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Abstract Accurate prediction of the translation initiation site (TIS) is an important issue for prokaryotic genome annotation.
However, it is still a challenge for the existing methods to predict the TIS in the genomes over a wide variety of GC content. Besides,
the existing methods have not yet undergone a comprehensive evaluation, leaving prediction reliability as a largely open problem. A
new algorithm MED-StartPlus, a tool that predicts TIS in prokaryotic genomes with a wide variety of GC content was presented. It
makes several efforts to model the nucleotide composition bias, the regulatory motifs upstream of the TIS, the sequence patterns around
the TIS, and the operon structure. Tests on hundreds of reliable data sets, with TISs confirmed by experiments or having annotated
functions, show that the new method achieves a totally high accuracy of TIS prediction. Compared with existing TIS predictors, the
method reports a totally higher performance, especially for genomes that are GC-rich or have complex initiation mechanisms. The
potential application of the method to improve the TIS annotation deposited in the public database was also proposed.
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Accurate prediction of the translation initiation
site (TIS) of protein coding gene is still one of the
substantial issues for prokaryotic genome annotation.
Recently, many algorithms have been developed to
improve the TIS prediction accuracy [1~6]. For the
well-studied genomes with non-biased GC content
such as E. coli K-12 and B. subtillis (with GC content
of 50.8% and 43.5% respectively), most of the current
algorithms have shown relatively high performance to
improve TIS prediction. However, a challenging
problem is to capture the subtle and complex motifs in
TIS upstream region in the genomes with high or low
GC content [5~7]. It is well known that the GC-rich
genomes tend to possess weaker ribosomal binding site
(RBS) signals, thus complicating the detection of RBS
patterns for TISs prediction [1, 7]. In addition, the
previous studies using in silico and experimental data
revealed the diversity of translation initiation
mechanisms and components of translation initiation
in Archaea [8, 9], where a large proportion of genomes
have a high or low GC content. All these may lead to
overall lower quality of TIS prediction by current
computational methods. A recent investigation showed

that in some genomes up to 60% of genes may have
been annotated with the wrong start sites, especially in
the GC-rich ones [10]. It is generally believed that the
genomic GC content is related to bacterial evolution as
supported by the phylogenetic tree based on 5 S rRNA
sequences [11]. Therefore a method to describe complex
TIS-related sequence patterns, then lead to accurate
prediction of gene starts would be helpful in
facilitating the genome annotation, as well as in
understanding full information on protein coding genes
of the prokaryotic organisms.

In order to overcome the difficulty of TIS
prediction for genomes with high or low GC content,
various strategies have been used. For example, the
GS-Finder[3] employs a“nine-dimensional super-sphere”
method to select initial training sets for genomes with
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GC content > 56% . A recent work, Hon-yaku,
introduces a Bayesian method by considering elements
important in translation initiation[6]. Unlike other
methods, Hon-yaku is a supervised learning method.
With the training set determined by comparisons
between orthologous genes, the algorithm reports good
performance in the GC-rich Gamma-Proteobacteria[6].

Here, we present a new algorithm MED-
StartPlus, a tool designed to predict TIS in prokaryotic
genomes covering a wide variety of GC content. As a
result, MED-StartPlus is shown to achieve an overall
high performance on hundreds of reliable data sets. We
also report a detailed comparison with existing TIS
prediction programs such as RBSfinder[2], GS-Finder[3],
MED-Start [4], TiCo [5] and Hon-yaku [6]. MED-StartPlus
is thus demonstrated with a competitive or better
performance, especially on the GC-rich genomes.

1 Materials and methods
1.1 Materials

The complete prokaryotic genomic sequences and
their annotations for a total of 300 genomes were
downloaded from the RefSeq Release 17 at the time of
writing, whereas the genome sequence and annotation
for H. salinarum were available from the website
http://www.halolex.mpg.de/public/. We included two
types of data sets as benchmarks.

