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Abstract In this paper, we propose an automatic retinal segmentation method to evaluate the projection area of macular edema

(ME) on specific layers of the retina in optical coherence tomography (OCT) images. Ten retinal layer boundaries are segmented

using an optimized Shortest-Path Faster Algorithm based on weight matrices first, which effectively reduces the algorithm's

sensitivity to vascular shadows. However, the presence of ME will result in an inaccurate segmentation of the edema area. Therefore,

we use the intensity threshold method to extract the edematous area in each OCT image, set the values in this area to zero, and ensure

that the obtained segmented boundary can automatically cross rather than bypass the edematous area. We use the minimum

projection method to calculate the projected area of ME at different layers. To test our method, we used data collected from Topcon's

OCT machine. The measured macular area resolution in the axial and B-scan directions was 11.7 microns and 46.8 microns,

respectively. The mean absolute and standard deviation difference values of the retinal layer boundary segmentations were 4.5±3.2

microns compared to manual segmentation. The proposed method, thus, provides an automatic, noninvasive, and quantitative tool for

the evaluation of edema.
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Macular edema (ME) is the most common
pathological outcome of many retinal diseases, such
as diabetes, age-related macular degeneration, and
retinal vein occlusion[1]. The pathogenesis of ME is
closely related to blood vessels, which leak or exude
fluids and blood when fragile blood vessels grow
abnormally[2]. ME is a significant cause of vision loss
and blindness[3]. Therefore, new and better methods to
identify and characterize ME are essential for better
disease diagnosis and surgical treatment.

Traditional fundus cameras can only provide two-
dimensional images of the fundus[4]. ME usually
occurs inside the retina, and it is thus difficult to
observe and evaluate abnormalities through fundus
photos. Optical coherence tomography (OCT) has
been extensively used in ophthalmic diagnoses and is
characterized by its increased detection sensitivity,
high resolution, and noninvasiveness[5]. Recently,
OCT is also used to monitor microvascular flow and

thrombosis progression[6-7]. As shown in Figure 1, in
this paper, we adopt the nomenclature established in
the literature for retinal layers[8-9]. OCT images can
provide ten structured layers of the retina, i. e., the
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nerve fiber layer (NFL), ganglion cell layer (GCL),
inner plexiform layer (IPL), inner nuclear layer (INL),
outer plexiform layer (OPL), outer nuclear layer
(ONL), inner segment (IS), connecting cilia (CC),
outer segment (OS), and the retinal pigment
epithelium (RPE) layers. OCT images have been

extensively used to diagnose macular disease[10]. By
segmenting and projecting the layer structure of the
retinal OCT images, we can obtain images of the
blood vessels of different layers, which is important to
assess the states of deep layers in ME.

The OCT system can achieve lateral and axial
resolutions of the order of a few microns[11]. Given
that the optical scattering of ME is smaller than the
surrounding retinal tissue, it exhibits a distinct low-
intensity characteristic in the OCT image. Detection
and segmentation of edema from OCT volume has
received considerable interest of researchers in recent
years. There are also many research methods in the
literature, such as the traditional image thresholding
method[12], random forest classifier[13], and adversarial
learning[14]. These methods achieve automatic
segmentation of ME based on the different
characteristics of the edema and normal areas.
However, while these studies have focused on edema,
they have not correlated edema with the specific layer
structures of retinal lesions. To complete the
visualization and projection area evaluation of ME in
a specific layer of the retina, an accurate segmentation
of the ME image is required. In recent decades,
several categories of retinal layer segmentation
methods have been developed to achieve
quantification of the retinal layer structure, such as
graph-based methods[8,15-16], machine- learning-based
methods[17-19], combination of machine learning and
graph theory methods[20-22], and others[23-26]. However,
these segmentation methods relate to graph search

methods and have certain limitations, that is, most of
them are designed for normal retinal images. The fact
that the presence of ME leads to the fusion of retinal
layers, and the fact that the other layers are squeezed,
the segmentation outcomes using these methods are
not very satisfactory. When blood vessel shadows and
edema are encountered in the case of the current
graph search method, they are usually segmented
along the edge of the edema because the intensity of
the ME region tends to zero. To evaluate the
projection area of ME, it is important to extract a
segmentation line that can automatically directly cross
the edematous region.

