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Abstract The effect of low-dose light (LDL) therapy, commonly using red and near infrared (NIR) light (600-1 100 nm), has gained
attention in recent years as a relatively noninvasive technique in modulating the tissue metabolic system, nervous system, blood
circulation system and immune system. The progress in the basic science fields of bioenergetics and photobiology has propelled LDL
into the therapeutic revolution. The immune cells including macrophages, mast cells, neutrophils and lymphocytes as responder cells by
LDL have been studied in the animals and humans with producing cytokines and protective proteins. The paper will review the
mechanisms of immune action of LDL at the molecular, cellular, and tissue levels on mammalian.
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Since 1960s, Mester [1] discovered the biological
effects of low-dose light (LDL) acting on biological
tissue, LDL had gained attention by more and more
researchers as a novel scientific approach, which
induced nonthermal and nondestructive biological
reactions, for therapeutic applications in a variety of
experimental conditions. Patients, researchers and
clinicians around the world are devoting attention to
the potential therapeutic applications of LDL in
immunity and other medical fields that have
traditionally had a limited therapeutic contribution to
patient care.

Recently, the use of LDL has extended beyond
the realms of wound healing and pain, and recent
research supports its potential applications in
neurodegenerative diseases [2-3], type 2 diabetes [4],
osteogenic differentiation [5] and thrombocytopenia [6-7].
However, the exact mechanisms of those effects
induced by LDL are poorly understood, but the

mechanism is probably to be photochemically related.
Karu, a pioneer in the LDL field, proposed that
cytochrome c oxidase (CcO) was the photoacceptor
and signal transducer [8-9], which affected the
mitochondrial electron transport system [10] and the
biological regulation of reactive oxygen species
(ROS) [11-14], adenosine triphosphate (ATP) [15], nitric
oxide (NO) [16-17] and intracellular Ca2+ [18-19], and further
affected the ailment process including inflammation
and cytokine and growth factor release (Figure 1). The
article summarizes the available literature on
molecular mechanisms of the protective or enhancing
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1 Reduced inflammatory reaction by LDL
1.1 LDL regulates the secretion of cytokines

Inflammatory reaction is the physiological
reaction caused by the stimulation of trauma, bleeding
or pathogen infection. It is the innate immune
defensive reaction of immune cells and inflammatory
factors. Over the years, several studies on humans and
animals have shown that LDL has modulatory effects
on inflammatory markers of IL-1茁, IL-6, IL-8, TNF-琢
and prostaglandin E2 (PGE2), and relieves the
inflammatory process (edema, necrosis, neutrophil cell
influx, hemorrhagic formation). According to Chang
et al. [20], inflammatory symptoms are caused by pro-
inflammatory cytokines, such as IL-1茁, IL-6 and
TNF-琢. Study by de Almeida and colleagues [21]

reported LDL significantly decreased the inflammatory
mediator levels of IL-1茁, IL-6 and TNF-琢 in acute

skeletal muscle injury. Similarly, LDL could reduced
those cytokine production in the pathophysiology of
osteoarthritis (OA)[22]. 25 J/cm2 LDL also decreased the
level of pro-inflammatory cytokines of TNF-琢, IL-1茁,
and IL-8 in rheumatoid arthritis synoviocytes [23].
Additionally, the trauma-induced pro-inflammatory
state assessed by IL-6 and IL-10 was prevented LDL[24].
In parallel, LDL prevented trauma-induced reduction
in BDNF and VEGF, vascular remodeling and
fiber-proliferating markers. More recently, LDL has
been shown very interesting effects on modulation
of cyclooxygenase 2 (COX-2). (880依 10) nm LDL
decreased the inflammatory cell influx and mRNA
levels of COX-2 just in initial phase of Achilles
tendinitis [25]. COX-2 mRNA expressions were also
significantly decreased by treatment with 904 nm
LDL[26]. Almeida et al [27]. also found that 904 nm LDL
in 1.0 J group significantly decreases skeletal muscle

effects of LDL in a number of pathogenic conditions
including inflammatory reaction, cancer therapy-

induced complications (lymphedema, mucositis and
dermatitis), and anti-infection and anti-tumor effects.

Fig. 1 The mechanism model of LDL
Schematic diagram shows the red or near infrared (NIR) light is absorbed by the photoacceptors (e.g. cytochrome c oxidase) localized in mitochondria.
During the process, ROS and ATP production are increased, NO is released, and intracellular Ca2+ concentration ([Ca2+]i) is elevated. These responses
may ultimately lead to changes in cell morphology and function via activating some transcription factors[e.g., nuclear factor-资B (NF-资B), hypoxia
inducible factor-1 (HIF-1), activator protein-1 (AP-1) and cAMP-response element binding protein (CREB)].
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damage through less COX-2-derived gene expression.
However, the precise mechanism by which light
affects the cytokines is not yet known. LDL probably
modulated the pro-inflammatory cytokines by reducing
the IL-1茁 and COX-2 mRNA expression and
consequently reduced PGE2 levels by reducing cell
migration and the quantity of macrophages,
neutrophils, and mast cells in the injured tissue [28-29].
Macrophages and mast cells secrete the cytokine of
IL-1茁, which in turn recruits COX-2, an enzyme which
converts arachidonic acid into PGE2 [30-31]. From the
above we see that reduced inflammatory reaction by
LDL may depend not only on the light irradiation
parameters (wave length, radiation dose), but also on
pathological condition of the study model.
1.2 LDL increases MMPs and PA activity