First, we collected the 14 published TIS data sets
available so far for 11 genomes with GC content
ranging from 35.6% to 68% . The data sets were
verified either by N-terminal protein sequencing
(A per [12]; EcoGene [13]; Link [14]; Syne [15]), or through
literature review (Mtub, Paer107 and SolfGene [16]), or
with sequence homology (Bsub58 [17]), or by
comparison between orthologous genes (Bpse, Hars
and Paer344 [6]), or by analyzing proteomic data (Npha
and Hsal[18]), or with experimentally characterized gene
function (Bsub[17]).

To make a large-scale evaluation, we then
included the RefSeq annotations on function-known
genes for each prokaryotic genome, i.e., those with
product descrip tions excluding any of the key words
“-like”, “conserved”, “hypothetical”,“homolog”,
“probable”, “possible”, “predicted”,“putative”,
“similarity”and“unknown”. A total of 300 data sets

containing 450 849 genes for 300 genomes were
constructed as the second type of benchmark. Note that
we cannot guarantee that the start sites are correctly
annotated for all of these genes, but without further

experimental evidences they indeed constitute the
current best public resources to which the prediction
can be compared. For each data set, we have removed
genes that contain frameshift, or begin with
non-canonical start codon such as CTG and ATT, or
are not annotated in RefSeq. The collected data sets
can be freely downloaded from http://ctb.pku.edu.cn/
main/SheGroup/Software/MEDPWEB/MEDStartPlus.htm.
1.2 Model and algorithm

In developing MED-StartPlus, several efforts
were addressed to build a new model of the
prokaryotic TIS and the resultant algorithm. First, we
considered the effect of nucleotide composition bias to
find regulatory motifs and characterize the sequence
patterns around the motifs as well as the start sites.
Next, the parameters describing operon structure in
prokaryotic genomes were added into the model. In
addition, we introduced another component to score
the coding potential of the context around a candidate
start, by referring to the property of the codon
positional GC-content. Finally, we introduced and
combined two scoring functions that integrated the
above parameters to determine the TIS.
1.2.1 Finding motifs upstream of TIS. One of the
efforts made in the current algorithm was to construct
models to capture the subtle and complex motifs
upstream of the TIS in GC-rich genomes. As pointed
out previously [1, 5 ～7], motif finding is challenging in
GC-rich genomes, because random nucleotide strings
from the background occur even more frequently than
regulatory motifs. In MED-StartPlus, to eliminate the
effect of nucleotide composition bias, we applied the
chi-squared statistic as an over-representation
measurement to select motifs.

Let S be the set of all l-mers occurred in the set of
TIS upstream region sequences. For each s 沂S, let
Obs(s) denote the number of observed occurrence, and
Exp(s) as the expected number of occurrence, which is
estimated by the nucleotide composition in the
intergenic regions. We regard a motif as being
over-represented if Obs (s) > Exp (s). Then Xs =
(Obs(s)-Exp(s))2

Exp(s) characterizes the over-representation

of s. Herein, any over-represented motifs with 孜s =
Xs

max{Xs}
>孜0 = 0.5 would be selected as the significant

motifs, which are referred to as those associated with
the signals of translation initiation. Having the
significant motifs determined, a relative positional
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weight matrix (RPWM) wS(b j , j) and a probability of
spacer length distribution p i are then calculated for
them. The definition of RPWM wS (b j , j) will be
described in the following subsection. Here i is
position of occurred motif upstream to the start sites,
b j 沂{A, C, G, T} and j is position within aligned
windows around the motifs. In the current algorithm,
both wS(bj , j) and p i are inferred based on the predicted
start sites with a set of the significant motifs, then lead
to convergences by self-training iteration.

We introduced the above-mentioned 孜0 as a
threshold in the motif search. A simulation was
performed to test whether the threshold 孜0 = 0.5 could
give real motifs. We calculated max {Xs} from
sequences upstream to the TIS. Meanwhile, we
generated random sequences with the same nucleotide
composition to calculate max{X r} for random motifs r;
this procedure was repeated 1 000 times in order to
estimate a distribution of max {X r}. The simulation
showed that the probability of the motif s with

X s
maxs{Xs}

> 孜0 being a random motif r was generally

less than 0.000 1.
In this work, motifs were designed as 5-mers. To

assure statistical significance, the number of samples
demanded increased exponentially over the motif
length, whereas the samples were generally insufficient
for small genomes when the length was over six. To
examine the effect of the selection of motif length, we
have tested other options by both 4-mers and 6-mers
on the set of published TIS data sets and observed no
significant difference in accuracy (data not shown).

