
Fig. 1 The different roles of immune cells in tumor
microenvironment

Th17 cells are able to eliminate cancer cells by the recruitment of CD8+

effector T cells, while they can also stimulate angiogenesis by the
production of IL-17. Tregs, known as suppressor T cells, can inactivate
the T cell-mediated tumor immunity by the secretion of IL-10, CTLA-4,
etc. Tumor-associated macrophages can facilitate the tumor-promoting
inflammation by secreting a large amount of cytokines. Myeloid derived
suppressor cells (MDSCs) can decrease the activity of antigen-presenting
cell (APCs), natural killer (NK) and T cells, and also induce
angiogenesis in the hypoxic microenvironment. Dendritic cells (DCs)
participate as APCs that can promote the adaptive immunity. However,
DCs can favor the tumor progression through mediating tolerance under
certain circumstances. Similarly, mast cells, another type of APCs, have
also been identified to modulate the anti-tumor immunity, while can
generate a series of pro-angiogenic factors to promote tumor
progression.
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Abstract Both epidemiological and clinical evidences have indicated a strong association between inflammation and cancers.
However, the molecular and genetic relationships between inflammation and tumor just begin to be understood. Accumulating data
have established the notion that tumor microenvironment is largely orchestrated by the infiltrated immune cells including T
lymphocytes, macrophages, dendritic cells, and mast cells. These cells are recruited to the tumor stroma and co-operate with each other,
either to facilitate the initiation, invasion, migration and metastasis of tumor, or to elicit the anti-tumor immunity. Here, we review
recent progress on how these immune cells function in tumor microenvironment. Understanding this issue is critical for developing
novel strategies of tumor immune therapy.
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The tumor microenvironment is the cellular
environment that consists of tumor cells, immune cells,
microvasculature, fibroblasts, other stroma cells, and
the extracellular matrix[1-2]. It has been well established
that the inflammatory state in tumor microenvironment
plays critical role in the initiation, progression and
metastasis of almost all solid tumors [2-5]. The tumor-
associated immunity is modulated by the accumulation
and interplay of a variety of immune cells including T
lymphocytes, B lymphocytes, as well as myeloid cells
including macrophages, myeloid-derived suppressor
cells, dendritic cells, and mast cells[6-7]. The molecular
and cellular mechanisms underlying the interaction
between immune cells and tumors have been
intensively studied. In this review, we summarize the
current knowledge about the function of immune cells
in microenvironment that have been demonstrated to
significantly affect tumor pathogenicity (Figure 1).

1 T lymphocytes
T lymphocytes play a central role in cell-mediated

immunity, and these cells can be classified into several
subtypes: CD4+ T cells, cytotoxic T cells (CTLs),
memory T cells and natural killer T cells(NKT cells)[8].
Since the pro- and anti-tumor functions of CTLs,
memory T cells, NKT cells have been well reviewed
elsewhere [9-11], this section concentrates on CD4+ T
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cells, with a particular focus on the Th17 and T
regulatory cells (Treg).

CD4+ T cells are essential organizers of cell-
mediated immunity, participating in the each stage of
immune response [8, 12]. Upon activation, naive CD4+ T
cells differentiate into various subsets of T helper cells
(Th cells) including Th1, Th2, and Th17 cells [8, 12-14].
Th1 cells are documented to produce interferon-酌
(IFN-酌) and functions in immunity against intracellular
pathogens [8, 12]. Th2 cells assist B cells for the
production of antibodies [8, 12]. Th17, characterized by
the production of IL-17, is identified in 2005[13-14]. Both
Th1 and Th2 can initiate a cytotoxic T cells (also
known as CD8+ T cells)-based anti-tumor response,
while the role of Th17 cells in malignancy is currently
under debate, as both pro- and anti-tumor activities of
Th17 have been reported [15-16]. Regarding the
anti-tumor effect, under the stimulation of IL-17 and
IFN-酌, Th17 cells can also play a protective role in
tumor immunity by promoting the activation of tumor-
specific CD8+ T cells, and recruiting of dendritic cells
into tumor tissue [17-19]. Drake and his colleagues
reported that the portion of Th17 cells in prostate
cancer inversely correlated with the stage of tumor
progression[20]. In addition, a portion of Th17 cells may
be trans-differentiated into Th1-type cells, which also
facilitates the anti-tumor immunity [18]. On the other
hand, Th17 cells also exhibit pro-tumor functions.
Th17-derived IL-17A promotes the melanoma
development via IL-17 receptor [21-22]. Enhanced Th17
cell infiltration is observed in lung cancer, and these
infiltrated Th17 cells trigger the proliferation of the
tumor cells [23]. Recently, Ferrara and his colleagues
have uncovered that Th17-derived IL-17A induced the
expression of granulocyte colony-stimulating factor
(G-CSF), leading to the recruitment of immature
myeloid-cell into the tumor microenvironment, and
promote VEGF inhibition resistance[24-25].

