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Abstract Nanozymes, the catalytic nanomateria ls w ith enzyme-like properties, have attracted enormous interests in recent years.
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Fig. 1 Number of published papers on nanozymes
by the end of 2017

Data was from web of science.

Since the discovery of the unexpected peroxidase
mimicking activity of magnetic iron oxide
nanoparticles (NPs) by Yan and coworkers, nanozymes
researches have been growing at an exponential rate
(Figure 1) [1]. Nanozymes, the nanomaterials with
enzyme-like activities, possess higher stability and
lower cost than natural counterparts and traditional
artificial enzymes. In addition, the catalytic activities
of nanozymes can be modulated via varieties of
strategies [2-3]. Several types of natural enzymes have
been successfully mimicked by nanozymes, including
oxidase, peroxidase, catalase, superoxide dismutase
(SOD) and hydrolase, etc. [2-3] Based on these, diverse
applications were explored with nanozymes, such as
biosensing, cancer diagnosis, tissue engineering,
environmental protection and so on [2, 4-64]. Since
numerous reviews, chapters, and books on nanozymes
have been published, in this current review we
summarized the analytical chemistry applications of

nanozymes, covering both in vitro detection and live
bioassays (Figure 2)[2, 65-86].
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Fig. 2 Illustration of nanozymes applied in analytical chemistry: from in vitro detection to live bioassays
Adapted with permission from Ref. [2, 16, 87-90]. Copyright (2013) Royal Society of Chemistry, (2011) John Wiley and Sons, (2008) American

Chemical Society, (2014) American Chemical Society, (2016) American Chemical Society, (2017) American Chemical Society.

In vitro

In vivo

Normal tissue

Tumor tissue

Normal cells

Cancer cells

Gold nanoisland

Oxidase Nanozyme
H2O+oxTMBH2O2+TMBOxidized

substrate 1
Oxidized

substrate 2

Substrate 1
(Target)

H2O2

H2O

O2

Substrate 2

Cancer cell

Cancer cell

Glucose

Gluconic acid H2O2

O2

AuCl4
-

Au0

AuNPs@MIL-1-1@oxidase

Glucose Gluconic acid

ResorufinAmpliflu Red

O2

H2O2

2000 s

130· ·



李思蓉, 等：纳米酶在分析化学中的应用研究：从体外检测到活体分析2018; 45 (2)

Fig. 4 H2O2 displacing DNA from peroxidase鄄like ceria nanozyme for glucose detection
Reprinted with permission from Ref. [31], Copyright (2015) American Chemical Society.

Since then, various nanomaterials with peroxidase-
like activity have been developed, which were usually
used for H2O2 and glucose detection [31, 91-97]. For
example, ultrasmall Pt nanoclusters with peroxidase-
like activity were prepared and combined with GOx
for glucose detection in human serum [92]. Co4N
nanowires with peroxidase-like activity showed good
salt- and temperature-resistance, which were then used
to develop facile assay for H2O2 and glucose [93].

Recently it reported that H2O2 could displace DNA
from peroxidase-like ceria nanozymes. Such a
displacement would recover the inhibited catalytic
activity of nanoceria and enable the catalytic oxidation
of a colorimetric (or fluorescent) substrate in the
presence of H2O2 and nanoceria. On the basis of this
interesting phenomenon, a sensing strategy for
serum glucose was developed by combing with GOx
(Figure 4)[31].

Fig. 3 Fe3O4 nanozymes with glucose oxidase for glucose detection
Adapted with permission from Ref. [2, 87], Copyright (2013) Royal Society of Chemistry, (2008) American Chemical Society.

Note: due to the space limit, only a small number
of references are discussed here, readers are therefore
referred to the books and reviews mentioned above for
further information.

1 Nanozymes for in vitro detection
Inspired by Yan’s pioneering work [1], Wei and

Wang developed a facile bioassay with iron oxide
nanozymes for hydrogen peroxide and glucose
detection [87]. Since then, nanozymes have been applied
for in vitro detection of various important targets,
which include bioactive small molecules, nucleic
acids, protein biomarkers, cells, etc.
1.1 Bioactive small molecules

In their study, Wei and Wang used Fe3O4 NPs
with peroxidase mimicking activities to develop a

facile colorimetric assay for H2O2
[87]. By catalyzing the

oxidation of 2, 2'-azino-bis(3-ethylbenzo-thiazoline-6-
sulfonic acid) diammonium salt (ABTS) with H2O2 in
the presence of Fe3O4 nanozymes, the green colored
product (i.e., ABTS˙+) was obtained. The detection of
H2O2 was therefore achieved using naked eyes or
UV-visible absorption spectroscopy. A linear range
from 5 伊 10-6 to 1 伊 10-4 mol/L and a detection limit of
3 伊 10-6 mol/L were obtained for H2O2 detection with
the developed assay. Moreover, they combined glucose
oxidase (GOx) with the peroxidase-like Fe3O4

nanozymes to enable an enzymatic cascade reaction
for glucose detection. As shown in Figure 3, a sensitive
and selective glucose assay was achieved with the
proposed sensing strategy.

