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Abstract In order to complement the randomization of the Eigen model and the Crow-Kimura model, the site mutation rate in
the Crow-Kimura model is treated as a Gaussian distributed random variable. The characteristics of the error threshold as well as the
relationship between the extension of the error threshold and the fluctuation strength of the randomized mutation rate are
investigated. It is shown that both the relative concentrations and the order parameter indicate the error threshold is no longer a phase
transition point but a smooth crossover region in the presence of a sizable fluctuation of the site mutation rate. The quantitative
analysis demonstrates that the relationship between the width of the crossover region and the fluctuation strength in the mutation
randomized Crow-Kimura model is nonlinear. The obtained results are compared with those from the randomized Eigen model and it
is found that for the two randomized models the relationship between the width and the fluctuation strength is linear for the
randomized fitness and nonlinear (exponential) for the randomized site mutation rate. For the randomized Crow-Kimura model the
width caused by the randomized fitness is comparable to that caused by the randomized site mutation rate. Nevertheless, for the
randomized Eigen model the width is mainly caused by the randomized site mutation rate. A full picture about the randomization
effects of the fitness and site mutation rate on the error threshold based of the Eigen model and the Crow-Kimura model is then
outlined. The implications of the above results for anti-viral strategies, cancer therapy and breeding of animals and plants are

discussed.
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In 1971 Manfred Eigen!!! proposed a model for considered as two independent processes, more
the origin of genetic information in a prebiotic specifically, the molecular self-replication is accurate
scenario which contains biological, physical, (even if there are some errors, they could be repaired
chemical, mathematical and information-theoretic completely), and the mutation 1is caused by
aspects and is dubbed as the Eigen molecular environmental factors, such as radiations, mutagens,
quasispecies model (Eigen model). The Eigen model free radicals and thermal fluctuations. The Crow-

is nevertheless a far-reaching model and has turned
out to be very useful for describing the evolution
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successful molecular quasispecies model is the Crow-
Kimura model where the mutation and selection are
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Kimura model is therefore called as the parallel
mutation selection scheme!?. Both the two schemes of
mutation and selection are relevant to biology and
they are similar to each other in the case of low
mutation rates’**¥ although which is the better and
more practical scheme remains a question of debate.
Both the Eigen model and the Crow-Kimura model
have been extensively studied in the past four
decades™!3). They shared so much in common,
especially their steady state properties. For instance,
both of them give the error threshold in many fitness
landscapes and display the quasispecies for small
mutation rates, which serve the most interesting and
of the two models>*. The
quasispecies means the distribution of some mutant

important features

sequences localized around the master sequence. The
error threshold is a point above which there is no
genetic information in the macromolecules and all of
the sequences are randomly distributed in the

sequence space. The characteristics of the
quasispecies and error threshold have been confirmed
which

illuminates the prediction power of the two models.

by many experiments!®!8], certainly

Species evolution in nature is however always
influenced by many stochastic factors, for instance,
random genetic mutations and environmental
fluctuations. Essentially, it is a process of interaction
between species populations and their environments.
The important physical parameters appearing in
species evolution models are therefore subject to
various random factors and should be stochastic.
Indeed, the randomized study on biological processes
both in theory and experiment has become quite
activel'22,  The
(FMDV) evolution experiments found that the relative
fitness of the virus appears a fluctuating pattern
around a constant average fitness!?34l, The fitness and
mutation rate are the two key physical parameters
both in the FEigen model as a coupled mutation

selection scheme and the Crow-Kimura model as a

foot-and-mouth  disease  virus

parallel mutation selection scheme. They measure the
selection and mutation of species evolution and
govern the dynamics and steady state properties of the
two models.