In this study, we developed an automatic retinal
segmentation method to evaluate the projection area
of ME in OCT images. Unlike the previous method
that segmented and quantified edema directly from
the B-scan image[12], our method attempts to visualize
and evaluate ME using the projected images from
different layers. This method uses a two-stage
strategy. In the first step, we developed an optimized
Shortest-Path Faster Algorithm (SPFA) to achieve
segmentation of the ten retinal layer boundaries in
which we defined the weight function by assigning
different proportions of weights in both directions
according to the lateral and longitudinal features in

Fig. 1 Overview of the 10 retinal layer boundaries and their corresponding anatomical names
From top to bottom: inner limiting membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear

layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), inner segment (IS), connecting cilia (CC), outer segment (OS), and retinal

pigment epithelium (RPE), and Bruch's membrane (BM).
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order to reduce the effects of blood vessel shadows. In
the second step, we used a threshold method to detect
ME and used an interpolation scheme to force the
dividing line to automatically cross the edema to
achieve accurate layer segmentation of the ME area.
Thus, retinal structures are accurately projected, and
the lesion areas are calculated on the projection map.
We validated the segmentation method on normal and
ME OCT images and demonstrated the feasibility of
the method as well.

1 Materials and methods

1.1 Image samples
All participants gave their informed consent for

use of the acquired images samples in this study.
Experimental data for four normal human eyes and six
ME eyes were captured via a fundus tomography
system (Topcon 3D OCT-1) in three-dimensional (3D)
wide-capture mode. The scanned regions covered a
6 mm × 6 mm area centered on the macular and had a
depth of 2 mm. Each volume contained 128 B-scans,
and each B-scan contained 512 A-scans with 885
pixels per A-scan (512×128×885, corresponding to
the x- , y- , and z-directions in the 3D coordinate
system). To enhance the convenience of data
processing, we adjusted every B-scan from 512×885
to 1 024×784 in the study.
1.2 Image preprocessing

Speckle noise caused by the limited spatial
frequency bandwidth of the interference signal
measured in OCT can greatly interfere and affect the
contrast of the image, and it may thus cause
segmentation errors. To this end, we used an adaptive-
weighted bilateral filtering[27], which has proven
effective in smoothing the OCT image and
maintaining the texture information of the retinal
layer. Figures 2a and 2b are the original images from
the nonfoveal and foveal regions, respectively. The
effects of filtering on the images without foveal areas
are shown in Figure 2c. Accordingly, the filtering
effects on the images with foveal areas are shown in
Figure 2d.

To reduce the sensitivity of the algorithm to the
direction and curvature of the retina and reduce the
error caused by the obvious bending of the boundary,
we utilized a retinal flattening algorithm[28] to flatten
the retina. Figures 2e and 2f demonstrate that the
retina is flattened in the center of the image based on

the Bruch's membrane (BM) boundary, whereby
Figure 2f is the flattened version of the filtered image
(Figure 2e).

1.3 Retinal layer segmentation
The purpose of this step is to initially segment

the retinal layers for the subsequent ME lesion area
determination procedure. The graph theory and
dynamic programming (GHDP) -based segmentation
framework has been proven to be effective for
segmenting layered structures[8]. In the GHDP
method, each pixel in the b-scan is regarded as a node,
and each b-scan is regarded as a node graph; then the
weight between the nodes is set according to the
vertical gradient. Finally, the Dijkstra algorithm is
used to find the shortest path in the node graph. We
adopted its framework and proposed an improved
graph search algorithm, which has two main
improvements: a. the vertical gradient information is
enhanced, and a weighting scheme of vertical gradient
and lateral constraints in the calculation of weights is
proposed; b. we adopted an optimized SPFA. The
components of our segmentation algorithm are
described in the following sections
1.3.1 Construction of weight matrix