Tregs, also known as suppressor T cells, are
characterized by the expression of CD4, CD25 and
Foxp3 [26]. Tregs represent about 5% of circulating
CD4+ T lymphocytes in the peripheral blood, and play
an anti-inflammatory role by shutting down immune
responses after the invading organisms being
eliminated [27-28]. There are three subsets of Tregs
including naturally occurring Tregs, antigen-induced
Tregs, and Tregs originated from CD8+ T cells [28-29].
The increased Tregs has been observed in a variety of
tumors including breast cancer, melanoma, and

hepatocellular carcinoma [30-33]. Most of the immune
cells in the tumor stroma, such as T cells, B cells,
dendritic cells and macrophages, are the targets of
Tregs[28, 34]. Thus, Tregs mainly function as a pro-tumor
T cell population. Tregs are reported to inhibit the
expression of co-stimulatory molecules including
CD80, CD83, and CD86, on the surface of dendritic
cells, thus inactivate T cells [35]. Tregs also suppresses
Th17 activity, which is associated with poor prognosis
in several cancers. Ablation of Treg can evoke
antitumor responses in colitis-associated colon
cancer [36]. Using transplantable tumor models in mice,
Stewart et al. [37] have reported that the majority of
tumor-associated IL-10 was produced by activated
Treg population. This Tregs-derived IL-10 production
limits Th17 cell numbers in both spleen and tumor,
and thus restrains Th17-type inflammation [37]. In
addition, after infiltration into tumor microenvironment,
Tregs significantly block effector T cells activation and
directly suppress the anti-tumor immunity, most if not
all, via the production of CTLA-4, IL-10[21]. Tregs also
severely impair the anti-tumor capacity of CD8+ T cells
through inhibiting the proliferation and infiltration of
CD8+ T cells in tumor microenvironment. Bauer et al.[38]

demonstrated that Tregs locally induced a
dysfunctional state of infiltrated CTLs by altering the
balance of co-stimulatory and co-inhibitory signals
within tumor microenvironment. Moreover, Tregs
directly suppress B cells proliferation, increase the
death of the cells by cell-to-cell connection, and also
inhibit immunoglobulin production in B cells[39]. Taken
together, the blockade of the infiltration of Tregs might
become an effective approach to break the immune
tolerance in the context of tumor microenvironment,
yet it still needs further investigation to confirm the
outcome of Tregs depletion in clinical trials.

2 Tumor鄄associated macrophages
Macrophages are differentiated from circulating

monocytes and reside throughout the body tissues with
highly heterogeneous characteristics. During microbial
infection or injury, these tissue-specific macrophage
subsets produce high amount of pro-inflammatory
cytokines, recruit additional macrophages and other
immune cells, phagocytose toxic materials, and also
regulate the adaptive immunity. Macrophages resident
in tumors are commonly termed as tumor-associated
macrophages (TAMs)[40-44]. Large numbers of TAMs in
tumor microenvironment are often associated with
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high malignance and poor prognosis[45-48].
In response to different environmental stimuli,

macrophages can be polarized into "M1
macrophages", the classically activated macrophages,
or "M2 macrophages", the alternatively activated
macrophages [49]. M1 macrophages are activated by
IFN-酌 and bacterial products, such as LPS. They
express high levels pro-inflammatory cytokines, and
release reactive oxygen species (ROS) and reactive
nitrate species (RNS). It is believed that M1
macrophages possess anti-tumor activity. M2
macrophages are activated by IL-4, IL-10, IL-13 and
glucocorticoid hormones, which render these cells
anti-inflammatory function, and promote tumor
progression [50-51]. Animal model and clinical studies
suggest that TAMs are M2-like cells, which inhibit
anti-tumor immunity, contribute to immune evasion
and facilitate tumor initiation, progression and
metastasis[52-53]. However, TAMs have been reported to
share the features of both M1 and M2 cells[48]. It is now
accepted that in contrast to the binary M1/M2
definition, macrophages can be polarized to a
mixed-phenotype state under certain physiological and
pathological conditions [54-56]. This conclusion is
supported by a recent report that the expression of
CUEDC2 is almost undetectable in TAMs, and these
macrophages lacking CUEDC2 produce higher amount
of pro-inflammatory cytokines to promote colon
cancers [57]. A widely accepted model regarding the
origin of macrophages is that circulating monocytes in
peripherial blood differentiate into macrophages in
tissues. However the local self-renewal of
tissue-resident macrophages has been reported by
several groups [58-60]. Recently, by utilizing parabiosis
studies and gene-expression profiling comparison in
mammary tumor mouse model, Ming O. Li's group
revealed the cellular origin of TAMs [61]. Distinct from
tissue macrophages, TAMs are mostly differentiated
from circulating inflammatory monocytes.

