%-10.0% in specificity.

This practical system could be integrated into medical

devices to aid clinical radiologists in accurately

distinguishing HCC from non-HCC patients.
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