In the framework of the Eigen model, the fitness
and mutation rate were treated as Gaussian distributed
random variables-?7. The change of the error
threshold due to the randomization was systematically
and exhaustively examined and the interesting feature

for a randomized quasispecies to pass through the
error threshold was found and well understood. It was
found that the error threshold appears as a crossover
region instead of a phase transition point in the
randomized Eigen model, and the width of the
crossover region defined®*?” increases linearly with
the fluctuation strength of the randomized fitness and
nonlinearly with the fluctuation strength of the
randomized mutation rate. The width induced by the
randomized mutation rate is much greater than that
caused by the randomized fitness. The width is sizable
for large fluctuations, especially in the case of the
randomized mutation rate, which suggests that the
upper limit of the crossover region should be reached
in order to completely drive viruses to go extinct. In
the existing work>, the fitness was described as a
distributed
framework of the Crow-Kimura model and the

Gaussian random variable in the
modification of the error threshold due to the
randomization was investigated. With a parallel
mutation selection scheme, the randomization of the
mutation rate has been not yet reported. The mutation
in the parallel scheme may be caused by many
environmental factors, such as radiations, mutagens,
free radicals and thermal fluctuations as mentioned
before. Some of them are usually uncontrollable and
unpredictable. As a result, the mutation rate should be
a random variable.

In this work, in order to complement the
randomization of the Eigen model and the Crow-
Kimura model, the mutation rate in the Crow-Kimura
model is treated as a Gaussian distributed random
variable. The focus of the present work is placed on
the characteristics of the error threshold as well as the
relationship between the extension of the error
threshold and the strength of the
randomized mutation rate. The obtained results are
compared with those from the randomized Eigen
model to see the similarity and difference between the
two randomized models having different mutation and
selection schemes. In section 1, we introduce the

fluctuation

conventional ~ Crow-Kimura model and the
randomized Crow-Kimura model as well. In section 2,
based on the mutation randomized Crow-Kimura
model, the ensemble averaged relative concentrations
are computed and a quantitative analysis for the
extension of the error threshold is performed.
Meanwhile, to further examine the change of the error

threshold an order parameter is calculated for different
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values of the fluctuation strength of the randomized
mutation rate. In addition, the obtained results are
compared with those coming from the Crow-Kimura
model with the randomized fitness and from the
randomized Eigen model. Finally, concluding remarks
are made in section 3.

1 Models

The Crow-Kimura quasispecies model was
proposed to study the Drosphilla's evolution before
the Eigen quasispecies model, which was given some
consideration in Chapter 6 in the textbook by Crow
and Kimura (1970) . Just like the Eigen model, the
Crow-Kimura model was traditionally formulated in
the language of chemical kinetics and can describe the
basic processes

molecules with

of mutation and selection for

self-replicating and information
decoding functions, for instance, DNA and RNA. In
the Crow-Kimura model, different individuals are
represented by macromolecular sequences with length
N. If one only considers the purine and pyrimidine
each site of a sequence is a binary variable, and the
i-th sequence can be denoted by S, =(s},55,....5%),
where s, = -1 or 1 represents the purine or the
of all possible
sequences is 2V. In the population, the sequence

pyrimidine. The total number
without mutation is called the wild sequence or
reference sequence and the other sequences are the
mutant sequences. The evolution dynamics of the
sequences is given by

2.\ 2\
% = (n- - erxf)xi +2m (D)
j=1 j=1

Here, x, and r, are the relative concentration and
fitness of the i-th sequence, respectively. The latter
reflects the replication rate of the sequence. A simple
single peak fitness landscape is adopted in the present
paper, in which r; = A,r, = A, = A1 <i<2") and for
all the mutant sequences they have the same fitness.

2’\
The factor erxj is the mean fitness of the population
j=1
(or the
concentration constant. m; represents the mutation

dilution flux) which keeps the total

rate from S; to S; per unit period of time. We adopt the
specification for the mutation rate given by Baake et
al B,

mo o h(ij)=1
m; =10, h(i,j)>1 (2)
~Nu, h(i.j)=0

where u is the mutation rate for each site, h(i, j)

represents the Hamming distance between sequences
N

S, and S, h(i,j)=(N - Y sis))/2, which is the
k=1

number of the different sites between the two
sequences. The above coupled set of equations
governs the evolution of the master sequence and
mutant sequences, with which one may discuss the
steady state properties of the
population. The coupled set of equations contains 2V

dynamics and

equations, which precludes any direct calculation
even for moderate values of N. Nevertheless, we may
classify all possible sequences according to the
Hamming distance from the master sequence. The
sequences with the same Hamming distance form a
class and one has therefore N + 1 classes. The
classification simplifies the problem greatly. In
addition, the transformation defined by the Eq. (3)[*¥! is
used in the present paper which turns the coupled set
of equations into a set of linear equations. The set of
linear equations can be written in the matrix form and
its coefficient matrix determines the evolution
dynamics of the classes (the population). The relative
concentration for each class in its steady state is
uniquely determined by the right eigenvector of the
largest eigenvalue of the coefficient matrix>2%. The
steady state is the state when time goes to infinite,
which is an asymptotic state thereof. In the present
paper, we only focus on the steady state properties of
the relative concentrations of the classes.

