

www.pibb.ac.cn

微流控芯片加载低温保护剂过程中卵母细胞的 损伤评估^{*}

邵文琪¹⁾ 郭莹莹¹⁾ 戴建军²⁾ 张德福²⁾ 周新丽^{1)**} (¹⁾ 上海理工大学生物热科学研究所,上海 200093; ²⁾ 上海市农业科学院畜牧兽医研究所,上海 201106)

摘要 卵母细胞的低温保存为辅助生殖技术和胚胎工程技术提供了更大的发展空间,而低温保存需要添加高浓度保护剂, 会对细胞造成渗透损伤及毒性损伤.与分步法添加固定浓度的保护剂不同,微流控法能够实现保护剂浓度的连续性变化,关 于微流控法连续性添加保护剂时卵母细胞的损伤评估还未见报道.本文首先采用数值模拟的方法,模拟细胞在不同加载时 间、不同加载线型(线性、S型、凹型)、不同凹型加载(低凹型、高凹型)中细胞的渗透行为,计算各方案中细胞的传统 的损伤评估参数:体积变化极值(ΔV)、积累性渗透损伤值(AOD)及毒性损伤值(J).在此基础上,藉由信息熵理论首次 提出了综合损伤评估参数s,并通过猪卵母细胞微流控加载后孤雌激活实验的结果验证评估效果.结果表明,对于不同的加 载方案,传统的损伤评估参数结果之间出现分歧,无法得到统一的结论.通过分析囊胚率同综合损伤评估参数s值的关系, 发现二者呈负相关关系,且相关系数很高,说明综合损伤评估参数s能够较好地对细胞损伤进行评估,为细胞损伤评估开辟 了新思路.

关键词 微流控芯片,猪卵母细胞,渗透损伤,毒性损伤,损伤评估 中图分类号 Q2,Q81 **DOI**: 10.16476/j.pibb.2018.0225

卵母细胞的低温保存是生殖能力保存的重要方 法, 被广泛运用于牲畜育种和辅助生殖领域. 目前 常用的低温保存方法有慢速冷冻法及玻璃化冻存 法,这两种方法都需要添加低温保护剂 (cryoprotective agent, CPA) 以减小冷冻损伤.但 是,在低温保护剂加载及去除的过程中,高浓度的 低温保护剂使细胞内外产生渗透压的突变,细胞受 到不同程度的渗透损伤和毒性损伤.因此,优化 CPA加载和去除方法对于提升细胞的冷冻保存质量 具有重要意义. 微流控技术由于可实现保护剂溶液 浓度的连续线性变化,与传统的分步加载和去除保 护剂的方法相比,消除了渗透压的突变,近年来被 运用于保护剂的添加和去除. Song等^[1] 以人肝癌 细胞为模型,制作了水平三流微流控装置用于细胞 保护剂的添加和去除.结果表明,经冷冻后微流控 组的存活率显著高于一步法及两步法.

为了评估不同保护剂加载和去除方案对卵母细 胞的损伤情况,通常有实验和理论计算两种方法. 若采用实验方法,即经过加载/去除保护剂后,检 测细胞的存活率和卵裂率等指标,以此对比各加载 方法的优劣性,需要耗费大量人力物力且存在较大 的实验误差.而采用理论计算的方法,常用的3种 细胞损伤评估参数包括:细胞体积变化极值 (ΔV)、积累性渗透损伤值(AOD)和积累性毒性 损伤值(J).保护剂添加过程中,细胞膜两侧的渗 透压差驱动水和保护剂进出细胞将引起细胞体积变 化,若体积变化最大值ΔV超过细胞所能承受的极 值范围,将会对细胞造成不可逆的渗透损伤^[2].马 学虎等^[3]通过模拟保护剂添加过程中细胞的体积 变化,考察了各种加载方案对细胞的体积损伤及渗 透损伤.为了减小细胞的体积变化,通常采用多步 法加载和去除CPA,但同时也增加了在高浓度保护 剂中的暴露时间,因此提出积累型渗透损伤 (accumulated osmotic damage, AOD),旨在结合加

^{*}国家自然科学基金(51376132)资助项目.

^{**} 通讯联系人.