The causal link between inflammation and tumor
initiation is well established [62]. When subject to
persistent microbial infection or chronic stimulation,
macrophages recognize the foreign materials and
activate transcriptional mechanisms that lead to
secretion of pro-inflammatory cytokines and
chemokines [46, 62]. However, excessively produced
cytokines could also sustain a state of chronic
inflammation and promote tumor initiation. In
established tumors, TAMs facilitate tumor cell

migration, invasion, matrix remodeling and
angiogenesis, which are required for tumor cells to
escape from primary sites into the circulatory system
and form metastases. In tumor microenvironments,
anti-inflammatory cytokines, such as IL-4, IL-13,
IL-10 and M-CSF, induce the transition of TAMs from
a pro-inflammatory state to a tumor
immunosuppressive phenotype that contributes to
sustain tumor progression[53].

3 Myeloid derived suppressor cells
Recently, a cluster of immature myeloid cells has

been characterized as myeloid derived suppressor cells
(MDSCs), which are constantly accumulated in
various cancer tissues and suppressed the immune
response in tumor microenvironment [63-64]. MDSCs are
a group of unwell-differentiated, dysfunctional
progenitor cells that rapidly emerged under a variety of
stress conditions especially in cancer development[65-67].
Detailed studies showed the accumulation of MDSCs
in the tumor site perturbed the immune response by
antagonizing mature immune cells, and thus
contributed to the escape of tumor cells from the
normal immune surveillance [46, 68-70]. Moreover,
proinflammatory molecules secreted by tumor and host
cells expand MDSCs and recruit them to facilitate
cancer development[71-73].

Based on the expression of myeloid membrane
markers, MDSCs can be divided into two major
subtypes, monocytic-MDSCs (Mo-MDSCs) and
granulocytic-MDSCs (G-MDSCs), which are usually
defined as CD11b+/CD14+/CD33+/HLA-/DR-, and
CD11b+/CD33+/CD15+, respectively [63, 74-77]. During
tumor development, the proliferation of MDSCs are
stimulated by tumor-secreted cytokines including
VEGFA, stem cell factor (SCF), granulocyte-
macrophage colony-stimulating factor (GM-CSF), or
granulocyte-CSF (G-CSF) and tumor necrosis factor
(TNF) etc. [78-81]. Thus, these excessive and malignant
stimulators rapidly induce myeloid cell to become
immature MDSCs. On the other hand, the C-X-C motif
chemokine family (CXCL) also play a key role in the
mobilization and homeostasis of MDSCs [82-84]. As
reported, the abnormal activity of the JAK-STATs and
NF-资B signaling contributed to MDSCs expansion,
and the down-regulation of TGF-茁 signaling promoted
the infiltration of MDSCs in tumors[76, 85-89].

The major role of MDSCs is to suppress T cell
function and the suppressive activity depends on
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cell-to-cell contact. MDSCs exhibited an upregulated
intracellular level of arginase, and suppress CD4+ and
CD8+ T cells by depleting their surroundings of
arginine, which is essential for T cell activation [90-91].
Increased expression of inducible nitric oxide synthase
(iNOS) in MDSCs inhibits CD8+ T cells by catalyzing
the nitration of the T cell antigen receptor (TCR) and
thereby disturbing T cell-peptide-MHC complex [91].
Recent work demonstrated that MDSCs indirectly
induced Tregs, which are crucial for shutting down T
cell-mediated immunity[92-93]. Except for suppression of
T cell function, MDSCs has also been suggested to
function as regulators of tumor invasion and
angiogenesis [87, 94]. In these processes, hypoxia and
hypoxia-inducible factor-1琢 were reported to be
responsible for the upregulation of matrix
metalloproteinases (MMPs), arginase and iNOS
expression in MDSCs[95-96]. Due to the dual function of
MDSCs in cancer development, eliminating MDSCs
reduces the risk of tumorigenesis and improves the
prognosis of cancer therapy, while a comprehensive
understanding of the mechanisms of MDSCs
regulation will provide valuable information for more
efficient cancer therapeutic strategies.