We consider each pixel in an image as a node,
and each image as a node graph. The connections of
adjacent nodes in the graph are called weight edges.
Assigning weights between nodes is crucial for the
identification of the shortest path. The presence of
blood vessels can cause shadows, and shadows pose a
challenge to the segmentation process. When only

Fig. 2 Preprocessing steps
(a) and (b) are the original images from the nonfoveal and foveal

regions, respectively, while (c) and (d) are filtered images. (e) and (f)

denote the flattening process, whereby the green line is the baseline

BM used for flattening.
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vertical features are used for segmentation, the
boundaries may not be found correctly. Therefore, the
lateral constraint was added. According to the
flattened image, there were minor differences between
the coordinate values in the z-direction. Therefore, we
combined the gradient change value and the z-
direction coordinate change value to define the weight
function. The weight function between nodes a and b
is defined by the following equation:

Wab = 0.8 × (Ga + Gb ) + 0.2 × Sab + Wmin (1)

where Wab is the weight assigned to the edge
connecting nodes a and b; Ga and Gb are the vertical
gradients of the image at nodes a and b, respectively;
Sab is the difference value between nodes a and b in
the z-direction; and Wmin is the minimum weight of

10-5 in the graph added for system stabilization.
The acquisition of the gradient map is very

important for defining the weight matrices. First, a
Gaussian filter was performed on the flattened B-scan
and a threshold was set to enhance the contrast
between the light and dark layers. The B-scan was
then normalized to ensure that the pixel intensity was
between zero and one. Finally, given that the change
between the retinal layers exhibited two transitional
forms (dark-to-light and light-to-dark), a gradient
calculation method [16] was used to generate two
gradient maps, and a gamma transformation was used
to enhance the gradient map. The two gradient maps
were substituted into Eq. (1) to obtain two different
weight matrices. The final gradient maps can be
observed in Figure 3a and 3b.

1.3.2 Optimized SPFA method

To identify the layer boundaries within a short
time period, SPFA and small label first (SLF) and
large label last (LLL) were chosen as our graph search
solution.

The combination of SPFA + SLF + LLL is an
optimized solution. It can reduce the number of
operations and can improve the accuracy of the path
selection. We found the shortest path by searching
only for five neighboring nodes for each node. The
algorithm steps used for searching the shortest path
were as follows:

Step 1. Set the first-in first-out queue to save the
nodes that need to be optimized.

Step 2. Take out the first node (corresponding to
the upper left node of the image) from the queue and
release the next node.

Step 3. If the total weight value of the new node

is less than the total weight of the current queue head
node and less than the average value of the weight
matrix, the new node is added to the head of the
queue; otherwise it is placed at the end of the queue.

Step 4. Repeat steps 2 and 3 until the queue is
empty.
1.3.3 Automatic segmentation of the ten boundaries

Before the subsequent iterative segmentation, we
need to preliminarily segment the ILM and IS-CC to
construct the region-of-interest (ROI) and then
iteratively update all boundaries based on the selected
ROI.

Both ILM and IS-CC are highly reflective layers
with the most obvious gradient changes. They
constitute the two most prominent layer boundaries in
the retinal image. Given that they exhibit dark-to-
bright transition forms, the dark-to-bright weight
matrix obtained in Section 1.3.1 was used in

Fig. 3 Two gradient maps used for constructing different weight matrices
(a) Dark-to-light gradient map used to construct the weight matrix of ILM, GCL-IPL, INL-OPL, IS-CC, and OS-RPE. (b) Light-to-dark gradient map

used to construct the weight matrix of NFL-GCL, IPL-INL, OPL-ONL, CC-OS, and BM.
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conjunction with the optimized SPFA introduced in
Section 1.3.2 to obtain approximate segmentations of
the ILM and IS-CC layer boundaries. Finally, the
average value of the row in the z-direction was
calculated according to the layer boundary identified
after two iterations. The smaller value corresponds to
ILM. The initial ILM and IS-CC segmentation
outcomes are shown in Figure 4.