H2O2

Fe3O4 Nanozyme

ABTS

ABTS·+

GOx

Gluconic acid

Glucose

O2 H2O 5 mmol/L
maltose

5 mmol/L
lactose

5 mmol/L
fructose

Buffer500 滋mol/L
glucose

Glucose

Gluconic acid

H2O2

GOx

Nanoceria

Free
DNA

+
Nanoceria

+
H2O2

131· ·



生物化学与生物物理进展 Prog. Biochem. Biophys. 2018; 45 (2)

O2

H2O

TMBRed

Fast

AChE
H+

TMBRed

O2

H2O

O2

H2O

TMBRed

H+

Urease
TMBOx

TMBOx

CeO2

CeO2

CeO2
Slow

Fig. 6 Modulating oxidase鄄like ceria nanozymes for self鄄regulated bioassays
Reprinted with permission from Ref. [107], Copyright (2016) American Chemical Society.

Recently, we showed that the oxidase-like activity
of nanoceria could be cooperatively modulated by
proton and adenosine triphosphate (ATP) [107]. Then
using proton-producing/consuming enzymes, we
developed self-regulated bioassays to detect the
corresponding enzyme activities (Figure 6). More,

since the enzyme activities could be tuned by nerve
agents (such as methyl-paraoxon), drugs (such as
tacrine), and bioactive ions (such as fluoride ion), we
further developed assays for determining these
bioactive molecules.

Fig. 5 Target detection by combing its corresponding oxidase with a peroxidase mimicking nanozyme
Reprinted with permission from Ref. [2], Copyright (2013) Royal Society of Chemistry.

Since H2O2 is the key product to diverse oxidation
processes, in principle, it is universal to use cascade
reaction constructed by oxidase and peroxidase to
detect a wide range of bioactive small molecules. As
hypothesized, choline, cholesterol, galactose and
xanthine were quantified by integrating their
corresponding oxidase with a peroxidase mimicking
nanozyme (Figure 5) [2, 98-106]. Moreover, Yan and
coworkers explored a rapid colorimetric assay for
organophosphorus pesticide and nerve agent by
exploring enzymatic cascade reactions [104]. First,
acetylcholinesterase (AChE) catalyzed the hydrolysis

of acetylcholine to produce choline. Then, choline was
oxidized in the presence of choline oxidase to produce
H2O2. Finally, detectable color signal would be
generated by oxidizing 3, 3', 5, 5'-tetramethylbenzidine
(TMB) in the presence of H2O2 and peroxidase-like
Fe3O4 nanozymes. Since organophosphorus reagents
were inhibitors to AChE, the presence of them would
inhibit the enzyme activity and thus produced less
H2O2 and weaker color signals. With this method,
1 nmol/L Sarin, 10 nmol/L methyl-paraoxon, and
5 滋mol/L acephate were successfully detected.
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Citrate gold nanoparticles (AuNPs) with
GOx-like activity could be modulated by DNA, as
reported by Fan and coworkers (Figure 8) [16]. The
AuNPs catalyzed the oxidation of glucose to produce
H2O2, which would act as a reducing agent to grow
gold nanoislands onto the AuNPs. ss-DNA interacted
strongly with AuNPs, leading to the inhibition of the
catalytic activities and the gold nanoislands growth.
On the other hand, the oxidase-like activities of AuNPs
were unaffected by ds-DNA due to the negligible

interactions between ds-DNA and AuNPs, allowing for
the gold nanoislands growth. Moreover, the
newly-grown Au nanoislands had a red-shift peak in
the surface plasmon resonance (SPR). Therefore, the
presence of ss-DNA vs. ds-DNA could be
differentiated under dark-field illumination. Using an
ss-DNA as the probe, the presence of a complementary
target nucleic acid (such as an ss-DNA or a
microRNA) could be detected with the developed
method.