In the
model, we regard the site mutation rate as a Gaussian
distributed probability
distribution is given by

mutation randomized Crow-Kimura

variable.  Its density

D) e

()= exp( U
P vV 2mw? P 2w’

Here, u is a variable, # and ” denote the
averaged value and variance of the random variable.
In order to compare with the deterministic Crow-
Kimura model, @ is identical to the mutation rate w
used in the deterministic Crow-Kimura model. The
fluctuation strength of the random variable is defined
as d = w/u, representing the relative width of the
Gaussian distributed random variable. As a result of
the randomization of the site mutation rate, the
relative concentration of each class becomes a random
variable and is characterized by its ensemble averaged
value and the deviation from the mean value. We are
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only interested in the steady state properties of the
randomized concentration.

2 Results and discussions

2.1 Characteristics of the error threshold in the
mutation randomized Crow—Kimura model

In the numerical simulations, we set the sequence
length N=20, the fitness of the wild class 4, = 10 and
the fitness of all the mutant classes A, = A, =1, so a
single peak fitness is used here. For the deterministic
Crow-Kimura model, the relative concentration of
each class at its steady state versus the site mutation
rate (w) is calculated (Figure 1) in which number 0
represents the wild class, and numbers 1, 2, 3...
denote the mutant classes 1,2, 3.... When the site
mutation rate(u) is small, the quasispecies distribution
appears, namely, the mutant classes gather around the
wild class which peaks there. As w increases, the
relative concentration of the wild class decreases, and
the relative concentrations of the mutant classes
increase. If u goes beyond the error threshold, all
classes have the same negligible concentration. The
error threshold is located at u,=0.49, which is a sharp
point similar to a phase transition in physics.

For the mutation randomized Crow-Kimura
model, the site mutant rate is replaced by a Gaussian
distributed random variable. We take ten thousand (or
more) random samples and perform the ensemble

average. The  ensemble  averaged  relative
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Fig. 1
steady states based on the deterministic Crow—Kimura

Relative concentrations of the classes in their

model versus the site mutation rate (u )
The error threshold is located at u,=0.49. Number O in the figure
represents the master class, and numbers 1, 2, 3... denote different

mutant classes.

concentrations of the classes at their steady states
versus the site mutation rate u are computed (Figure
2) where the fluctuation strength ¢=0.05. One can see
that when the fluctuation strength is small (¢=0.05),
the change of the error threshold is slight. As a whole,
the averaged relative concentrations in this case are
basically consistent with those obtained from the
deterministic Crow-Kimura model. Nevertheless, with
the increment of the fluctuation strength, the change
of the error threshold becomes more and more
obvious. The error threshold extends downwardly as
upwardly. The
suppresses the dominance of the wild class in the
population and therefore destroys the quasispecies
structure. The upward extension pushes the real error
threshold to a larger value. This situation is illustrated
(Figure 3) in which d=0.25, the error threshold has
completely turned into a smooth crossover region.
Although the error threshold is modified significantly
for a strength, the
concentrations in the region outside the crossover

well as downward extension

sizable fluctuation relative
region are almost consistent with those given by the
deterministic Crow-Kimura model, which implies that
they are relatively stable against the site mutation rate
fluctuation.