4 Dendritic cells
Dendritic cells (DCs) are a group of professional

antigen-presenting cells (APCs) that share the
capability to uptake and process antigens, including
tumor antigens, for presentation to naive T cells [97-98].
DCs have been found highly heterogeneous in
ontogeny, localization, cytokine profiles, and
immunological function. According to the immune
surveillance paradigm, DCs sense malignant lesions
and present the tumor antigens to adaptive immune
cells which eliminate the tumorous cells and prevent
the tumor formation. In line with this concept, it has
been reported that more infiltrated DCs in certain solid
tumors correlated with favorable prognostic features[99].
In growing solid tumors, tumor damage-associated
molecular patterns (DAMP) could be recognized by
DCs, and trigger innate immunity and then start the
priming of the anti-tumor adaptive immunity. The role
of Type玉 IFN in this process has been underscored
by a series of works [98]. Fuertes et al. [100] reported a
correlation between a type 玉 IFNs transcriptional
profile and T cell markers in human metastatic
melanoma. They further found that in mice lacking
IFN signaling, intratumoral accumulation of CD8+ DCs

and tumor-induced T cell priming were almost
completely loss. In the meantime, Diamond et al. [101]

reported that tumor rejection was defective in mice
lacking IFN琢R1 in DCs, but was grossly normal in
mice lacking IFN琢R1 in macrophages and
granulocytes, suggesting that DCs were the major
targets of Type玉 IFNs. According to these findings,
new therapeutic strategies were developed targeting the
type玉 IFNs in the tumor environment. Yang et al [102]

armed the therapeutic antibody (Ab) with IFN-茁 and
observed that it is more potent in controlling
Ab-resistant tumors. Ab-IFN-茁 therapy directly and
mainly targets intratumoral DCs, increases
cross-presentation in the tumor microenvironment, and
activates CTL against tumor.

Except for the role in anti-tumor immunity, DCs
have also been found to accelerate tumor progression
through various mechanisms[98]. Garrett et al. [103] found
that T-bet deficiency in DC cells elicited
uncontrollable MyD88-independent intestinal
inflammation, which promoted the development of
ulcerative colitis and later progression to colonic
dysplasia and rectal adenocarcinoma. Pedroza-
Gonzalez found that breast cancer cells could secret
TSLP (Thymic stromal lymphopoietin). TSLP induced
and maintained the OX40L+ DCs, which further
promoted the pro-tumor Th2 inflammation in the
breast cancer tissues[104]. Chemotherapy causes massive
tumor cell death, releasing a combination of molecules
including tumor antigens, DAMPs and other factors
that regulate DCs function in the tumor
microenvironment. Ma and colleagues [105] found that
ATP released by dying cancer cells recruited myeloid
cells into tumors, and stimulated the local
differentiation of CD11c+CD11b+Ly6Chi DCs. These
cells engulf tumor antigens in situ and presented them
to T lymphocytes, thus vaccinated mice against cancer
cells. In a different model, Baghdadi et al. [106] found
that DAMPs released from chemotherapy-damaged
tumor cells reduced antigen presentation and impaired
CTL responses. They demonstrated that
DAMP-induced TIM-4 expression in DCs repressed
tumor-specific immunity through directly interacting
with AMPK琢1 and activating autophagy-mediated
degradation of ingested tumors. Since tumors of
different tissues and different stages have unique
features, DCs function in tumor microenvironment is
also spatially and temporally dynamic. In mucosal
system, FcRn (neonatal Fc receptor for IgG) on the
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DCs has a fundamental role in the anti-tumor
immunesurveillance through mediating the cross
presentation of IgG-complexed antigens and the
secretion of cytotoxicity-promoting cytokines [107].
Using an inducible aggressive ovarian carcinoma,
Scarlett and colleagues [108] found that along tumor
progression, DCs undergo a phenotypic switch from
tumor-preventing to tumor-promoting. Depleting DCs
in the early stages accelerates tumor expansion, but
DC depletion at advanced stages significantly delays
aggressive malignant progression [108]. Taken together,
the considerable progress made in the understanding of
DC biology in tumor microenvironment has clearly
opened avenues for the development of novel
anti-tumor therapies. Further investigations on the
function and differentiation of DCs may provide more
potent strategies to rewire the signaling pathways from
"pro-tumor" DCs into "anti-tumor" DCs.

