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Abstract Female fig wasps differ phenotypically from conspecific males to the extent that often they cannot be associated with one
another. Weighted gene co-expression network analysis (WGCNA) of the genome and transcriptomes of one such fig wasp,

Ceratosolensolmsi, generated five expression modules, which were flagged as blue, turquoise, brown, green and yellow. These involved
two female-biased expression modules and three pupa-biased expression modules, respectively. Gene ontologies indicated three
functional enrichment gene sets in modules turquoise and yellow. Two functional enrichment gene sets that participate in cell cycle or
have nucleotide binding activityclustered in turquoise module. The functionally enriched gene set in yellow module played roles in cell
differentiation, especially in neuron morphogenesis.
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Genes that co-participate in biological processes
generally display similar expression patterns. Often
such gene sets involve functional enrichments, which
clustering methods can reveal. Thus, clustering of gene
sets facilitates an understanding of the roles of genes
play in a biological processes[1].

Weighted gene co-expression network analysis
(WGCNA) can cluster together genes that function in
concert. One of the most direct methods for identifying
gene co-expression networks [2], WGCNA has been
successfully applied to the identification of functional
enrichment modules in complex diseases[3-8].

Fig wasps are obligate symbiosis of their fig
hosts. Female and male fig wasps exhibit extreme
morphological dimorphism [9]. Recently, the genome
and transcriptomes of Ceratosolensolmsi were
published [9]. Herein, we employ WGCNA to identify

groups of co-expressed functional genes from
transcriptomes of male and female C. solmsi.

1 Materials and methods
1.1 Differentially expressed genes

Fig wasps has three developmental stages: larva,
pupa and adult[10]. Transcriptome data were accessed in
the NCBI Short Read Archive(www.ncbi.nlm.nih.gov/
sra) under the accession No. SRP029703. The FPKM

Abbreviations: WGCNA, weighted gene co-expression network analysis; DAVID, Database for Annotation, Visualization
and Integrated Discovery; FPKM, fragments per kilobase of exon model per million mapped reads; GE, gene expression; CV,
coefficient of variation; Pcc, Pearson correlation coefficient; GO, gene ontology.
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method (fragments per kb per million reads) [11] was
used to calculate the expression of unigenes. Each
gene expression (GE) value was log2-transformed
from its FPKM value. To identify the differentially
expressed genes, we used the distribution of the overall
GE value to remove lowly expressed genes[12]. In total,
7 881 genes with GE>0.5 in at least four samples were
obtained. Next, we used the coefficient of variation
(CV ) value to identify the differentially expressed
genes[13]. Ultimately, we obtained 2 938 genes with
CV <2.
1.2 Screening and clustering of highly correlated
genes

WGCNA was used to describe the correlation
patterns among 2 938 genes across the transcriptomic
datasets and cluster the genes with highly correlated
expression patterns. Firstly, the weights of each of the
two genes were calculated using a soft threshold power
of 12 because the R^2 was greater than 0.7 when
applying this threshold [14]. Secondly, two genes with a
weight of greater than 0.476 were considered to
possess highly correlated expression patterns for
0.94^12 [15]. Thirdly, candidate highly correlated
genes were clustered when minModuleSize = 5 and
mergeCutHeight = 0.05. Finally, each module of gene
expression pattern was visualized using Cluster 3.0 and
Treeview[16-17].
1.3 Annotation and functional speculation

Fig wasp genes were not well annotated.
Therefore, the well-annotated genes of Drosophila
melanogaster were used to imply the functions of fig
wasp genes. Drosophila protein sequences were
downloaded from Flybase. Our co-expressed genes
were aligned to those in Flybase by using BLASTP [18].
Functional annotations had the highest similar
sequences of fig wasp genes to those in Flybase. The
fly gene IDs, which were mapped by fig wasp genes,
were put into Annotation, Visualization and Integrated
Discovery (DAVID) [19] to deduce enrichment levels of
the latter.

2 Results
2.1 Highly correlated genes grouped into five
co鄄expression modules

Using a gene expression value (GE) of > 0.5 [12]

and a coefficient of variation (CV ) of < 2 [13], 2 938
differently expressed genes were obtained. The
weight-values between each two genes were calculated
using WGCNA. For better screening of the highly

correlated co-expression genes, 0.476 was taken as a
co-expression threshold value. This resulted in 336
genes being chosen. The Cytoscape v2.6.3 [20] network
divided 336 genes into four parts (Figure 1). The
features of the network were show in Figure S1～S4
and Table S1. Interestingly, the 336 genes clustered
into five modules using WGCNA clustering function
(Figure 2). Depicted in colors, these consisted of 54
(green), 62 (yellow), 63 (brown), 76 (blue) and 81
(turquoise) genes.