Fig. 7 Hemin/graphene nanozymes for single鄄nucleotide polymorphism detection
Reprinted with permission from Ref. [17], Copyright (2011) American Chemical Society.

1.2 Nucleic acids
With huge success in bioactive small molecules,

researchers attempted to detect macromolecules under
the similar principle, leading to biosensors based on
oxidase-like, peroxidase-like, and catalase-like
nanozymes for nucleic acid detection [16-17, 108-128]. Dong
et al. demonstrated that by assembling hemin onto
graphene, highly active peroxidase mimic could be
prepared [17]. Moreover, they demonstrated the
coagulation of hemin/graphene obeyed the 2D
Schulze-Hardy rule (i.e., the balance between van der
Waals attraction and electric double-layer repulsion

played a key in the dispersion of hemin/graphene).
They further showed that single-stranded DNA
(ss-DNA) had stronger affinity towards the
hemin/graphene than double-stranded DNS (ds-DNA).
Such a difference enabled the distinguishing ss-DNA
from ds-DNA using the hemin/graphene. On the basis
of these interesting properties of the hemin/graphene,
they went on to develop a facile assay for
single-nucleotide polymorphisms (SNPs) in
disease-associated DNA (such as SNPs in Hepatitis B
virus) (Figure 7).
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Fig. 9 Catalase鄄like PtNPs combined with volumetric bar chart ship for DNA detection
Reprinted with permission from Ref. [114], Copyright (2013) American Chemical Society.

PtNPs with catalase-like activities have been used
to fabricate volumetric bar chart chip for DNA
analysis (Figure 9)[114]. Catalase-like PtNPs speeded the
decomposition of H2O2 into O2. The produced O2 was

then measured by a propelled volumetric bar chart
chip, which was directly visualized. By using a
sandwich assay format with PtNPs, as low as 20 pmol/L
target DNA could be successfully detected.

When functional nucleic acids, such as aptamers
and DNAzymes, were used to modulate the activities

of nanozymes, aptasensors were fabricated [128]. For
example, an anti-thrombin aptamer was able to

Fig. 8 Regulating the catalytic activity of oxidase鄄like AuNPs using DNA for DNA detection
Reprinted with permission from Ref. [16], Copyright (2011) John Wiley and Sons.
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1.3 Protein biomarkers
Enzyme linked immunosorbent assay (ELISA) is

one of the most useful approaches to analyze
protein-based biomarkers. However, the limited
stability and high cost of the enzymes (such as
horseradish peroxidase) for signaling hinder its
applications. To solve this issue, immunoassays have
been developed with various nanozymes for detection
of protein biomarkers[1, 40, 59, 129-150].

Notably, Yan in 2007 developed an antigen-down
immunoassay format and a capture-detection sandwich
immunoassay format for the detection of hepatitis B
virus surface antigen (preS1) and myocardial infarction
biomarker troponin玉(Tn玉), respectively[1]. Recently,
they established an interesting nanozyme strip for

Ebola detection (Figure 11) [147]. With it, the
glycoprotein of Ebola virus (EBOV) could be detected
as low as 1 滋g/L, which was two orders of magnitude
better than conventional strip technique. Moreover, the
nanozyme strip could be finished within 30 min,
providing a rapid and easy-to-use test for urgent Ebola
diagnosis.

Numerous sandwich assays have been developed
with nanozyme labeled antibodies. For example,
highly active gold vesicles encapsulated with Pd-Ir
NPs nanozymes with peroxidase mimicking activities
were employed to develop an immunoassay for
prostate surface antigen (PSA) detection [59]. As shown
in Figure 12, due to the amplified signals generated by
the nanozymes, the detection limit (i.e., pg/L) for PSA

enhance the peroxidase-like activity of AuNPs. When
thrombin was added, the interaction between the
aptamer and AuNPs weakened. Therefore, the
peroxidase-like activity of the AuNPs decreased.
Similarly, an electrochemical biosensor was designed
for thrombin detection by labeling an anti-thrombin
aptamer with Fe3O4 nanozymes. In the absence of
thrombin, the flexible aptamer on an electrode
produced low electrochemical signals. However, when
thrombin was present, it interacted with its aptamer
and brought Fe3O4 nanozymes closer to the electrode,
resulting in increased electrochemical signals. With the
developed strategy, thrombin detection was achieved

with a linear range of 1.0-75 nmol/L and a detection
limit of 0.1 nmol/L [111]. Thrombin has two aptamers,
one is a 15-mer and the other is a 29-mer. Yang et al.
used them to develop a sandwich assay for thrombin
(Figure 10). The 29-mer aptamer was used to capture
thrombin, and the 15-mer aptamer with Fe3O4

nanozyme labels was used for generating detectable
signals. With such a sandwich assay, a sensitive and
selective thrombin detection was accomplished [109].
Other functional nucleic acids, such as poly(dT), have
also been utilized to design nanozyme-based
aptasensors[117, 127].