To prevent the algorithm from accidentally
dividing extraneous structures into target features, the
image was restricted to an effective search region, that
is, the ROI, thereby eliminating the influence of
irrelevant factors and improving the quality and
efficiency of the segmentation. The segmentation
needs to adhere to a predetermined order (Figure 5) to
minimize segmentation errors. First, we defined the
ROI near the ILM and IS-CC, which was used to
update ILM and IS-CC. We then defined an ROI
below the updated IS-CC boundary to allow the
identification of the BM boundary. Finally, the
remaining boundaries are based on these boundaries
in order to determine the ROI, and the shortest path is
determined based on the optimized SPFA. As it can be
observed from the section on the construction of the
weight matrix that ILM, GCL-IPL, INL-OPL, IS-CC,
and OS-RPE change from dark-to-light, and NFL-
GCL, IPL-INL, OPL- ONL, CC-OS, and BM change
from light-to-dark. Different changes require different
weight matrices to be used, and the desired retinal
layer is then segmented. A total of ten iterations can
segment ten boundaries.

1.4 ME lesion area determination
The purpose of this step is to refine the

segmentation results based on detection of edema and
achieve the structural projection of layers and
calculation of the ME areas in the projection map.
1.4.1 Edema detection

Figure 6 shows the main steps of edema
detection, which are described in detail in the
following sections.

To simplify the edema detection process, it is
important to set the ROI at a proper position. We first
employed an adaptive bilateral filtering (introduced in
Section 1.2) with larger parameter values on the
flattened retinal image. We then limited the detected
area with the retinal mask, maintained the pixel values
of the pixels inside the retinal mask, and set the pixel
values of those pixels outside of the retinal mask to
zero, which helped us eliminate interferences outside
of the retinal region. The resulting ROI of the detected
edema is shown in Figure 6a.

Second, the probabilities of the edematous
regions were defined by the pixels whose intensity
values were below the empirical value of 20. The
empirical value of 20 was set according to the robust
average value "IA" and some additional tests.
Accordingly, the robust average value "IA" was 10%
larger than the average pixel intensity of the edema
ROIs, which were manually segmented a priori. We
used a binary image in Figure 6b to show the
probability image of the edematous regions, whereby
the white pixels with unity values represent the
edematous regions and the black pixels with zero
values represent the background.

Third, the total area of the edematous regions
was set to a value larger than 100 pixels. In this way,
the regions that do not meet the criteria should be
removed, as shown in Figure 6c. We set 100 as the
threshold because we found that the edematous areas
that affected the segmentation accuracy were
generally larger than 100 pixels. Furthermore, the
probability regions with smaller areas may not be
edema regions.

In the last step of edema detection, we applied
some morphological operations, such as dilatation and
erosion to the probability images. The dilatation step
filled the inner holes and the edges of the probability

Fig. 4 Initial segmentation outcomes of ILM and IS-CC

Fig. 5 Segment order of the retinal layer boundaries
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regions, while the erosion step shrunk the edge to
yield accurate edema regions. The result after

dilatation erosion is shown in Figure 6d.

1.4.2 Boundary correction and optimization of ME

images

Because edematous regions with large areas
introduce serious errors in the automatic segmentation
process, we corrected the segmentations of those areas
that were affected by edema based on the edematous
regions detected in Section 1.4.1. We first found the
exact locations (rows and columns) of ME and then
blocked the edematous regions and replaced them
with one-dimensional linearly interpolated outcomes
so that the dividing line can directly cross the edema
to achieve automatic correction of the retinal layer
boundaries of the ME areas.

After the correction of all the layer boundaries in
the ME images, we also needed to perform smoothing
and optimization operations on the segmentation line.
First, we used cubic spline interpolation method to
smooth 10 curves for each B-scan, which was closer
to the true curve compared to the quadratic curve
fitting method. Second, for the 128-frame image of
the same volume, we utilized the fact that continuity
existed between the frames and used a median filter
(filter kernel: 1×7) for each curve. This method can
correct obvious segmentation errors in B-scans.
Finally, after optimizing all the curves, we unflattened
the image by moving pixels upward or downward—in
the direction opposite to that of the image flattening
direction to restore the original curvature.
1.4.3 Structural projection and lesion area