5 Mast cells
Mast cells (MCs) are also tissue-resident sentinel

cells. It has been identified that mast cell progenitors
are derived from hematopoietic stem cells or
differentiated later in the myeloid lineage from the
granulocyte monocyte progenitor[109]. The infiltration of
mast cells in tumor microenvironment correlates with
tumor development thus has been utilized as a novel
prognostic marker[110]. For example, increased mast cell
count is associated with unfavorable prognosis in
follicular lymphoma, Hodgkin lymphoma [111]. In
addition, mast cells can also induce the release of
pro-angiogenic factors. High MC score together with
angiogenesis shows poor clinical outcome, short
recurrence free survival in colorectal cancer, lung
cancer, and pancreatic cancer[112-117]. Nakayama et al.[118]

discovered the potential role for mast cell-derived
angiopoeitin 1 (Ang-1) in murine myeloma. Both
Ang-1 and VEGF-A expression are found in murine
mast cells. The pro-tumor effect of mast cells is
inhibited by addition of antibodies against Ang-1,
VEGF-A or both, suggesting mast cell-derived Ang-1
plays a potent role in promoting angiogenesis in
myeloma.

Mast cells are also antigen-presenting cells [109, 119].
They promote the maturation of dendritic cells,
interact with both T cells and B cells, and modulate
immune responses [119-121]. Indeed, mast cells express
antigen presentation molecules including MHC class域
and CD28, and thus activate T cells to initiate adaptive

immunity, and contribute to tumor rejection [122]. Mast
cells can also recruit eosinophils and neutrophils and
activate anti-tumor adaptive T and B cell responses[123].
In contrast, the presence of mast cells may facilitate
tumorigenesis. It has been recognized that the
recruitment of Tregs into the tumor microenvironment
is partially mediated by mast cell-derived
adenosine [124]. Mast cells also interact with Tregs, and
this interaction determines the level of inflammation,
thus further dictates the tumor progression [124]. Tregs
suppress the mast cell differentiation and
degranulation via the cell-cell contact mediated by the
interaction between OX40 from Tregs and OX40L
from mast cells. On the other hand, mast cells also
block the Treg-derived IL-10 production through the
same interaction [123]. Moreover, mast cell-secreted
proinflammatory cytokines including IL-6 and IL-23
interrupt the suppressive effect of Tregs [115, 125]. In all,
mast cells generate a variety of cytokines that either
promote angiogenesis, or regulate the anti-tumor
immunity. However, the extent to which mast cells are
a relevant source of these cytokines is an unresolved,
but important, question.

6 Concluding remarks
By characterizing immune cells in tumor

microenvironment with mouse models and human
samples, people gain more insights of the diverse
immune cells that modulate the initiation and
progression of tumors. Based on this understanding,
targeting the immune cells in the tumor
microenvironment could be a novel approach to treat
malignancies. There are still some challenges in this
field: since the different orchestration of the immune
cells may lead to different clinical outcomes, future
studies will need to take a comprehensive view of
tumor immune environment as a whole. It is still
obscure that how different immune cells cooperate
with each other within tumor tissues. Thus the
molecular mechanisms that regulate the cell-cell
interaction need to be uncovered. Additionally, the
composition of the immune cells in the
microenvironments of primary tumors and metastases
may be different, and immunotherapies that target
multiple lesions in one person are required for a better
efficacy. Besides, a big data-based mathematical
model can certainly improve the precision of prognosis
prediction and accelerate the development of
anti-tumor immunotherapies.
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免疫细胞与肿瘤微环境

宋 楠 李 涛 张学敏 *

(国家生物医学分析中心，北京 100850)

摘要 肿瘤细胞和免疫细胞间的相互作用一直是肿瘤生物学关注的热点．流行病学与临床研究均表明，炎症反应与肿瘤的发

生发展存在密切关联，但是其中的分子作用机理和遗传学机制尚未完全阐明．研究显示，T淋巴细胞、巨噬细胞、树突状细
胞、巨大细胞等多种免疫细胞会浸润到肿瘤微环境中，协同调控肿瘤生长、免疫逃逸和侵袭转移．本文就近年对肿瘤微环境

中免疫细胞功能研究的进展进行综述．正确认识这些免疫细胞在肿瘤发生发展中的作用，对于发展更优的肿瘤免疫治疗手段

具有十分重要意义．
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