Matrix metalloproteinases (MMPs), which are
considered to degrade the components of the complex
extracellular matrix, and plasminogen activator (PA),
which is implicated in the plasminogen-plasmin
proteolytic system, play a key role in extracellular
matrix degradation, synthesis of kinin and fibrinolysis
in the process of inflammation. Both 660 nm and 780 nm
verified by Cury and colleagues could decrease MMP2
activity in a model of ischemic skin flap in rats [32].
And MMP9 activity was decreased on induced arthritis
in the temporomandibular joint with 830 nm LDL
treatment [33]. Additionally, several human and animal
studies have shown that LDL with red to infrared
wavelengths reduces the release of PA[34-35]. Thus, LDL
probably modulates PA activity to degrade cell
adhesive molecules and extracellular matrix proteins[36]

through activation of MMPs [37]. Furthermore,
plasminogen activates the kinin cascade via converting
prekallikrein into kallikrein[38].
1.3 LDL modulates the immune cell activity

LDL also modulates the activity of mast cells,
macrophages, neutrophils and lymphocytes to reduce
the inflammatory process. Red LDL has been shown to
induce the mast-cell degranulation [39-40], leading to the
release of a multiple chemical mediators (VEGF121,
VEGF165, VEGF189 and VEGF206) [41], which are
related to vasodilation and vascular proliferation, and
can optimize the inflammatory process[42]. Song et al.[43]

reported that in rats LDL altered the macrophage
polarization from M1 state to M2 state, which dampens
the inflammatory and adaptive Th1 responses[44]. Other
studies observed that LDL reduced in the absolute
number of macrophages and neutrophils compared

with the injury group [22, 45], resulting in decrease of
secretion of pro-inflammatory cytokines and enzymes
such as IL-6 and TNF-琢 involved in driving the
inflammatory response[46]. For lymphocytes, LDL could
activate directly its proliferation in vivo[47-49], leading to
secrete anti-inflammatory cytokine of IL-10, which
inhibited the production of pro-inflammatory cytokines
and prevented macrophage and neutrophil infiltration
into the injury [50]. Additionally, the presence of
hemoglobin amplified the proliferation effect of LDL
irradiation on lymphocyte culture [49]. Hemoglobin
could catalyze free radical formation in the presence of
hydrogen peroxide as in the Fenton reaction[51]. LDL at
a given wavelength may promote ROS formation in a
hemoglobin rich environment, and then the generation
of an oxidative environment has a strong influence on
T lymphocytes[52].

2 Reduced cancer therapy鄄induced
complications by LDL

Not only drug resistance caused by chemotherapy
and molecular targeted therapy is a major obstacle to
the current tumor treatment [53-55], but also cancer
therapy-induced complications are a common clinical
problem. In human researches, LDL is widely studied
to ameliorate cancer therapy-induced complications.
Upper limb lymphedema, which is the result of the
regional accumulation of amounts of protein-rich
interstitial fluid caused by impaired lymph drainage [56],
is a common complication of breast cancer surgery. To
date, researchers have reported that LDL is benefit for
postmastectomy lymphoedema [57-59] through presumably
increasing microcirculation[60-61] to reduce the excessive
amounts of tissue protein and fluid, and finally
improve the limb performance. In particular, a study
indicated that LDL was often within hours of
irradiation as an efficacy treatment of lymphedema [62].
However, the molecular mechanisms of LDL in
lymphoedema tissue remain elusive. At the
microcirculatory level, the stimulatory/protective
effects of LDL is achieved by modulating the
angiogenic factor production by lymphocytes [63] and
endothelial cells [64] in situ, then to accelerate
spontaneous angiogenesis[65].

Oropharyngeal mucositis (OM), known as most
painful oral lesions[66], is a major complication of head-
and-neck oncologic therapy [67]. LDL was confirmed to
be effective in controlling of OM caused by various
cancer therapies [68-71]. Studies have unambiguously
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demonstrated that the mucositis pathogenesis are
complex and associate with pro-inflammatory
cytokines[72-73], microvascular injury[74], and extracellular
matrix alterations [75-76]. Silva et al. [77] showed that LDL
increased the levels of IL-10 in blood plasma and
MMP-2 in saliva on 7th chemoradiotherapy-induced
OM. Study by Oton-Leite [78] demonstrated that LDL
significantly reduced salivary concentration of IL-6,
EGF and VEGF during radiotherapy session. It
seemingly suggested the mechanism of LDL-reduced
the severity of OM caused by cancer therapy was
linked to the modulation of pro- or anti-inflammatory
cytokines, MMPs or growth factors. In an animal
model of OM, studies have reported that LDL
decreased the expression of COX-2[79], which elicits the
synthesis of pro-inflammatory prostaglandins in
malignant and inflamed tissues, and reduces the
infiltration of neutrophils in inflamed tissues [80], thus
further supporting the anti-inflammatory effect.