Tel: 021-55270218; E-mail: zjulily@163.com

收稿日期: 2018-10-25, 接受日期: 2019-01-18

载时间和细胞体积变化情况来共同探究细胞的受损 情况.Liu等^[4]以兔卵母细胞为模型,计算了CPA 加载和去除过程中的AOD值,并对成熟的卵母细 胞进行孤雌激活,将各方案的细胞发育率同其相应 的AOD值比较,结果发现二者之间存在较高的相 关性. Wang 等^[5] 也采用 AOD 值评估了小鼠卵母细 胞加载保护剂后的损伤情况,实验表明囊胚率越 高, AOD 值越小. 在加载/去除过程中, 不论体积 变化如何,细胞时刻都受到 CPA 自身毒性带来的 毒性损伤,有学者认为毒性损伤是低温保存面临的 主要挑战^[6].毒性损伤不仅受时间影响,还与CPA 的浓度和温度有关, Benson等^[7] 根据已有的实验 数据定义了 CPA 加载/去除过程中的积累毒性损伤 (J),以人的卵母细胞为模型,计算加载和去除过 程中细胞受到的毒性损伤大小总和,并模拟计算出 了优于传统分步法的保护剂添加方案.

虽然传统的损伤评估参数从不同角度对细胞损 伤进行了评估,但得出的结论可能出现分歧,如增 加加载步数可以减小细胞的体积变化, 但延长了加 载时间,造成较大的积累性毒性损伤.邵文琪等[8] 研究表明,采用多个损伤评估参数进行计算后,不 一定能得出统一的预测结果,因此需要一个可以综 合确定各参数的相对权重和合成方式的多指标综合 评价方法,其中确定各指标权重的方法之一为熵值 法^[9-10]. 熵值法在工程技术、社会经济等领域取得 了非常广泛的应用,如Zou等^[11]将熵值法应用到 模糊综合评价方法中,对水质进行评价,实验结果 表明通过熵值法评价水质质量十分有效. Qiu等^[12] 将熵值法应用到信息工程管理领域,将信息理论和 决策理论有效地结合,为多因素决策提供理论支 持.吴铭程等[13]基于熵值法设计了一个污染源区 域排污量的评价模型,为实现主要污染物总量减排 目标提供有力的技术支持.邓红星等[14]基于熵值 法建立燃气公交系统安全评价的模糊综合评判模 型,结果表明建立的评价指标具有一定的应用 价值.

目前,关于卵母细胞的损伤评估多是针对分步 法添加固定浓度的保护剂,而微流控法能够实现保 护剂浓度的连续性变化,关于微流控法连续性添加 保护剂时卵母细胞的损伤评估还未见报道.本文采 用微流控法对猪卵母细胞进行保护剂的加载,在不 同加载时间、不同线型、不同凹型的加载方案中, 对猪卵母细胞细胞的渗透行为进行模拟,以细胞体 积变化极值ΔV、积累性渗透性损伤值AOD、积累 性毒性损伤值J为评价指标,对各个加载方案进行 细胞损伤评估.其次,在传统损伤参数的基础上, 根据熵值法的基本原理,建立基于熵值法的卵母细 胞损伤评估模型,计算各方案的综合损伤参数s.最 后进行了猪卵母细胞微流控加载后孤雌激活实验, 将得出的细胞囊胚率同综合损伤评估参数s值进行 对比,验证s值评估的有效性.

1 材料与方法

1.1 渗透模型

目前渗透模型主要有3种:一参数(溶质渗透 系数)模型^[15-16]、经典的两参数(水力传导系数和 溶质渗透系数)模型^[17]以及由Kedem和 Katchalsky创立的三参数模型^[18].Kleinhans^[19]和 Woods^[20]分别从理论和实验上比较了两参数模型 和三参数模型,一致认为两参数模型更为简洁,其 预测结果更接近实际情况:

$$V_{\rm c} = V_{\rm w} + V_{\rm s} + V_{\rm b} \tag{1}$$

$$\frac{\mathrm{d}V_{\mathrm{w}}}{\mathrm{d}t} = -L_{\mathrm{p}}ART(M^{\mathrm{e}} - M^{\mathrm{i}}) \qquad (2)$$

$$\frac{\mathrm{d}N_{\mathrm{s}}}{\mathrm{d}t} = P_{\mathrm{s}} \mathbf{A} (M_{\mathrm{s}}^{\mathrm{e}} - M_{\mathrm{s}}^{\mathrm{i}}) \tag{3}$$

$$V_{\rm s} = N_{\rm s} \cdot V_{\rm cpa} \tag{4}$$

式(1)显示了各类体积间的关系,式(2)式 (3)分别描述了胞内水体积和胞内保护剂物质的量 随时间的变化关系,式(4)给出了胞内保护剂体 积的算法.其中,*V*。为卵母细胞的体积,*V*。为胞内 保护剂体积,*V*。为卵母细胞的体积,*V*。为卵母细胞的 非渗透体积,*V*。为胞内水体积,*V*。为卵母细胞的 非渗透体积,*N*。为胞内水体积,*V*。为卵母细胞的 母细胞截面积,*M*为溶液浓度,*R*为气体常数,*T* 为温度,*N*。为胞内保护剂摩尔数,*L*。为卵母细胞 对水的渗透系数,*P*。为卵母细胞对保护剂的渗透系 数,e表示胞外,i表示胞内,s表示保护剂,*t*表示 时刻.邵文琪^[8]测量了模拟所需要的各参数值(表 1).其中*L*_p及*P*。值分别为猪卵母细胞在目标浓度保 护剂渗透系数.运用MLAB软件对细胞的渗透过程 进行模拟.