calculation

After the segmentation, a structural projection
method was employed on the segmented volume to
visualize the vascular structure of each layer of the

retina. Structural projection techniques are designed
to allow the observation of the position and state of
the lesion area in a more intuitive manner and to assist
in the subsequent calculation of the lesion area.
Specifically, a minimum projection method was
proposed that tracked the grayscale features in the
image based on the calculation of the minimum pixel
value on every A-scan given that the interest in this
study were the ME regions with low-intensity values.
Hence, the final structural projection map
encompassed the largest area of the lesion area. We
projected the 3D binary ME OCT volume (the binary
ME images obtained using the edema detection step in
Section 1.4.1, but the area threshold was modified
from 100 to 20) with the projection technique to
display the lesion area and calculated the lesion area
within the entire 6 mm×6 mm projection map.

2 Results and discussion

Compared with the previous technique of edema
segmentation in every B-scan and the quantification
of the total volume occupied by ME from OCT image
volume [12], our algorithm provided a new idea for
evaluating the area of edema on the projection map.
Experimental results show that our algorithm is
feasible. The proposed algorithm was implemented in
MATLAB. We executed the algorithm on a desktop
that was equipped with an Inter(R) Core (TM) i7-
7700 central processing unit @3.60 GHz and 16 GB
random access memory.

For retinal layer segmentation, we tested our
algorithm on normal and ME eyes (Table 1). The ten
layers were segmented in all the OCT images to

Fig. 6 Edema detection steps
All subfigures are from the same B-scan with edematous regions. (a) Region-of-interest (ROI) for edema detection. (b) Probability edema regions. (c)

Threshold processing. (d) Morphological operation.
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identify ILM, NFL-GCL, GCL-IPL, IPL-INL, INL-
OPL, OPL-ONL, IS-CC, CC-OS, OS-RPE, and BM.

The method efficacy is verified based on layer
segmentation experiments on normal and ME images.
The average running time of each image was 10 s
(784×1024 pixels and all images were segmented to
include 10 boundaries). Figure 7 is a representative
segmentation result obtained by our algorithm to

segment ten retinal layer boundaries on normal adult
eyes, whereby Figures 7a and 7f are B-scans of the
nonfoveal and foveal areas, respectively. Figure 7c-e
show detailed blocks extracted from the segmented B-
scan (Figure 7b). As it can be observed from Figure 7c
– e and 7h, our method can correctly segment the
retinal layer boundaries, even in the shadow area of
the blood vessel (Figure 7c-e) and the foveal area
(Figure 7h). Figure 8 shows the segmentation results
of our algorithm after its application to the
segmentation of ME eyes. As it can be observed from
Figure 8, our method achieved the expected results
given that the dividing line can cross the edematous
region. The IPL, INL, and OPL layers are the main
locations of the edema. Accordingly, they are the main
target layers based on which we evaluate the area of
ME in the projection map.

To evaluate the performance of our retinal layer
segmentation method in more detail, we compared our
method with the GHDP method proposed by Chiu
et al. [8] on healthy and ME images. For the healthy
case, we randomly selected 4 B-scans including the
fovea from each volume scan, for a total of 16 B-
scans. For ME case, we randomly selected 4 B-scans
around the fovea from each volume scan, for a total of
24 B-scans. For all B-scans, we calculated the mean

absolute error and standard deviation of each
boundary between the smooth, manually segmented
results and the automatically segmented results, and
then averaged to obtain the overall difference. The
comparison outcomes of the two methods are listed in
Table 2. As indicated, our segmentation method
demonstrated an overall mean absolute error and
standard deviation of 1.75±1.25 pixels (4.5±3.2
microns), respectively, compared to manual

Table 1 Tested optical coherence tomography （OCT）
volumetric data

Scan range

Diagnosis

Eyes

Volumetric scans

6 mm×6 mm

Healthy

4

4

Macular edema

6

6

Fig. 7 Segmentation results of normal eyes
(Top row) (a) Nonfoveal B-scan of three-dimensional (3D)-OCT volume, (b) automatic segmentation of (a) using the optimized shortest path fastest

algorithm and graph search (SPFA-GS) for all the 10 retinal layer boundaries, and (c-e) detailed block extracted from (b). (Bottom row) (f) Foveal B-

scan, (g) its segmentation, and (h) detailed block outcome.
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Table 2 Comparison of performance between manual and automatic segmentation for healthy and ME cases