The turquoise and blue modules clustered
together, as did green and brown. Yellow module did
not cluster with any other module (Figure 1, 2). To
confirm that co-expressed genes had similar levels of
expression, we visualized them in heatmaps using
Cluster 3.0 and Treeview [16-17]. Genes clustered in
brown, green and yellow modules were highly
expressed in females, and genes in blue and turquoise
module were expressed in pupa (Figure S5).
2.2 Gene ontology

In total, 336 co-expressed genes clustered into
three co-expression networks and five modules. These
results suggested that each module of genes should
have unique, enriched functions. Our annotation of fig
wasp gene functions by using BLASTP against the
genome of Drosophila discovered 251 genes(Table S2).
These genes were then analyzed for the functional
enrichments using DAVID [19]. Three annotation
clusters with enrichment scores of > 3 were chosen and
we terms with Benjamini values of < 0.05 in each
annotation cluster to be candidate functional terms.

We used the fold change (c) to summarize the
degree of functional enrichment by calculating formula
(1) as follows:

c= a
b

m
n (1)

a: Number of enriched genes of a given module in
an annotation function term. b: Number of all enriched
genes in an annotation function term. m: Number of all
genes in a given module. n: Number of all candidate
genes (336).

Gene sets with clear function enrichments had c
values of greater than 2 and gene sets likely to have
functional enrichments had c values between 1 and 2.

GO results showed that three annotation-clusters
involved biological processes and molecular functions
(Table S3). Genes that played roles in cell cycle
functions exhibited the greatest amount of enrichment
and these belonged to annotation cluster 1, and
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modules turquoise and blue. Annotation cluster 2
contained genes enriched in nucleotide binding
activity. They also exhibited the greatest levels of
enrichment in modules turquoise and blue. Finally,

annotation cluster 3 was comprised of genes enriched
in morphogenesis. These genes tended to cluster into
modules yellow and green (Figure 3).

Fig. 2 Highly correlation genes clustered into five expression modules
Blue and turquoise module genes co-expressed together, green and brown module genes co-expressed together(connected with Figure 1).

Fig. 3 The enrichment of genes clustered in turquoise and yellow module
Genes of annotation cluster 1 and annotation cluster 2 were enriched biology process and molecular function, respectively. However, genes of
annotation cluster 3 were enriched biology process.
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Genes in modules turquoise and blue were
expressed preferentially in female fig wasps, but not in
males (Figure S5). This discovery suggested that these
genes might play important roles in the development of
females. For example, CSO_000580, which was
annotated as FBgn0000063, might have protein kinase
activity [21] and play roles in female meiosis [22], female
meiosis chromosome segregation [23] and meiotic
spindle assembly checkpoint [22]. Thus, this gene might
be involved in oogenesis. Another example,
CSO_000814, which was annotated by FBgn0004859,
might also play roles in oogenesis [24]. These results
suggested that clustered highly expressed genes in
adult female fig wasps special roles in adult female
development.

Genes clustering in modules yellow and green
were highly expressed in the pupa stage of the fig
wasp. Female and male pupa exhibited the same levels
of expression. Thus, these genes might play roles in
pupa morphogenesis. For example, CSO_010218,
which was annotated by FBgn0030662 [25], might be a
component of the golgi cisterna membrane and be
involved in glucuronosyltransferase activity; it may
also function in the chondroitin sulfate biosynthetic
process[26]. Ecdysteroid UDP-glucosyltransferases were
shown to play a role in the conjugation of ecdysteroids
with glucose or galactose [27]. Similarly, CSO_004410
(annotated by FBgn0086680) was found to be a RNA
polymerase域 core promoter in the proximal region of
sequence-specific DNA binding transcription factor
activity involved in positive regulation of transcription[28].
Further, CSO_004410 might play roles in motor
neuron axon guidance [29], regulation of dendrite
morphogenesis[30] and brain development[31].