1.2 加载方案

采用不同方案对猪卵母细胞连续性加载 15%EG+15%Me₂SO的保护剂,该保护剂的摩尔浓 度为4.81 mol/L.不同加载时间的加载方案如图1a 所示,分别在5 min、10 min、15 min内使细胞外 保护剂浓度从0线性增加至4.81 mol/L.不同线型的

calculation					
Parameter	Value	Unit			
$V_{\rm c}$	0.84×10 ⁻⁶	μm^3			
$V_{ m cpa}$	63.5	$L \cdot mol^{-1}$			
$V_{ m b}$	0.24×10 ⁻⁶	μm^3			
$L_{\rm p}$	4.5	$\mu m \cdot atm^{-1} \cdot min^{-1}$			
$P_{\rm s}$	3.24	$\mu m \cdot min^{-1}$			
R	0.86	$J \cdot mol^{-1} \cdot K^{-1}$			
Т	298	K			

 Table 1
 Parameter values used in the simulation

 coloridation
 coloridation

加载方案如图 1b 所示,线性、S型、凹型都在 10 min内使细胞外保护剂从0增加至4.81 mol/L.S 型加载先在0~150 s内线性加载至0.58 mol/L,后在 151~450 s内加载至4.14 mol/L,最后150 s内加载 至最终浓度,使得整条加载曲线呈S型;凹型加载 则在前300 s时先加载至0.58 mol/L,在后300 s加 载至4.18 mol/L.不同凹型加载组在低凹型、高凹型 中各选取一种,同一般线性进行比较,加载方案见 图 1c.其中低凹型加载在300 s时加载到目标浓度的 12%,即为0.58 mol/L,在后300 s中加载至最终浓 度;而高凹型则在540 s时加载至目标浓度的50%, 在最后的60 s加载至最终浓度.

1.3 传统损伤评估

运用MLAB软件计算AOD及J的值.其计算方法如下:

1.3.1 积累性渗透损伤值

$$AOD = \int_{start}^{end} \left| \frac{V_{\rm c} - V_{\rm iso}}{V_{\rm iso}} \right| dt \qquad (5)$$

式中,(*V*_c-*V*_{iso})表示细胞体积的变化值,*AOD* 值的计算包含从加载开始至加载结束整个过程中细 胞体积的变化情况,该评估模型采用体积变化的绝 对值,包含了细胞体积膨胀和收缩造成的渗透 损伤.

1.3.2 积累性毒性损伤值

$$J = \int_{start}^{end} 0.005 (M_s^{i})^{1.6} dt \qquad (6)$$

式中,*M*[±]是胞内保护剂的归一化摩尔浓度,常数 0.005和1.6都是基于保护剂浓度的毒性系数.该模 型的预测结果与以往文献中不同保护剂种类、不同 细胞类型的研究结果相吻合^[7].

1.4 基于熵值法的综合损伤评估参数s

根据熵值法的基本原理,以细胞体积变化极值 (ΔV)、积累性渗透性损伤值(AOD)、积累性毒性 损伤值(J)为评价指标,对各个加载方案进行细 胞损伤评估,建立基于熵值法的猪卵母细胞综合损 伤评估模型.设加载方案为4个(其中一个为对照 组),评价指标为3个,则猪卵母细胞在加载完低 温保护剂后受到的损伤模型如式(7)所示:

$$s_i = \sum_{j=1}^n w_j \, p_{ij} \tag{7}$$

其中*s*_i表示第*i*个待评加载方案的评价值,*s*_i值越 大,表示该加载方案对细胞产生的损伤越大;*w*_j是 通过熵值法赋权获得的各个加载方案的权重;*p*_{ij}是 熵值法赋权过程中得到的第*j*类损伤在第*i*个加载 方案的值占总损伤值的比重.综合评估参数*s*的赋 权步骤如下.