As a result, MED-StartPlus reported more than
90% of the 300 genomes recovered with motifs
containing tetra-mers from the widely accepted SD
sequence “AAGGAGGTGA”[19]. For example, we
found motifs in the GC-rich genome M. tuberculosis as
“AGGAG”,“GAGGA”and“AAGGA”, which resemble
the SD motifs in E. coli K-12 and B. subtilis [4]. Similar
motifs were recovered in two other GC-rich genomes
P. aeruginosa and B. pseudomallei [5, 6].
1.2.2 RPWM for motifs and start site. In prokaryotic
genomes, both initiation signal and context around the
TIS show content conservation in a certain region.
This conservation can be characterized by the standard
positional weight matrix (PWM), which has been used
in several methods for TIS prediction[2, 4, 6]. To describe
the conservation of context around both motif and TIS
in the current algorithm, we define a relative positional

weight matrix (RPWM) taking into account the
contribution of nucleotide composition bias as follows.

We first define the RPWM of motif. For each
significant motif, an aligned PWM denoted as
wS_foreground(b j, j) can be calculated as in the way used in
MED-Start [4], by a multiple alignment of all non-full-
matching instances of the motif occurring within the
training sequences. We then introduced a background
PWM, denoted as wS_background (b j, j), to describe the
composition bias by calculating the genomic
nucleotide composition. As a result, the RPWM for the
motif may be read as

wS(b j , j)= wS_foreground(b j, j) /wS_background(b j, j)

移b j
wS_foreground(b j, j) /wS_background (b j, j)

(1)

Similarly for the context around TISs, the aligned
PWM denoted as wT_foreground (b j, j) can be calculated,
while the background PWM, denoted as wT_background(b j, j)
was defined in this way: the upstream region of start
sites was calculated with the genomic nucleotide
composition, and the downstream region of start sites
was calculated using aligned coding sequences. Thus
RPWM for the start site is

wT(bj , j)=
wT_foreground (b j , j) /wT_background (b j , j)

移b j
wT_foreground(b j, j) /wT_background (b j, j)

(2)

1.2.3 Distance distribution between genes. A
common feature of prokaryotic genomes is the
presence of operons, which results in the feature of
genes within an operon having much shorter intergenic
distances than others [20]. In the current algorithm, a
scoring function was defined to measure the
probability of a gene start site with a certain distance to
its immediate upstream gene. We referred to any two
adjacent genes as neighbors, of which members may
locate on either the same or the opposite strand,
denoted as type1 and type2 members, respectively. The
distance between members from a neighbor, denoted
as d, was defined as a gap between them, while a
negative distance means the number of overlapping
base pairs. The distance between adjacent genes along
the genomic sequence may be described by two
distributions ftype1 (d) and ftype2 (d). For each candidate
start site m in a gene g, by denoting the immediate
upstream gene as g 蒺, a score may be calculated as:

Dm= ftype1(d) , if g and g 蒺 are in type1,
ftype2(d) , if g and g 蒺 are in type2.嗓 (3)
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Our studies on hundreds of genomes showed that
ftype1(d) was rather conserved, with the top two frequent
distances as ～4 bps and ～1 bp, while ftype2(d) varied
slightly among species (data not shown). In fact, both
functions were automatically calculated based on the
predicted start sites, then come to certain distributions
by self-training iteration in the current algorithm.
1.2.4 Coding potential of regions around the TIS. In
GC-rich genomes, protein coding genes usually have a
GGS pattern at three codon positions, where G, G, and
S are the bases of G, non-G, and G/C, respectively[21].
Such a pattern would be helpful for a gene prediction
method addressed to the GC-rich prokaryotic
genomes [16, 21, 22]. In MED-StartPlus, this pattern was
used to describe the 5忆 end of coding regions.