The error threshold can be changed by the
fluctuation of the site mutation rate and could be even
sizable when the fluctuation strength is large. This can
be seen from an alternative angle. Let us consider an

order parameter m =1 — 2(h)/N, where (h) is the
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Fig. 2 The ensemble averaged relative concentrations of

the classes in their steady states versus the site mutation

rate (u) with d=0.05 and the number of random samples
n=10 000

Number 0 represents the master class, and numbers 1, 2, 3...

denote different mutant classes.
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averaged Hamming distance of the population from
the wild class weighted by the relative concentrations
of the classes in their steady states!®”l. Since the
averaged Hamming distance carries the information of
the relative concentrations the above order parameter
may indicate the change due to the randomization of
the site mutation rate. For m=1, the population is
composed entirely of the wild class. When m=0, all
classes of the population are distributed randomly in
the sequence space. In the case of m=-1, the
population consists completely of the complementary
class to the wild class. The order parameter m as a
function of the site mutation rate w is presented
(Figure 4) for the cases of d=0, 0.05 and 0.25. It can
be seen that the order parameter in the deterministic
Crow-Kimura model declines dramatically at the error
threshold, which demonstrates that quantity m really
acts as an order parameter to indicate the phase
transition. When d is small, the deviation of the order
parameter from that obtained from the deterministic
Crow-Kimura model is small even around the error
threshold, as shown in the case of d=0.05 (Figure 4).
The deviation becomes more and more significant,
especially around the error threshold as d gets larger
and larger, and the phase transition at the error
threshold is replaced by a smooth crossover around
the error threshold. We show the above situation in the
case of d=0.25 where the smooth curve of the order
parameter passes through the error threshold and
extends to a region far away from the error threshold.
Therefore, both the relative concentrations and the
order parameter indicate the error threshold is no
longer a phase transition point but a smooth crossover

0.2 0.4 0.6 0.8 1.0 1.2

Site mutation rate ()
Fig. 4 The order parameter in the population steady state
versus the site mutation rate u for different values of the
fluctuation strength (d) and the number of random
samples n=10 000
The solid line is for =0 (for the deterministic Crow-Kimura model) .

The dashed line is for ¢=0.05, and the dashed-dotted line is for
d=0.25.

2.2 The characteristics and comparison of the
crossover regions appearing in the randomized
Crow— Kimura and Eigen models

The position of the error threshold in the
deterministic ~ Crow-Kimura model is easily
determined, since the distribution of the classes has a
dramatic change at the error threshold. However, in
the randomized Crow-Kimura model, the change is
smooth and the phase transition point is replaced by
the smooth crossover region. Precisely determining
the error threshold position is then impossible and
unnecessary. Instead, we use the width of the
crossover region to describe the quantitative change
of the error threshold due to the randomization, which
was firstly introduced by Li et al.?*?"1. The width is
defined as follows. Its starting point is the phase
threshold) in the

deterministic Crow-Kimura model, and its endpoint is

transition point (the error

the location where the relative difference of the

relative concentration of two complementary classes

is less than 0.01. The relative difference is given by
X, X

" (w +x) 2 4)
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with i + j = N. For different complementary classes,
their relative concentrations behave in a similar
manner in the crossover region. With the above
definition, the width of the crossover region w can be
evaluated. When the fluctuation strength d is taken to
be 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30 the
corresponding values of the width w are 0.04, 0.115,
0.215, 0.310, 0.440 and 0.598, respectively. It is
shown that as the fluctuation strength increases the
width gets wider and wider. It can be found that the
relationship between the width and the fluctuation
strength of the site mutation rate is nonlinear
(exponential) by fitting the above values (Figure 5) in
which the width of the crossover region versus the
fluctuation strength in the cases of the random fitness
and random site mutation rate is presented. Feng
et al. ! demonstrated in that there is a crossover
region around the error threshold as the fitness of the
master and mutant classes are replaced by Gaussian
distributed random variables in the Crow-Kimura
model. In order to fully examine the characteristics of
the error threshold in the randomized Crow-Kimura
model (Figure 5), our mutation randomization results
are compared with those given by Feng et al. By
fitting the width values, we found that the relationship
between the width and the fluctuation strength is
linear in the randomized fitness case.

For the randomized Crow-Kimura model, in the
case of the randomized site mutation rate, when the
fluctuation strength d is taken to be 0.15 and 0.25, the
width of the crossover region w, is 44% and 90% of

0.8F ®—@ : Mutation rate randomization
A—A : Fitness randomization

0.6

0.2

Width of crossover region (w)
IS
S
T

0.0F

1 1
0.0 0.1 0.2 0.3
The fluctuation strength (d)

Fig. 5 The width of the crossover region varies with the
fluctuation strength in the two different randomizations of
the Crow—Kimura model.