1.4.1 原始数据矩阵标准化处理

根据各个加载方案对细胞产生的各个损伤,建 立原始损伤值数据矩阵 *Y*,将其标准化处理后得到 *X*矩阵,计算方法如下:

$$Y = (y_{ij})_{m \times n} = \begin{vmatrix} y_{11} & \cdots & y_{1n} \\ \vdots & \ddots & \vdots \\ y_{m1} & \cdots & y_{mn} \end{vmatrix}$$
(8)

$$x_{ij} = \frac{y_{ij} - y_{Lj}}{y_{Hj} - y_{Lj}}$$
(9)

$$y_{\mathrm{H}j} = \max\left(y_{1j}, y_{2j}, \cdots, y_{mj}\right) \qquad (10)$$

Fig. 1 Different loading schemes

(a) Loading scheme of different loading times; (b) Loading scheme of different line types; (c) The loading scheme of different concave types.

$$y_{Lj} = \min(y_{1j}, y_{2j}, \dots, y_{mj})$$
 (11)

其中y_i表示第*i*个待评加载方案第*j*种损伤值; y_H 表示所有加载方案的第*j*种损伤的最大值, y_L表示 所有加载方案的第*j*种损伤的最小值.

1.4.2 计算比重矩阵

对标准化处理后的损伤数据矩阵X计算第j类 损伤在第i个加载方案的值占该损伤值总和的比重 *p_i*,如式(12)所示.各个加载方案的各类损伤比 重组成了比重矩阵**P**,如式(13)所示.

$$p_{ij} = \frac{x_{ij}}{\sum_{i=1}^{m} x_{ij}}$$
(12)

$$\boldsymbol{P} = (p_{ij}) = \begin{bmatrix} p_{11} p_{12} \dots p_{1n} \\ p_{21} p_{22} \dots p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{m1} p_{m2} \dots p_{mn} \end{bmatrix}$$
(13)

1.4.3 熵值的计算

根据比重矩阵求得各个损伤的熵值e_j:

$$e_{j} = -k \sum_{i=1}^{m} (p_{ij} \ln p_{ij})$$
(14)

其中,常数k与待评价的加载方案个数m有关.为 计算方便一般令 $k=1/\ln m$,则 $0 \le e_j \le 1$.

1.4.4 差异性系数的计算

根据各个损伤的熵值 e_i计算第 j 类损伤的差异 性系数 g_i,如式(15)所示.差异性系数 g_i越大, 该种损伤 x_{ij} 在加载方案综合评价中重要性就越强, 最终获得的权重也就越大.

$$g_j = 1 - e_j \tag{15}$$

1.4.5 权重的计算

根据差异性系数*g*_j即可计算出各类损伤的权重 *w*_j,如式(16)所示.权重的大小反映了该类损伤 对细胞伤害的程度.

$$w_j = \frac{g_j}{\sum_{j=1}^n g_j} \tag{16}$$

1.4.6 综合评价值的计算

根据各类损伤的权重*w_i*和第*j*类损伤在第*i*个 待评加载方案的值占该损伤总和的比重*p_{ij}*,求得各 个加载方案的评价值*s_i*:

$$s_i = w_1 y_{i1} + w_2 y_{i2} + w_3 y_{i3} \tag{17}$$

1.5 主要试剂及低温保护剂溶液的配置

组织培养液 (tissue culture medium 199, TCM-199)、胎牛血清 (fetal bovine serum, FBS)、 丙酮酸钠和青链霉素均购自于美国Gibco公司,其 余实验所用其他试剂除特别说明外均购自美国 Sigma-Aldrich公司.基础液: TCM199+20%FBS, 低温保护剂溶液: 15%EG+15%Me₂SO+基础液.

1.6 猪卵母细胞的采集、筛选和体外成熟

从上海市长宁区复兴屠宰场无菌采集卵巢,置 于生理盐水(含青、链霉素各500 U/ml)中,1h 内送达实验室.取18 G的5 ml注射器抽吸卵巢表面 直径2~6 mm的卵泡,将抽得的卵泡液缓缓注入 10 ml的无菌离心管内,在39℃下静置15 min后, 在实体显微镜下捡卵并计数,选取胞质均匀、卵丘 细胞层完整紧密、包裹3 层以上的卵丘-卵母细胞 复合体(cumulus oocyte complexes, COCs).洗涤 后放入四孔板,每孔中放入60~65枚卵母细胞,平 衡2 h后置于38.5℃、5% CO₂气相饱和湿度的CO₂ 培养箱中培养42~46 h.

1.7 微流控实验系统

微流控实验系统由两微注射泵(分别用于控制 基础液和保护剂溶液的流速)、两微量进样器、微 流控芯片、体式显微镜共同构成,实验装置如图2 所示.芯片由Y型入口通道、固定混合通道、蛇形 混合通道、细胞操作腔、细胞进出通道和出口通道

Fig. 2 A schematic illustration of the microfluidic experimental system

1: Microinjection pump, 2: Micro-syringe, 3: Y-microfluidic chip, 4: Stereoscopic microscope, 5: Oocyte channel.