We defined GC(i) as the G/C occurrence at the ith
codon position, where i =1, 2 or 3, then used the

parameter gb s = GC(1)+GC(3)
GC(1)+GC(2)+GC(3)

to describe the

coding property of a given sequence segment s [22].
Using samples from the intergenic and 5忆 end coding
regions, we noted that the distributions of gb s, denoted
as fc (gb s) and fnc (gbs) for coding and noncoding
sequences, showed normal distributions and differed
significantly in GC-rich genomes. Thus the posterior
probability of sequence s being coding, with regard to
the codon positional nucleotide usage, can be written

as the ratio of Pc (s) = fc(gbs)
fc(gb s)+fnc(gb s)

. Similarly, the

posterior probability of sequence s being noncoding is

Pnc(s)= fnc(gb s)
fc(gb s)+fnc(gb s)

. Then for a candidate start site m,

the probability for the upstream sequence as noncoding
and the downstream sequence as coding is

Cm=Pnc(s1)·Pc(s2) , (4)
where s1 and s2 refer to sequences l bps upstream and
l bps downstream from start site m, respectively. The
length of l has been tested from 0 to 300 bps at a step
of 30. When evaluated on the published data sets, the
accuracy fluctuation was generally less than 3% while
l > 60, However, the overall best result was obtained
under l = 90.
1.2.5 Scoring functions and strategy of self-learning
algorithm. With the parameters defined above, we
were now able to construct the below scoring function:

Scorem=log{max[p i
j j
仪wS(b j , j)]}+log{

k
仪wT(bk , k)}

+logwm+logDm+logCm , (5)

where, m means the m-th in-frame candidate start
counting from the 5忆-most one, wS(bj , j) and wT(bk , k)
are RPWMs defined by Eq.1 and Eq. 2, and wm is the
probability weight of a relative distance between the
stop codon and the candidate start codon m, k means
the position within aligned windows around start
codons. In addition, j, b j , bk , p i , Dm and Cm have been
defined as mentioned above. Omitting components
related to motifs in Eq. 5 leads to

Scorem=log{
k
仪wT(bk , k)}+logwm+logDm+logCm. (6)

Note that the RPWMs wT (bk , k) in Eq. 5 and Eq.6
differ from the window size for calculating the matrix.
The former is defined in the range of -20 to 15 bps
around the TIS, while the latter in the range of -50 to
15 bps around the TIS to describe the subtle and weak
sequence pattern upstream to the TIS.

The algorithm of MED-StartPlus is composed of
two sub-modules, the“Signal involved module” and
the“Simplified module”, which differ in the scoring
function. The former selects Eq. 5, while the latter uses
Eq. 6. Each TIS module processes in two stages, the
“ Self-training stage” and the “ Prediction stage”
(Figure 1). In the“Self-training stage”, the program
begins with selecting ORFs longer than 300 bps as the
seed ORFs from the input. The parameters in both
Eq. 5 and Eq. 6 are first trained with the input starts of
the seed ORFs, and then enable the application of the
scoring function to relocate start sites of all the ORFs.
The updated starts are used to re-select seed ORFs and
re-calculate all parameters. This procedure goes on by
iteration until it reaches more than 99.0% unchanged
starts or at most 20 rounds. With the converged
parameters, both modules score all candidates in each
ORF by scoring functions Eq. 5 and Eq. 6 respectively,
and then each selects the one with the highest score as
the most-likely TIS in its“Prediction stage”.

After independently analyzing the input, each
module outputs a list of potential TISs for all ORFs.
The system then combines the two modules. Those
predicted identically by both modules are defined as
certain TISs, which are also the final prediction for this
part of ORFs. To determine between the disagreed
potential TISs, the program first calculates a standard
PWM wf(bk , k) for sequences around the certain TISs,
and another standard PWM wb(bk , k) around TISs only
predicted by the“Signal-involved module” . Then, it
employs the equation
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Fig. 1 Flow chart of“Self鄄training stage”and“Prediction stage”

Score=
k
仪wf(bk , k)/

k
仪wb(bk , k) (7)

to re-score the disagreed TISs and chooses the one
with the higher score as the final prediction.