Fig. 10 Fe3O4 nanozyme combined with anti鄄thrombin aptamers for thrombin detection
Reprinted with permission from Ref. [109], Copyright (2010) Elsevier.
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Fig. 12 Pt鄄Ir NPs nanozymes based sandwich assay
for disease biomarker detection

Reprinted with permission from Ref. [59], Copyright (2017) American

Chemical Society.

Fig. 11 Nanozyme based strips for Ebola detection
Reprinted with permission from Ref. [147], Copyright (2015) Elsevier.

increased by three orders of magnitude compared with
conventional immunoassays.
1.4 Cells

Nanozymes have also been used for cell
detection [25, 43, 151-155]. For example, better peroxidase
mimicking activities were obtained for the in situ
growth PtNPs on graphene oxide. Then folic acid, an
effective recognition moiety, was labelled for specific
cancer cell detection (Figure 13). With the
nanozyme-based assay, as few as 125 MCF-7 cancer
cells were distinguished by naked-eye observation,
demonstrating its promising applications in biomedical
detection[151].

Recently a sensitive and selective method for
qualifying the expression of integrin GP域 b/芋 a, an
important cell membrane receptor related to platelet
aggregation and cancer pathogenesis, was reported [39].
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Fig. 13 Schematic of colorimetric cancer cell detection with PtNPs/graphene oxide nanozymes
Reprinted with permission from Ref. [88], Copyright (2014) American Chemical Society.
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Fig. 14 AuNPs with peroxidase鄄like activity for selective
detection of integrin GP域b/芋a expression

Reprinted with permission from Ref. [39], Copyright (2015) American

Chemical Society.

Fig. 15 Bioorthogonal nanozyme design and supramolecular regulation of intracellular catalysis
Reprinted with permission from Ref. [32], Copyright (2015) Nature Publishing Group.

As illustrated in Figure 14, AuNPs with
peroxidase-like activities were labeled with an integrin
GP域 b/芋 a targeting peptide. After recognizing the
GP域b/芋a with the AuNPs/peptide, the nanozymes
could generate colorimetric signal by catalyzing the

oxidation of TMB with H2O2. The integrin GP域b/芋a
could also be detected by the NIR two-photon signals
of the AuNPs/peptide. With the nanozyme-based
method, it determined that around 6.4 伊 106 integrin
receptors were expressed on a single human
erythroleukemiac (HEL) cell.
1.5 Others

Nanozymes have also been explored for other
bioassays, such as cellular imaging, and ions and
bacteriumdetection [31, 63, 88, 152-158]. Recently, Rotello and
coworkers have designed bioorthogonal nanozymes
and used them for intracellular catalysis [32]. As shown
in Figure 15, they first assembled molecular catalysts
onto a AuNP, and then used CB [7] to complex the
ligands on the AuNPs [32]. Such a complexation would
inhibit the nanozymes' activities. When nanozymes
entered a cell, CB [7] could be released by interacting
with 1-adamantylamine (ADA). Therefore, the activity
of nanozymes was recovered, which then converted a
non-fluorescent probe into a fluorescent one for cell
imaging. Alternatively, the nanozymes could also
convert a pro-drug into a potent drug for therapy.
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AuNPs with both peroxidase mimicking and
SERS (surface-enhanced Raman scattering) activities
have been developed recently[90]. By integrating natural
GOx and LOx with AuNPs@MIL-101, two integrated

nanozymes (i.e., AuNPs@MIL-101@GOx and
AuNPs@MIL-101@LOx, LOx for lactate oxidase)
were fabricated for monitoring glucose and lactate.
After evaluating the sensitivity and selectivity for in

Fig. 16 Real time monitoring glucose level in live brains following ischemia鄄reperfusion
Reprinted with permission from Ref. [89], Copyright (2016) American Chemical Society.