组成.

1.8 微流控实验保护剂加载方案

将6枚卵母细胞放入操作腔中,两微量进液针 内分别装入基础液及保护剂溶液,微通道内的总流 速为5μl/min,为了实现图1中细胞外保护剂浓度 的不同变化方案,设置注射泵的注射方案,使保护 剂的流速如表2~4所示.以S型加载为例,在0~ 150 s内,保护剂流速从0线性上升至0.6μl/min, 151~450 s内线性上升至4.4μl/min,451~600 s内线 性上升至5μl/min.

Table 2 Setting of CPA velocity of linear loading schemes with different times

Loading method	Flow rate setting	Time setting
I (5 min)	$0{\sim}5~\mu$ l/min	(0 s,300 s)
∏ (10 min)	$0{\sim}5~\mu$ l/min	(0 s,600 s)
Ⅲ (15 min)	$0{\sim}5~\mu$ l/min	(0 s,900 s)

 Table 3 Setting of CPA velocity of linear loading schemes with different line types

Loading method	Flow rate setting	Time setting
Linearity	0 μ l/min \sim 5 μ l/min	(0 s,600 s)
S-type	0 µl/min \sim 0.6 µl/min	(0 s,150 s)
	$0.6~\mu l/min{\sim}4.4~\mu l/min$	(151 s,450 s)
	4.4 μ l/min \sim 5 μ l/min	(451 s,600 s)
Concave-type	0 µl/min \sim 0.6 µl/min	(0 s, 300 s)
	$0.6 \ \mu l/min \sim 5 \ \mu l/min$	(301 s,600 s)

 Table 4
 Setting of CPA velocity of linear loading schemes

 with different concave types

Loading method	Flow rate setting	Time setting
Linearity	0 μ l/min \sim 5 μ l/min	(0 s,600 s)
High-concave-type	0 μ l/min \sim 2.5 μ l/min	(0 s,540 s)
	$2.5~\mu l/min{\sim}5~\mu l/min$	(541 s,600 s)
Low-concave-type	0 μ l/min \sim 0.6 μ l/min	(0 s, 300 s)
	$0.6~\mu l/min{\sim}5~\mu l/min$	(301 s,600 s)

1.9 卵母细胞孤雌激活及卵裂率、囊胚率计算

采用电脉冲的方式对保护剂加载完成的卵母细胞进行孤雌激活,激活后的胚胎放入含细胞松弛素B的胚胎培养液中,于CO₂恒温培养箱中培养4~5h,再转移至胚胎培养液中,在培养箱内进行培养.激活后第7天观察胚胎发育情况,通过(18)与(19)式统计卵裂率和囊胚率:

$$卵裂率 = \frac{受精卵裂胚胎数}{受精卵数} \times 100\% (18)$$
囊胚率 = 囊胚数 × 100% (19)

受精卵数

2 结果与讨论

2.1 渗透行为模拟

以线性加载方式,在5 min、10 min、15 min 内对猪卵母细胞加载保护剂,加载过程中的细胞体 积变化情况如图 3a 所示.可以看出,5 min 加载初 期体积快速下降,体积变化大于10 min 和15 min 组.在加载末期细胞体积都有恢复趋势,5 min 组 的体积上升速率最快,但由于时间限制,最终细胞 体积恢复最少.在加载结束时,5 min 方案的细胞 体积恢复至原体积的76%,而15 min 方案的则能 够恢复至90%以上.

一般线性加载、S型加载和凹型加载方案的细胞体积变化如图3b所示.相比于一般线性加载,在加载初期,S型加载和凹型加载体积较缓慢地下降,其中凹型的体积变化速率最小.在加载末期,S型加载的细胞体积呈稳固回升趋势,恢复至原体积的90%以上.而凹型加载的最终胞内水分含量最少,可能会进一步减小后期细胞在冷冻过程中受到的冰晶损伤.

不同凹型的加载方案的细胞体积变化如图 3c 所示.在加载初期,从低凹型加载到高凹型加载, 再到一般线性加载,细胞体积的变化越来越快,体 积变化极值越来越大,最终高凹型加载的最终细胞 体积最小.