The solid line with circle denotes the width in the random site mutation
rate case. The line with triangle represents that in the random fitness

case which is obtained by fitting the width values 25/

the value of the error threshold, respectively. In the
case of the randomized fitness, when the fluctuation
strength d is equal to 0.15 and 0.25 the corresponding
width w, is 32% and 54% of the error threshold.
Therefore, the width caused by the randomized fitness
is comparable to that caused by the randomized site
mutation rate. Nevertheless, for the randomized Eigen
model, when d equals 0.15 and 0.25 the width w, is
47% and 104% in the case of the randomized site
mutation rate. In the case of the randomized fitness,
when d is taken to be 0.15 and 0.25 the width w;, is
only 9% and 16%!%%. So, the width caused by the
randomized fitness is much less than that caused by
the randomized site mutation rate, namely, the
extension of the error threshold is mainly caused by
the randomized site mutation rate for the same
fluctuation strength. The above results are shown in
Table 1. The relationship between the width and the
fluctuation strength in the randomized Eigen model is
linear for the randomized fitness and nonlinear
(actually exponential) for the randomized site
mutation rate, which is the same as that in the
randomized Crow-Kimura model. Meanwhile, the
fitness fluctuation in the randomized Crow-Kimura
model causes much more extension of the error
threshold than that in the randomized Eigen model
and the in the
randomized Eigen model induces more extension of

site mutation rate fluctuation
the error threshold than that in the randomized Crow-
Kimura model. Therefore, the two randomized models
same qualitatively but quite different
quantitatively in the sense of the relationship between
the extension and the fluctuation strength.

are the

Table 1 The relative width values of the error threshold
in the randomized Eigen model and randomized

Crow—Kimura model.

R (wlg)/% (1w, %
d=0 d=0.15 d=0.25 d=0.15 d=0.25
Eigen model 20 0.112 47 104 9 16
Crow-Kimura model 20  0.49 32 54 44 90

Model

3 Concluding remarks

In the present paper, in order to complement the
randomization of the Eigen model and the Crow-
Kimura model the site mutation rate in the Crow-
Kimura model has been treated as a Gaussian
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distributed random variable. We paid attention to the
characteristics of the error threshold as well as the
relationship between the extension of the error
threshold and the strength of the
randomized mutation rate. It has been shown that both

fluctuation

the relative concentrations and the order parameter
indicate the error threshold is no longer a phase
transition point but a smooth crossover region in the
presence of a sizable fluctuation of the site mutation
rate. The error threshold extends not only downwardly
but also upwardly. The downward extension
suppresses the dominance of the wild class in the
population and destroys the quasispecies structure
thereof. The upward extension pushes the real error
threshold to a larger value. The relationship between
the width and the fluctuation strength in the mutation
randomized Crow-Kimura model is nonlinear. The
obtained results were compared with those from the
randomized Eigen model and it is found that for the
two randomized models the relationship between the
width and the fluctuation strength is linear for the
randomized fitness and nonlinear (exponential) for the
randomized site mutation rate. Therefore, they are the
same qualitatively in the sense of the relationship
between the extension and the fluctuation strength.
Nevertheless, they are quite different quantitatively.
For the randomized Crow-Kimura model the width
caused by the randomized fitness is comparable to
that caused by the randomized site mutation rate. For
the randomized Eigen model the extension of the error
threshold is mainly caused by the randomized site
mutation rate. Up to now we have had a full picture
about the randomization effects of the fitness and site
mutation rate on the error threshold based on the
Eigen model and the Crow Kimura model.

The full picture might have the following
implications for anti-viral strategies, cancer therapy
and breeding of animals and plants. (1) The
downward and upward extension of the error
threshold suggests that one may use the fluctuation of
the fitness and site mutation rate to destroy the
quasispecies structure and roughly kill viruses. The
extension itself implies a kind of residual life which
appears in the crossover region’l. Therefore, the
upper limit of the crossover region should be reached
to completely drive biological populations to go
extinct®%, (2) Radiation mutagens or chemical
mutagens have been used to increase the mutation rate
of viruses to eliminate them, which means one may

also change and control the width of the crossover
region externally, for instance, by electromagnetic
field, radiations and thermal fluctuations for many
purposes.
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