2 Results and discussion
To benchmark MED-StartPlus, we have tested the

five existing TIS predictors referred to as RBSfinder[2],
GS-Finder [3], MED-Start [4], TICO [5] and Hon-yaku [6].
Herein for each organism, we took the RefSeq
annotation as initial input for a TIS predictor. It has
been reported that some methods appear to be sensitive
to the input TIS locations [6]. Thus, to make the
comparison impartial for each locally executable
program, when analyzing a genome, we treated the

longest ORFs (assigned with the leftmost start codon)
of all genes as the input for a TIS predictor instead of
the original TISs given by the full annotation.
2.1 Accuracy of TIS prediction in published data
sets

We first used the data sets listed in Table 1 as
benchmarks, including 4 074 genes with their TISs
confirmed by various evidences. The accuracy of each
algorithm is listed in Table 1. The results for the
supervised algorithm Hon-yaku were cited from its
publication [6]. According to the genomic GC content,
the genomes are classified into three groups: AT-rich
genomes (GC < 40%), genomes with medium GC
content (40%臆GC臆56% ), and GC-rich genomes
(GC > 56%) [3, 23].

- Construct training sequences, i.e. extract
sequences 20 bps upstream of ORF starts
- Search and determine the significant motifs

Select seed ORFs
( > 300 bps)

Simplified module

Signal involved module

Whether parameters have
converged ?

No

Yes Self-training stage

Prediction stage

(1) Predict potential TIS for each ORF using "signal
involved model"

(2) Predict potential TIS for each ORF using "simplified
model"

(3) Determine the disagreed TISs predicted by two
modules

(1) Calculate wT(bk , k): i.e., the RPWM
for ORF starts
(2) Calculate wm: i.e., weights for all start
sites starting from the left most start site
(3) Calculate ftype1 (d) and ftype2 (d): i.e.,
distance distribution between genes
(4) Calculate fc (gb s) and fnc (gb s): i.e., gb
distribution for coding and non-coding
sequences respectively

(1) Calculate Pi: i.e., the spacer length
distribution for each motif
(2) Calculate wS (bk , k): i.e., the RPWM for
each hit motif
(3) Calculate wT (bk , k): i.e., the RPWM for
ORF starts
(4) Calculate wm: i.e., weights for all start sites
starting from the left most start site
(5) Calculate ftype1(d) and ftype2(d): i.e., distance
distribution between genes
(6) Calculate fc (gb s) and fnc (gbs): i.e., gb
distribution for coding and non-coding
sequences respectively
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2.1.1 Genomes with the medium GC content. For
two well-studied genomes B. subtilis and E. coli K-12,
and the genome H. arsenicoxydans, the prediction
accuracy of MED-StartPlus on the five data sets Bsub,
Bsub58, EcoGene, Link and Hars, showed a similar
performance to MED-Start, and matched the overall
performance of GS-Finder, TiCo and Hon-yaku, while
outperforming RBSfinder by about 10%.

TIS prediction in Synechocystis sp. was regarded
as a challenge due to the weak RBS information
upstream of the start sites [3]. As shown in Table 1,
GS-Finder reports an accuracy of 80.0% on the data
set Syne, while both MED-Start and RBSfinder report
rather lower accuracies. In contrast, MED-StartPlus
and TiCo report relatively higher performance with
accuracies of 88.2% and 90.9%, respectively.
2.1.2 GC-rich genomes. TIS prediction is believed to
be much more difficult in GC-rich genomes. It was
reported that GC-rich genomes generally possess less
information content in RBS [7]. Moreover, there likely
exists more SD-like strings by random and generally
more candidate start codons for each ORF in GC-rich
genomes[10, 24]. All of these would complicate the
designing of a TIS model. Herein we used seven data
sets from GC-rich genomes as benchmarks: Aper,
Npha, Mtub, Paer344, Paer107, Bpse and Hsal.