2.2 传统损伤评估结果

表 5 为不同加载时间组的损伤评估参数值. 5 min 加载方案得出的 ΔV 值显著高于 10 min 及 15 min 组.但在计算积累性渗透损伤值时发现, 5 min 组的 AOD 值远小于 10 min 及 15 min 组,这也 进一步说明了渗透损伤不仅与细胞的体积变化相 关,还与和 CPA 接触的时间有关,同Liu 等^[4]的 研究结果一致.计算细胞的积累性毒性损伤值发 现,CPA 的添加时间越长,J值越大,可能与CPA 诱导的细胞质组织改变、膜特性或细胞代谢相 关^[21].因此随着加载时间的延长,体积变化平缓, ΔV 值减小,但细胞所受积累性渗透损伤及毒性损 伤增大,3个参数值得出的最佳方案存在矛盾. Table 5

15 min

(a) Cell volume changes of linear loading schemes with different times; (b) Cell volume changes of linear loading schemes with different line types; (c) Cell volume changes of linear loading schemes with different concave types.

loading scher	nes with dif	ferent loading	times
Loading method	ΔV	AOD	J
Control group	0	0	0

Damage assessment parameter values of linear

106.88

20.16

Loading method	ΔV	AOD	J
Control group	0	0	0
5 min	0.31	81.02	6.17
10 min	0.22	105.17	13.12

0.18

表6为不同线型组的损伤评估参数值.凹型加 载的体积变化极值高于线性及S型加载,但其积累 性渗透损伤和毒性损伤均小于线性及S型. 凹型线 性加载时J值达到最小7.73,在S型线性加载时达 到最大13.59, 接近凹型加载的2倍.

Table 6 Damage assessment parameter values of linear loading schemes with different line types

Loading method	$\bigtriangleup V$	AOD	J
Control group	0	0	0
Linearity	0.22	105.17	13.12
S-type	0.24	109.05	13.59
Concave-type	0.26	93.27	7.73

表7为不同凹型组的损伤评估参数值,对于不 同凹型的线性加载方案,一般线性加载中细胞受到 的瞬时性渗透损伤较小, ΔV在三组加载方案中最 小,但其AOD和J值远大于两凹型组.其中高凹型 加载中细胞与高浓度保护剂中的接触时间远小于低 凹型加载,因此受到的积累性损伤最小.

2.3 综合损伤评估

以不同加载时间的加载方案为例计算综合损伤 评估参数s,按照1.4中的方法计算三种评估参数的 熵值、差异性系数及权重,如表8所示.

Damage assessment parameter values of linear Table 7 loading schemes with different concave types

Loading method	$\triangle V$	AOD	J
Control group	0	0	0
Linearity	0.22	105.17	13.12
High-concave-type	0.26	82.27	5.97
Low-concave-type	0.26	93.27	7.73

Table 8	Entropy value,	difference coefficient	and weight
	of each eva	luation parameter	

	1		
Evaluation parameter	$\triangle V$	AOD	J
Entropy value	0.77	0.79	0.72
Difference coefficient	0.22	0.21	0.28
Weight	0.32	0.30	0.38

由表8, ΔV 、AOD、J的权重系数分别为0.32、 0.30、0.38、说明毒性损伤对细胞的影响最为显 著.不同加载时间的加载方案,其综合损伤评估参 数值可由式(20)求出.

 $s = 0.32 \triangle V + 0.30AOD + 0.38J$ (20)按照类似的计算方法,得到不同加载方案的s 值 (表9). 不同加载时间组, 10 min 与 15 min 两方 案的s值相似,细胞受损情况相似,而5min加载 方案所得s值最小,虽然在5min内完成保护剂的 加载会引起较大的细胞体积变化,但可能没有超出 细胞可承受的体积变化上限,对细胞造成的损伤较 小, Benson等^[22]也提出,在细胞体积变化极值范 围内,最小化加载或去除时间可大幅度降低细胞所 受毒性损伤从而优化加载去除方案.不同线型组 中,S型线性加载方案的s值最大,因此细胞受到 的综合损伤最大,而凹型线性加载方案的s值最 小,细胞受损最小.不同凹型组中,一般线性加载 方案的*s*值最大,而高凹型线性加载方案的*s*值最小,因此高凹型加载效果最优.

Lable 2 Inc futue of 5 for uniterent routing senemes	Fable 9	The value	ue of s for	r different	loading	schemes
--	---------	-----------	-------------	-------------	---------	---------

Different	-	Different line	-	Different concave	_
times	S	types	S	types	S
Control group	0	Control group	0	Control group	0
5 min	26.48	Linearity	38.76	Linearity	38.17
10 min	36.29	S-type	40.19	High-concave-type	28.29
15 min	39.48	Concave-type	33.01	Low-concave-type	32.20

2.4 卵母细胞的发育潜能

运用不同方案加载保护剂,各方案所得细胞囊 胚率结果见表10.不同加载时间组中,5min加载 方案的囊胚率最高,且加载时间越长,囊胚率越 低.不同线型组中,凹型组的囊胚率高于一般线性 及S型组.不同凹型组中,高凹组的囊胚率远高于 低凹组.