3 Discussion
3.1 Highly co鄄expressed genes clustered into five
expression鄄modules

The fig wasp is a good organism for studying the
co-expression of genes in males and females that
exhibit extreme morphological dimorphism. We
obtained 2 938 differentially expressed genes from
11 506 annotated genes in RNA-seq data. GE values
were used to remove lowly expressed genes [12] and CV
values were employed to identify differentially
expressed genes [13]. To ascertain the most relevant
genes, WGCNA was used to cluster highly
co-expressed genes, those with a weight greater than
0.476 [15], into five expression-modules. Genes in

modules turquoise and blue were co-expressed, as
were genes in module brown and green. Genes in
modules turquoise and blue were highly expressed in
female fig wasp only. Further, genes in module green,
brown and yellow were expressed mainly in pupae,
suggesting involvement in the development of fig
wasps. Genes in module yellow did not cluster with
genes in modules brown or green, suggesting unique
functions of genes in each module. Five differentially
expressed gene modules were obtained, and genes
function of these modules might be different to each
other. The finding was useful for the exploration of fig
wasp gene functions.
3.2 Modules with a low鄄fold change score are
revealing

Highly correlated genes can facilitate explorations
into the roles genes play in divergent phenotypes.
Different modules appear to have different functional
enrichments. Modules with a low-fold change score
might have unknown functional enrichments. For
example, genes in modules blue and turquoise belong
to the same co-expression network, but they have
different functional enrichment scores and the same
situation occurs in modules brown and green. These
observations suggest that most genes functions await
detailed annotation.
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S1～S3 are available at paper online(http://www.pibb.
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榕小蜂基因共表达研究 *

崔东亚 1, 2, 3)** 孙旭斌 1, 2)** 王佳佳 1, 2) 张 鹏 2) 孙宝发 4)
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摘要 榕小蜂的雌雄个体之间存在很大表型差异，以至于很难将雌雄个体彼此联系在一起．以对叶榕传粉榕小蜂作为材料，

利用“加权基因共表达网络分析”软件(WGCNA)，对榕小蜂的基因组和转录组进行分析，结果发现，5个基因共表达模块，
分别用蓝色、蓝绿色、棕色、绿色和黄色标识，其中 2个模块偏爱在雌蜂中表达，3个模块偏爱在蛹中表达．基因本体(GO)
分析发现在蓝绿色和黄色表达模块中发现 3个功能富集的基因集合．在蓝绿色基因表达模块中发现 2个基因集合，分别与细
胞周期和核苷酸结合活性有关；在黄色基因表达模块中发现 1个基因结合，与细胞分化有关，尤其是与神经发育有关．

关键词 共表达，网络，功能富集
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附 录

Fig. S1 Frequency distribution of characteristic path length
This figure was output directly by NetworkAnalyzer in Cytoscape v2.6.3. The x-axis represents the shortest path length, which represents the expected

distance between two connected nodes, and the y-axis represents frequency.

Fig. S2 Frequency distribution of shared neighbors
This figure was output directly by NetworkAnalyzer in Cytoscape v2.6.3. The shared neighbors represent the connections between neighbors. The x-axis

represents the number of shared neighbors, and the y-axis represents frequency.
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Fig. S3 Topological coefficient of neighbors
This figure was output directly by NetworkAnalyzer in Cytoscape v2.6.3. The topological coefficient is a relative measure of the extent to which a node

shares neighbors with other nodes. The x-axis represents the number of neighbors, and the y-axis represents the topological coefficient.

Fig. S4 Node degree distribution
This figure was output directly by NetworkAnalyzer in Cytoscape v2.6.3. The number of nodes (genes) plotted as a property of their degree (number of

connections with other nodes) shows a power-law like distribution, which indicates a scale-free network topology.
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Fig. S5 Heatmap for the expression of genes in �ive modules
This figure  was created using Cluster 3.0 and Treeview. The bar in the lower left shows that the redder colors indicate higher 
expression, and the more brilliant green colors represent lower expression. The x-axis represents four different developmental

stages in the fig wasp (larva, 21-day pupa, 25-day pupa and adults), while the y-axis represents the different genes. 
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Column 1 lists the number of simple parameters. Column 2 lists the names of the basic properties. Column

3 lists the corresponding value of each property in the gene co-expression network. 1) The parameter

associated with scale-free distribution. 2) The parameter associated with shortest path length. 3) The

parameter associated with the number of neighboring nodes.

Serial number Property Value

1 Clustering coefficient 0.4081)

2 Connected components 4

3 Network centralization 0.1621)

4 Network heterogeneity 1.3101)

5 Characteristic path length 3.4622)

6 Network radius 12)

7 Network diameter 102)

8 Avg. number of neighbors 8.2143)

9 Number of nodes 336

10 Network density 0.025

11 Shortest path 403062)

Table S1 Simple parameters of the network
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