The archaeal genome A. pernix serves as a typical
example to show the risk of pre-designed parameters
in a TIS predictor. Contrary to the common belief that
ATG is the most frequent start codon, a recent analysis
on the 130 experimentally confirmed TISs has
revealed that over 50% of the start codons in A. pernix

are TTG, and genome-wide analysis showed that TTG
(38%) is the most frequent start codon compared with
ATG (33%) and GTG (29%) [12]. Thus, the pre-stored
TTG usage in GS-Finder as 7% [3] fails to work on
A. pernix, resulting in a much lower performance of
75.6% compared with MED-StartPlus(91.9%), MED-
Start (94.3%) and TiCo (93.5%) on the data set Aper.
The rule of selection of ATG prior to TTG as a start
codon is applied in RBSfinder [2]. In addition,
RBSfinder begins with a known consensus sequence to
search motif (“ AGGAG” by default). However,
“GGGGT” and “GGGTG” are the top two over-
represented SD motifs in this genome [9, 12]. Thus, it is
easy to understand that RBSfinder gives a surprisingly
low performance on A. pernix.

N. pharaonis and H. salinarum are also archaeal
genome studied here. TISs in the data set Npha and
Hsal were confirmed through analyzing the proteomic
data with a false positive rate expected to be only
0.2% [18]. On the data set Npha with 321 samples,
MED-StartPlus had the highest accuracy (95.6% ),
which was 4% higher than TiCo and at least 10%
higher than others. Moreover, the performance of
MED-StartPlus on Hsal(552 samples) for H. salinarum
was much more distinctive: it reported an accuracy of
92.0%, which was nearly 12% higher than the best of
the other predictors.

Genomes with the other four data sets, Mtub,
Paer344, Paer107 and Bpse, belong to the Eubacteria.
On the data set Mtub, MED-StartPlus reached the
highest accuracy of 89.4% . For Paer344, which
possesses the largest size of samples (344), our method

Table 1 Performance evaluation against 14 published data sets for MED鄄StartPlus,
MED鄄Start, RBSfinder, GS鄄Finder, Hon鄄yaku and TiCo

1) RBSfinder was run repeatedly to improve performance. 2) The results for the supervised algorithm Hon-yaku were cited from ref [6].

Organism % GC Data set MED-StartPlus(%) MED-Start(%) RBSfindera1)(%) GS-Finder(%) Hon-yakub2)(%) TiCo(%)

S. solfataricus
B. subtilis

Synechocystis sp.
E. coli

H. arsenicoxydans
A . pernix
N. pharaonis
M. tuberculosis
P. aeruginosa

B. pseudomallei
H. salinarum

35.8
43.5

47.4
50.8

54.3
56.3
63.1
65.6
66.6

67.6
68.0

SolfGene
Bsub
Bsub58
Syne
EcoGene
Link
Hars
Aper
Npha
Mtub
Paer344
Paer107
Bpse
Hsal

85.7
91.7
94.7
88.2
93.0
94.2
93.2
91.9
95.6
89.4
93.6
98.1
96.5
92.0

33.9
91.3
96.6
66.4
93.0
96.9
87.7
94.3
11.5

4.5
65.1
74.8

2.5
4.3

51.8
82.5
86.0
66.4
84.6
90.6
76.5
30.1
59.8
65.2
72.7
86.9
64.3
13.9

80.4
90.3
96.6
80.0
91.1
93.7
90.1
75.6
83.5
72.7
89.5
97.2
87.4
73.4

-
92.7
96.6

-
93.2
96.3
92.6

-
-
-

92.8
-

92.6
-

82.1
90.6
93.0
90.9
95.2
96.9
93.2
93.5
91.3
83.3
90.4
94.4
86.9
80.3
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Clearly, MED-StartPlus generally produced high
consistent predictions with the function-known gene
sets in the RefSeq annotation, and showed a totally
higher performance compared with the existing TIS
predictors for genomes over a wide variety of GC
content.
2.3 Improvement by combining two TIS modules

Finally, we discuss improvement of the strategy
by combining the two TIS modules in MED-StartPlus.