2.5 综合损伤评估效果

为了验证s值评估的有效性,以不同加载时间 组为例,拟合综合评估参数s与囊胚率的关系拟合 曲线(图4).结果显示s同囊胚率之间呈负相关关 系,且相关度较高.以相同的方法拟合不同线型及 不同凹型组的s值与囊胚率曲线,均得出相同结 论,说明综合评估参数s对卵母细胞的损伤评估是 可行的.

3 结 论

本文首先运用传统的评估参数对微流控连续加 载保护剂的不同方案进行评估,在此基础上提出了 新的综合损伤评估参数*s*,用以计算各方案下细胞 所受综合损伤.随后进行了猪卵母细胞微流控加载 实验,孤雌激活后统计囊胚率,分析囊胚率与*s*值 之间的关系来验证*s*值的可用性,并得出以下 结论:

a. 加载时间越长,细胞体积变化最大值ΔV越 小,但积累性损伤值AOD、J值越大;不同线性加 载时,S型线性加载的AOD值和J值最大,而凹型

Fig. 4 Relationship between the value of *s* and blastocyst rate at different loading times

线性加载的AOD值和J值最小;对凹型添加进一步进行检测,高凹型线性加载的体积变化极值虽然较大,但AOD值和J值最小.3个传统评估参数值所得结论存在矛盾.

b. 不同加载时间组中计算的积累性毒性损伤值 在 s 值中所占权重最高, 10 min 与 15 min 组的 s 值 相近,并显著高于 5 min 组;不同线型组中,S型 线性加载方案的 s 值最大,而凹型线性加载方案的 s 值最小.不同凹型组中,一般线性加载方案的 s 值 最大,高凹型线性加载方案的 s 值最小.

c. 将三组不同方案的s值与实验所得囊胚率进 行对比, s值同囊胚率之间呈负相关关系,且相关 度较高,说明综合评估参数s对卵母细胞的损伤评 估是可行的.

本文首次提出同时参考三种传统损伤评估参数 来评估细胞受到的损伤,使得能够从瞬时和积累性 两种角度对渗透损伤和毒性损伤两个方面进行分 析,并针对传统损伤评估方法的不足之处,提出综 合损伤评估参数,通过细胞孤雌激活实验结果验证 出其评估的有效性,为细胞的损伤评估提供一条新 思路.

Different times	Blastocyst rate/%	Different line types	Blastocyst rate/%	Different concave types	Blastocyst rate/%
Control group	35.20±3.97	Control group	35.2±3.97	Control group	35.20±3.97
5 min	17.25±1.62	Linearity	$8.84{\pm}0.44$	Linearity	$8.84{\pm}0.44$
10 min	8.84 ± 0.44	S-type	3.33±5.77	High-concave-type	23.48±4.73
15 min	3.33±5.77	Concave-type	16.31±1.62	Low-concave-type	16.31±1.62

Table 10 The blastocyst rate of oocytes after loading with different loading schemes

- Song Y S, Moon S, Hulli L, et al. Microfluidics for cryopreservation. Lab on A Chip, 2009, 9(13): 1874-1881
- [2] Hunt C J, Armitage S E, Pegg D E. Cryopreservation of umbilical cord blood: 2. Tolerance of CD34(+) cells to multimolar dimethyl sulphoxide and the effect of cooling rate on recovery after freezing and thawing. Cryobiology, 2003, 46(1): 76-87
- [3] 马学虎,范文霞,潘广生,等.冷冻保护剂导入细胞过程的模拟 和优化.热科学与技术,2008,7(4):324-330
 Ma X H, Fan W X, Pan G S, *et al.* Journal of Thermal Science and Technology.2008,7(4):324-330
- [4] Liu J, Mullen S, Meng Q, et al. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model. Cryobiology, 2009, 59(2): 127-134
- [5] Wang L, Liu J, Zhou G B, et al. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures1. Biology of Reproduction, 2011, 85(5): 884-894
- [6] Fahy G M, Wowk B, Wu J, et al. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology, 2004, 48(1): 22-35
- [7] Benson J D, Kearsley A J, Higgins A Z. Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function. Cryobiology, 2012, 64(3): 144-151
- [8] 邵文琪.猪卵母细胞在微流控加载低温保护剂过程中的渗透 行为模拟及损伤评估[D].上海:上海理工大学,2017
 Shao W Q. Shanghai: University of Shanghai for Science and Technology,2017
- [9] 张卫民,安景文,韩朝.熵值法在城市可持续发展评价问题中的应用.数量经济技术经济研究,2003,20(6):115-118
 Zhang W M, AN J W, Han C. Quantitative And Technical Economics.2003,20(6):115-118
- [10] 张卫民.基于熵值法的城市可持续发展评价模型.厦门大学学 报哲学社会科学版,2004(2):109-115
 Zhang W M. Journal of Xiamen University (Art & Social Sciences). 2004(2):109-115