Radiation dermatitis (RD) occurs in a majority of
breast cancer patients who receive radiotherapy and
may exhibit symptoms such as redness, itching,
dryness, and peeling skin [81]. DeLand et al. [82] showed
that LDL reduced the incidence of skin reactions in
breast cancer patients treated by radiotherapy
postlumpectomy. Schindl and co-workers [83-84]

demonstrated that LDL healed a long-lasting
radiotherapy-induced skin ulcer. Regarding the
mechanism of action, LDL have been demonstrated to
induce neoangiogenesis via the activation of ERK/Sp1
pathway in vitro [64] and in vivo [83], to accelerate
collateral circulation and enhance microcirculation [85],
then to possibly improve skin circulation[86], and finally
to reduce tissue damage caused by ischemia [87]. An
alternative explanation of LDL-induced neoangiogenesis
is via ROS [88], which lead to increase the level of
HIF-1 [89], then regulate the transcription of VEGF [90-91].
Additionally, LDL could modulate certain cellular
proliferation and migration [92-94], and induce the
secretion of fibroblast growth factor family involved in
tissue repair [95]. Altogether, these findings suggested a
beneficial effect of LDL on cancer therapy-induced
complications and patients’ quality of life in cancer
patients.

3 Enhanced anti鄄infection and anti鄄tumor
effect by LDL

Recently, the effect of LDL-induced anti-
infection was further confirmed by Lu et al. [96]. They

showed that LDL enhanced anti-infection ability in
vivo to improve the macrophage phagocytic activity
through Rac1-mediated signaling pathway.
Simultaneously, Karunarathne et al. [97] showed that
488-, 515-, or 595-nm wavelength light could initiate
macrophage migration. The production of
pro-inflammatory cytokines (TNF-琢 and IL-1) by
murine peritoneal macrophages in vitro and in vivo
was raised by LDL accompanied with increasing the
ability of bacterial killing [98]. In neutrophils, LDL also
enhanced the ability to kill Candida albicans via the
generation of ROS [99]. In a wound infection model, it
was demonstrated LDL significantly decreased the
incidences of microbial flora (Staphylococcus aureus
and Bacillus subtilis) compared with placebo burns[100],
and increased the amount of blood vessels, remodeled
the collagen matrix, and matured collagen fibers in
infected wounds[101].

The obvious parabola features of the biological
effect of LDL on cells have been demonstrated by
several studies [102-103]. With an increase of light output
energy, its moderating action on cells can be increased
gradually, but when the light output energy exceeds a
certain threshold value, the inhibition effect of LDL
emerges [104]. According to Lu and colleagues [105], high
fluence, low-dose light (HF-LDL) was reported to kill
tumor cell, leading to activate macrophages to create
an immune memory response. A few molecular
mechanisms revealed that HF-LDL-induced apoptotic
tumor cells enhanced the pro-inflammatory cytokines
(TNF-琢 and NO) production in macrophage, through
upregulating NF-资B activity [106-107]. Those studies may
provide an effective therapeutic approach to induce an
antitumor immune response after HF-LDL treatment.

4 Conclusion
In conclusion, LDL has strong evidences for

many beneficial effects on inflammatory reaction,
cancer therapy-induced complications, and
anti-infection and anti-tumor in animal models and
human patients. In this review, LDL-induced those
effects mainly involve 4 growth factors (FGF, EGF,
TGF-茁 and VEGF), 5 interleukins (IL-1, IL-4, IL-6,
IL-8 and IL-10), 5 inflammatory cytokines (PGE2,
COX2, TNF-琢, MMPs and PA) and 4 immune cells
(macrophages, mast cells, neutrophils and
lymphocytes). The mediator molecules induced/
upregulated by LDL are summarized (Table 1).
However, the underlying mechanisms of those effects
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Mediator classification Molecules Actions/effects
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caused by LDL are not completely understood. The
precise molecular mechanisms are still needed to

further experiments for propelling LDL into the
therapeutic revolution.

Table 1 Mediator molecules associated with LDL

The mediator molecules are involved in different classification as noted. The actions and/or effects of those the mediators were summarized as
follows, whereas they are not comprehensive. Rather, it provides insight into those activities associated with LDL. Elements of the table were
developed from T. Sonis[108].
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摘要 最近几年，采用红至红外波长(600～1 100 nm)的低功率光照(low-dose light，LDL)疗法对组织代谢系统、神经系统、
血液循环系统和免疫系统等方面的调节效应已经引起了广泛关注．同时，生物能学和光生物学基础研究的发展推动了低功率

光照在疾病治疗领域的革新．有报道指出，巨噬细胞、肥大细胞、中性粒细胞和淋巴细胞等免疫细胞能响应低功率光照，产

生细胞因子和保护性的蛋白质分子来缓解一些疾病的进程．因此，本文将从分子、细胞和组织水平对低功率光照改善的一些

疾病的免疫学现象及机制进行归纳总结．
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