Recently, it was found that the oxidase-like
activity of nanoceria could be significantly enhanced
by fluoride ion capping [156]. By making use of this
interesting phenomenon, Liu et al. [157] developed an
ultrasensitive assay for detection of fluoride ion water
and in toothpastes. The oxidase-like activity of Au@Pt
nanorods could be selectively inhibited by mercury
ions (Hg2+). On the basis of the inhibitory effect, an
assay for Hg2+ was reported with a detection limit of
55 滋mol/L. More, paper chips based gold nanozyme
were developed, too[62].

2 Nanozymes for live bioassays
Despite the substantial progress in nanozyme-

based bioassays, quite limited studies have been
devoted to the live bioassays[89-90, 158-161]. This is partially
due to the complicated conditions of live systems as
well as moderate activity of the currently developed
nanozymes[86, 162-163]. Nevertheless, several recent studies
showed that nanozymes could be employed for live
assays, such as monitoring bioactive molecules in
brains and evaluating the efficacy of therapeutic

drugs[89-90, 158-159, 161].
2.1 Live brains

Wei and coworkers recently developed an
effective strategy to prepare highly efficient
nanozymes by self-assembling a natural enzyme and a
molecular catalyst within metal-organic frameworks
(MOFs) [89]. The obtained nanozymes, termed as
integrated nanozymes, showed better catalytic
activities in the cascade reaction as a result of the
nanoscale proximity effect. Moreover, they showed the
fabricating strategy was universal since it could be
used for three catalysts encapsulation. They continued
to develop an online sensing platform for monitoring
live brain glucose level by immobilizing the
GOx/hemin@ZIF-8 nanozyme onto a microfluidic
chip (Figure 16). Glucose would be oxidized to
produce H2O2, which subsequently oxidize a
colorimetric substrate (or a fluorescent substrate, such
as Amplifu Red) to generate detectable signals (such as
Resorufin for fluorescent detection). With the online
platform, they were able to monitor the brain glucose
levels following ischemia-reperfusion.
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Fig. 18 Continuous monitoring lactate in live brains
with Pt鄄ceria@LOx (LOx alone)

Reprinted with permission from Ref. [159], Copyright (2015) American

Chemical Society.

An electrochemical biosensor for continuous
monitoring lactate in live brains was fabricated [159]. By
immobilizing LOx and Pt-ceria on a Pt wire, a
microelectrode was prepared for in vitro and in vivo
detection of lactate. Because lactate is an indicator for
the tissue oxygen levels, the microelectrode was used
to monitor lactate levels during hypoxic conditions. In
vitro study demonstrated the satisfactory sensitivity and
selectivity of the microelectrode. By implanting the
microelectrode in the hippocampus of live rats, the
continuous monitoring of lactate over 2 h was
demonstrated (Figure 18). Compared with LOx alone,
the presence of Pt-ceria significantly enhanced the
biosensor performance, which could be ascribed to the
high catalytic activity of Pt-ceria.

Fig. 17 Monitoring glucose and lactate in live rats’brains with AuNPs@MIL鄄101@GOx and AuNPs@MIL鄄101@LOx
nanozymes and evaluating the efficacy of ATX for alleviating cerebral ischemic injuries

Reprinted with permission from Ref. [90], Copyright (2017) American Chemical Society.

vitro detection of glucose and lactate with the
nanozymes, they were used for monitoring glucose and
lactate levels in live brains following ischemia-
reperfusion. It showed that the glucose level was
lowered while the lactate level was raised after

ischemia. Moreover, it demonstrated that the treatment
with astaxanthin (ATX) could alleviate the fluctuation
of glucose and lactate levels in live brains during
ischemia (Figure 17).
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Fig. 19 Metabolism of glucose or lactate in normal and tumor tissues
(a) Warburg effects in normal and tumor cells. (b) Glucose and lactate levels in normal and tumor tissues. Reprinted with permission from Ref. [90],

Copyright (2017) American Chemical Society.

2.2 Live tumor tissues
Since nanozymes were sensitive to bioactive

small molecules such as glucose and lactate, the
metabolism of glucose or lactate in normal and tumor
tissues was studied by using the AuNPs@MIL-
101@GOx and AuNPs@MIL-101@LOx nanozymes[90].

As shown in Figure 19, the glucose level in tumor
tissue was significantly lower than the normal tissue
while the lactate level in tumor tissue increased. Such
a difference was probably owing to the Warburg effect,
a metabolic hallmark of tumor cells.