It has been demonstrated in vivo that some genomes
such as S. solfataricus possesses two different
mechanisms of translation initiation [25]. Most genes at
the beginning of a transcript unit in S. solfataricus are
leaderless, which means that the 5忆 untranslated region
(5忆 UTR) is short or missing. In fact, leaderless genes
have been reported in several archaeal genomes [9].
Unlike SD-led genes, which possess SD signals in
sequence upstream to the starts, only transcription

Table 2 Average percentages of predictions consistent with the RefSeq annotations on function鄄known genes
for MED鄄StartPlus, MED鄄Start, RBSfinder, GS鄄Finder and TiCo

Genome group # genomes MED-StartPlus(%) MED-Start(%) RBSfinder(%) GS-Finder(%) TiCo(%)

AT-rich 94 85.8 78.6 78.8 84.9 84.8
Medium GC content 107 82.4 72.8 70.9 79.0 81.5

GC-rich 99 78.1 36.3 59.7 72.6 73.9

also reported the highest accuracy of 93.3% . Similar
performance held up on the data set Paer107. The
accuracy on the data set Bpse was also remarkable: our
method achieved the highest accuracy of 96.5%, which
is about 9% higher than other unsupervised methods
such as GS-Finder and TiCo.

Generally speaking, MED-StartPlus successfully
overcomes the serious limitation of MED-Start on
GC-rich genomes, while outperforming other TIS
predictors.
2.1.3 AT-rich genome. For the genome S. solfataricus
with a high AT content, MED-StartPlus reached the
highest prediction accuracy of 85.7% on the data set
SolfGene. Note that the accuracy on SolfGene for all
methods are generally lower than those on other data
sets, possibly due to the relatively small size of the
data set. However, TIS prediction accuracy for
AT-rich genomes is higher than that for GC-rich
genomes, as will be demonstrated later.
2.2 Comparison against function鄄known genes in
RefSeq

The bottleneck for evaluating TIS prediction is
the relatively small number of genes with TISs verified
in the laboratory, as well as few genomes have been
built even with such small gene data sets listed in
Table 1. To make a large-scale evaluation, we then
report the results of comparing predictions against the
RefSeq annotations on 300 prokaryotic genomes.
Since it has long been known that the public RefSeq
annotation is not fully accurate, the comparison was
performed on totally 450 849 function-known genes
for the 300 genomes, of which the starts were regarded

as being more reliable than others in the annotations.
Here, without further experimental evidence, the data
sets indeed constitute the current best public resources
for large-scale evaluation. According to the same rule,
the genomes were classified into three groups: 94
AT-rich genomes (GC < 40% ), 107 genomes with
medium GC content (40% 臆GC 臆56% ), and 99
GC-rich genomes (GC > 56%).

The average accuracy of prediction herein
referred to the rate of TISs consistent with the datasets,
by MED-StartPlus, MED-Start, RBS-finder, GS-Finder
and TiCo, are summarized in Table 2, while the full
details for all 300 genomes are available at the website:
http://ctb. pku. edu. cn / main / SheGroup / Software/
MEDPWEB / MEDStartPlus.htm. For Hon-yaku, since
it employs a supervised learning method with manual
manipulation, we did not include it in the comparison.
As we can see from Table 2, MED-StartPlus reached
an accuracy of 82.4% on average for 107 genomes
with the medium GC content, 0.9% higher than that of
TiCo of the best of the others. For the 94 AT-rich
genomes, MED-StartPlus had an accuracy of 85.8% on
average, 1.0% higher than that of TiCo. With regard to
the 99 GC-rich genomes, the averaged accuracy of all
programs is lower than 80% . However, the accuracy
achieved by MED-StartPlus was 78.1% on average, a
remarkable 4.2% higher than that of TiCo with the best
performance among others. The results show that
MED-StartPlus has a marked advantage in TIS
prediction over MED-Start and RBSfinder, especially
in GC-rich genomes, where the average improvement
was 41.8% and 18.4% respectively.
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initiation-related signals are found for leaderless
genes [9]. Thus, for genomes containing both SD-led
genes and leaderless genes, two kinds of signals exist
upstream to the starts. However, in most cases, the
“Signal involved module” converges to only one kind
of signals. For instance, only SD-like motifs like
“ AGGAG” and “ GGAGG” were found in