Boundaries

ILM

NFL-GCL

GCL-IPL

IPL-INL

INL-OPL

OPL-ONL

IS-CC

CC-OS

OS-RPE

BM

Overall

Chiu et al.［8］

（Healthy）

0.75±0.67

1.89±1.99

—

2.75±2.49

2.0±1.83

1.33±1.34

1.56±1.47

—

—

1.88±1.79

1.73±1.65

Chiu et al.［8］

（ME）

1.08±1.21

5.32±6.67

—

4.35±3.76

2.13±2.13

3.33±3.26

1.75±1.71

—

—

1.70±1.81

2.76±2.65

Our method

（Healthy）

0.77±0.54

1.58±1.15

2.47±1.68

3.33±2.06

2.18±1.51

1.81±1.39

1.17±0.81

0.85±0.60

1.28±0.91

0.95±0.69

1.64±1.13

Our method

（ME）

0.84±0.58

1.51±1.12

3.42±2.32

2.87±2.03

1.95±1.54

2.63±2.28

1.14±0.77

1.06±0.71

1.62±1.13

1.6±1.08

1.86±1.36

Differences were measured in pixels and expressed as mean absolute ± standard deviation values.

Fig. 8 ME eye segmentation outcomes
(a), (c), (e), (f): Four B-scans from different locations of the same OCT volume scan. (b), (d), (f), (h): automatic segmentation outcomes in which the

IPL, INL, and OPL layers are the main locations of edema.
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segmentation. The results show that the similarity of
our method with manual segmentation is higher than
with others.

In conclusion, accurate layer boundary
segmentation is an important tool for the evaluation of
retinal diseases. However, the presence of ME poses a
great challenge to the segmentation of the retina.
Accurate segmentation enables the characterization
and evaluation of ME in a single retinal layer.
Compared with the segmentation algorithm based on
vertical gradient and additional vessel detection [8],
our method considered two directional constraint
conditions based on which it could effectively solve
vessel shadow problems. Additionally, we corrected
the boundaries based on detection of edema, and the
smooth constraint of consecutive B-scans helped
improve segmentation accuracy.

For the determination of the ME lesion area,
detection of edema in important in two ways: The
presence of edema can lead to fusion between the
retinal layers, thereby making the boundaries of the
layers unclear and introducing challenges in the
retinal layer segmentation process. The detection of
edema can identify the edema that has a great impact

on the segmentation so as to correct the segmentation
error caused by large edematous regions. Conversely,
projection area evaluation of ME also depends on the
detection of edema. Projecting a binary map of a
detected edematous region helps accurately calculate
the edematous area on the projection map.

We selected a segmented 3D OCT image from a
patient with ME and extracted the three representative
layers (IPL, INL, and OPL), to achieve a minimum
projection. It can be observed from the projection
effect (Figure 9a-c) that ME has different degrees of
influence on the three layers of the retina—with the
INL layer being affected the most by ME. Results
show that application of the minimum projection
technique on the segmented retinal volume can allow
a more intuitive observation of the location and status
of ME. To calculate the ME projection area, we
projected the 3D binary ME B-scans to identify
lesions (red parts in Figure 9d-f) and then calculated
the lesion areas based on the formula: area = 6×6×
(Ne/NI), where Ne denotes the pixels in the edema
area and NI is the total number pixels in the entire
image. The calculated areas are 0.20 mm2, 0.96 mm2,
and 0.45 mm2, respectively.