2.3 Metabolism in live animals
It is important to understand nanozymes in vivo

behaviors (such as biodistribution, pharmacokinetics
and organ clearance). Using Fe3O4 nanozymes with
peroxidase-like activity as a model, Yan et al. studied
the biodistribution and the organ clearance of Fe3O4

nanozymes [158]. They first demonstrated the feasibility

of using the intrinsic peroxidase mimicking activity of
Fe3O4 nanozymes for visualizing the nanozymes in
tissues. They then showed that dextran-coated
nanozymes were mainly located in liver, spleen, and
lung (Figure 20). Moreover, they discovered the rapid
clearance of the nanozymes in mice.
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Fig. 20 Ex vivo detection of iron oxide NPs in mice using their peroxidase鄄like activity
Reprinted with permission from Ref. [158], Copyright (2012) American Chemical Society.

Very recently, we fabricated 2D MOF nanozymes
with peroxidase-like activities using various tetrakis
(4-carboxyphenyl)porphyrin (TCPP) ligands and metal
ions[161]. A systematic study showed that chelated metal
ion in TCCP played a key role in the enzymatic
activity. Among the TCCP (M) studied, TCCP (Fe)

contained 2D MOF showed the highest peroxidase-like
activity. The 2D Zn-TCCP (Fe) nanozyme was then
used to develop an assay for monitoring heparin
metabolism in live rats (Figure 21). A heparin specific
peptide, AG73, was employed to selectively recognize
heparin [164-165]. AG73 tended to interact with the 2D
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Fig. 21 Monitoring heparin metabolism in live rats with peroxidase鄄like 2D MOF
Reprinted with permission from Ref. [161], Copyright (2017) American Chemical Society.
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Zn-TCCP (Fe) nanozyme and thus inhibit its activity.
The presence of heparin would liberate the nanozyme
by interacting with AG73 and recover its catalytic
activity. Using such a competing assay, heparin
elimination from live rats was successfully monitored.

3 Conclusions and prospects
In this review, we highlighted the recent progress

of nanozymes in analytical applications. The promise
of nanozymes for both in vitro and in vivo analytical
applications was demonstrated using representative
examples. For in vitro applications, bioactive small
molecules (such as H2O2, glucose, lactate, choline, and
cholesterol), nucleic acids, protein biomarkers (such as
PSA), cancer cells, and ions have been detected with
the use of nanozymes. For in vivo applications, they
have been employed for monitoring bioactive
molecules (such as glucose and lactate) in live brains
and tumor tissues. They were also used to evaluate the
therapeutic efficacy of some drugs and to study the
metabolism of both bioactive molecules and nanozyme
themselves.

As demonstrated by the exciting progress, the
field of nanozyme research has attracted growing
interests. Here we suggest several challenges that still
remain to be addressed [2, 78]. First, quite limited studies
have been devoted to the in vivo applications of
nanozymes in analytical chemistry. Therefore, more
studies are expected in the near future. However, to
apply nanozymes for practical live assays, nanozymes
with better activity, higher selectivity, and good
biocompatibility are needed. Therefore, new design
and synthetic strategies should be developed for better
nanozymes. Second, the therapeutic applications of
nanozymes have not been combined with their
analytical ones. By designing and fabricating
theranostic nanozymes, such a combination would
provide a better way for future nanomedicine.
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纳米酶在分析化学中的应用研究：

从体外检测到活体分析 *

李思蓉 1)** 黄彦钧 1)** 刘嘉睿 1)** 汪尔康 2)*** 魏 辉 1)***

(1)南京大学现代工程与应用科学学院，生物医学工程系；生命化学协同创新中心；南京微结构国家实验室(筹)，南京 210093；
2)中国科学院长春应用化学研究所，电分析化学国家重点实验室，长春 130022)

摘要 纳米酶是指具有类酶催化活性的纳米材料．近年来，纳米酶研究引起了人们的极大兴趣．纳米酶已被广泛应用于诸如

生物传感、生物成像、疾病治疗和环境保护等众多领域．在本综述中，我们将着重讨论纳米酶在分析化学领域的研究进展．

首先将讨论纳米酶在体外检测的应用，将包括生物活性小分子、核酸、蛋白质类生物标志物、细胞等的检测．其后将讨论纳

米酶在活体分析的应用，将包括监测活脑、肿瘤组织等的生物活性小分子、药物的药效、药物与纳米酶的代谢等．最后，我

们将讨论纳米酶应用于分析化学时面临的挑战和未来研究前景．

关键词 纳米酶，体外，活体，分析化学，模拟酶，仿生化学

学科分类号 O65，Q811 DOI: 10.16476/j.pibb.2017.0469
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