S. solfataricus. Such a preference would lead to losing
the ability of the “ Signal involved module” to
predict TISs for leaderless genes. Therefore in the
current algorithm, MED-StartPlus deployed the
strategy of combination of the “ Signal involved
module” and the“Simplified module”.

To examine the improvement achieved by such a
strategy, we compared the prediction performance of
each module on the same benchmarks in Table 1. The
results showed that the combination had an overall
higher performance than the “ Simplified module”
with a maximum improvement of 3% . While
compared with the “Signal involved module” , the
improvements achieved were even higher in SolfGene
(by 35.7% ), Syne (29.1% ), Npha (15.6% ) and Hsal
(7.9%), all of which are believed to contain leaderless
genes in their genomes[9, 16, 25]. Note that the final system
of MED-StartPlus reports an overall better
performance than any other software for the four
genomes. The results herein clearly indicate that our
method works efficiently in predicting TIS for
genomes with complex initiation mechanism.

3 Conclusion
In this paper, we developed a new algorithm to

model the complex statistical patterns associated with
translation initiation in prokaryotic genomes over a
wide variety of GC content. The resulting method
MED-StartPlus has been comprehensively evaluated
for the prediction performance on 14 published data
sets including 4 074 genes with TISs confirmed by
various evidences, and a total of 450 849 function-
known genes from 300 genomes with genomics GC
content arranging from 24.0% to 74.9% . The results
show that MED-StartPlus has a high overall
performance. We further report a detailed comparison
with the existing methods of TIS prediction. With a
performance competitive with the best of them on the
AT-rich genomes and genomes with the medium GC
content, MED-StartPlus outperformed the current best
TIS predictors on the GC-rich genomes and genomes
with complex initiation mechanism.

With growing number of completely sequenced
prokaryotic genomes, more and more genomes
deposited in the public database are exhibiting higher
or lower GC content and complex translation initiation
mechanisms. We therefore expect the potential
application of our method combined with the gene
finding tools, which will lead to improving the TIS
annotation in the public annotation such as RefSeq,
and in ongoing sequencing projects by the improved
genome annotation pipeline. Recently, the method has
been jointly applied with extrinsic evidences to build
the database ProTISA, which collects reliable TIS
annotation and predicts motifs associated with TIS for
all currently sequenced genomes in prokaryotes[26].

The software and the source code implemented in
C++ can be freely downloaded from http://ctb.pku.edu.
cn/main/SheGroup/Software/MEDPWEB/MEDStartPlus.
htm under the GNU GPL license.
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摘要 翻译起始位点(TIS，即基因 5忆端)的精确定位是原核生物基因预测的一个关键问题，而基因组 GC含量和翻译起始机制
的多样性是影响当前 TIS预测水平的重要因素．结合基因组结构的复杂信息(包括 GC含量、TIS邻近序列及上游调控信号、
序列编码潜能、操纵子结构等)，发展刻画翻译起始机制的数学统计模型，据此设计 TIS预测的新算法 MED-StartPlus．并将
MED-StartPlus与同类方法 RBSfinder、GS-Finder、MED-Start、TiCo和 Hon-yaku等进行系统地比较和评价．测试针对两种数
据集进行：当前 14 个已知的 TIS 被确认的基因数据集，以及 300 个物种中功能已知的基因数据集．测试结果表明，
MED-StartPlus 的预测精度在总体上超过同类方法．尤其是对高 GC 含量基因组以及具有复杂翻译起始机制的基因组，
MED-StartPlus具有明显的优势．
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