Fig. 9 Minimum projection
(a-c): from left to right are the projection effects of IPL, INL, and OPL. (d-f): The parts shown in red are lesion areas corresponding to (a-c), and the

areas of the lesions are 0.20 mm2, 0.96 mm2, and 0.45 mm2, respectively.
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According to experimental results, our method
can successfully evaluate the projection area of ME in
the special layers. This is achieved via the two steps
of retinal layer segmentation and ME lesion area
determination. An accurate segmentation of ME
images is a prerequisite for the determination of the
lesion areas. Our retinal segmentation method can
segment the healthy and diseased retinas, including
the hyporeflexia areas that were affected by ME and
vascular shadows. In manual segmentation, some
boundaries cannot be determined quickly and/or
accurately owing to image problems, but the
algorithm can automatically segment layer boundaries
according to the gradient and location information.
Recently, deep learning methods have gained wider
use in the segmentation of retinal layers and
pathological structures and have achieved high-
quality results[29-31]. An advantage of our method is
that it does not require model training and can quickly
identify relatively accurate layer boundaries based on
image features and optimized SPFA. Moreover, we
proposed an idea for edema evaluation based on
projection maps. By determining the severity of the
deep layer's ME, physicians can obtain better
diagnoses and treatment of eye diseases.

Even though the experimental results show that
the proposed method can achieve higher layer
boundary segmentation accuracies and can constitute
an efficient clinical tool for the evaluation of lesion
areas, there are certain limitations, which are
summarized as follows. First, the retinal layer
segmentation method depends strongly on the
gradient information at the layer boundaries and may
fail in cases of severe structural deformations caused
by other retinopathy (such as macular holes). Second,
to observe the lesion area on the projection map, we
adjusted the projection map matrix size from 512×128
to 512×512 (corresponding to the xy plane) based on
interpolation. Nevertheless, the actual resolutions of
the pixels in the x- and y-directions are 11.7 microns
and 46.8 microns, respectively, which can cause finite
errors in the y-direction of the ME projection area.
This can be improved by changing the acquisition
method. Third, methods for automatic setting of the
threshold for detection of edema have not been
proposed yet. If the threshold is set to be too large, it
will contain non-ME shaded areas. If the threshold is
set to be too low, some small edematous areas will be
missed.

3 Conclusion

In this study, a retinal layer segmentation-based
ME projection area evaluation algorithm was
proposed to calculate the ME areas in the projection
maps. We proposed an automatic retinal segmentation
method based on optimized SPFA to identify ten
retinal layer boundaries in OCT images, and
introduced a lesion detection algorithm based on
binary masks, morphological methods, and structural
projection. Our algorithm yielded acceptable
segmentation accuracies in normal and ME images. In
future publications, we will incorporate machine
learning to the proposed optimized SPFA method to
flexibly divide the ROI and reduce errors based on the
use of prior knowledge. In addition, we plan to use
our method to other retinopathies (e. g., age-related
macular degeneration, diabetic retinopathy, glaucoma,
and others).
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通过光学相干断层扫描图像进行自动视网膜分割
评估黄斑水肿的投影面积*

张 章** 唐艳红** 曾兴晖 熊红莲*** 曾亚光*** 韩定安***

（佛山科学技术学院物理与光电工程学院，佛山 528000）

摘要 本文提出一种自动视网膜分割方法，以评估光学相干断层扫描（OCT）图像中黄斑水肿（ME）在视网膜特定层上的

投影面积 . 首先使用基于权重矩阵的优化最短路径最快算法对10个视网膜层边界进行分割，这有效降低了算法对血管阴影

的敏感性 . 然而，ME的存在将导致水肿区域的分割不准确 . 因此，使用强度阈值方法提取每个OCT图像中的水肿区域，并

将该区域中的值设置为零，并确保获得的分割边界可以自动穿过而不是绕过水肿区域 . 同时使用最小值投影来计算ME在不

同层的投影面积 . 为了测试该方法，使用了从Topcon OCT机器收集的数据 . 在轴向和B扫描方向上测得的黄斑区域分辨率分

别为11.7 μm和46.8 μm. 与手动分割相比，视网膜层边界分割的平均绝对误差和标准偏差为（4.5±3.2）μm. 因此，所提出的

方法为评估水肿提供了一种自动、无创和定量的工具 .

关键词 光学相干断层扫描，黄斑水肿，视网膜分割，投影面积评估
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