- [11] Zou Z H, Yun Y, Sun J N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences (China), 2006, 18(5): 1020-1023
- [12] Qiu W H. Multi-factors decision-making entropy method and its application in engineering management. Engineering Sciences, 2010, 08(4): 74-79
- [13] 吴铭程,铁治欣,丁成富,等.基于熵值法的污染源区域排污量 评价模型研究.浙江理工大学学报,2016,35(4):615-619
 Wu M C, Tie Z X, Ding C F, *et al.* Journal of Zhejiang Institute of Science and Technology.2016,35(4):615-619
- [14] 邓红星,李嘉璐,张文会,等.基于熵值法的燃气公交系统安全 评价.重庆理工大学学报,2016,30(10):81-85
 Deng H X, Li J L. Zhang W H,*et al.* Journal of Chongqing Institute of Technology. 2016, 30(10):81-85
- [15] Mazur P, Leibo S P, Miller R H. Permeability of the bovine red cell to glycerol in hyperosmotic solutions at various temperatures. The Journal of Membrane Biology, 1974, 15(1): 107-136
- [16] Mazur P, Miller R H. Permeability of the human erythrocyte to glycerol in 1 and 2 m solutions at 0 or 20 °C. Cryobiology, 1976, 13(5): 507-522
- [17] Fabbri R. Cryopreservation of human oocytes and ovarian tissue. Cell & Tissue Banking, 2006, 7(2): 113-122
- [18] Kedem O, Katchalsky A. Thermodynamic analysis of biological membranes to non-electrolytes. Biochimica Et Biophysica Acta, 1989, 1000(1000): 413-430
- [19] Kleinhans F W. Membrane Permeability Modeling: Kedem-Katchalsky vs a Two-Parameter Formalism. Cryobiology, 1998, 37 (4): 271-289
- [20] Woods E J, Liu J, Gilmore J A, et al. Determination of human platelet membrane permeability coefficients using the kedemkatchalsky formalism: estimates from two-vs three-parameter fits . Cryobiology, 1999, 38(3): 200-208
- [21] Hammerstedt R H, Graham J K. Cryopreservation of poultry sperm: the enigma of glycerol. Cryobiology, 1992, 29(1): 26
- [22] Benson J D, Chicone C C, Critser J K. A general model for the dynamics of cell volume, global stability, and optimal control. Journal of Mathematical Biology, 2011, 63(2): 339-359

The Injury Evaluation During Cryoprotectant Loading With Microfluidic Chip*

SHAO Wen-Qi¹, GUO Ying-Ying¹, DAI Jian-Jun², ZHANG De-Fu², ZHOU Xin-Li^{1)**}

(¹⁾Institute of Biothermal Technology, University of Shanghai for Science and Technology, Shanghai 200093, China;
 ²⁾Animal and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China)

Abstract With the help of the oocyte cryoproservation, the assisted reproductive technology and the embryo engineering technology have tremendous development potential. However, the high concentration of cryoprotectants(CPAs) in cryopreservation will cause osmotic damage and toxic damage to oocytes. Unlike adding a fixed concentration of CPA in step-by-step method, the microfluidic method can achieve continuous CPA concentration change. The oocytes damage evaluation in CPA continuous loading by microfluidic method has not been reported. In this paper, the osmotic behavior of M II porcine oocytes in different loading time, different loading line types and different concave loading types were simulated. Three traditional parameters ΔV (maximum volume change), AOD(accumulative osmotic damage) and J (accumulative chemical damage) were used to evaluate the damage of oocyte. A comprehensive parameter s, which based on the traditional parameters and the information entropy theory, was proposed to evaluate the damage. Oocytes loading experiments were conducted to verify the effectiveness of s. The results showed differences from the results of traditional damage assessment parameters, which cannot come to the unified conclusion. By analyzing the relationship between blastocyst rate and s, we found that there is a highly negative correlation between s and blastocysts rate. That indicates that the comprehensive damage assessment parameter s can be used to assess cell damage and breaks a new path for cell damage evaluation.

Key words microfluidic chips, porcine oocyte, osmotic injury, toxic damage, damage evaluation **DOI**: 10.16476/j.pibb.2018.0225

^{*} This work was supported by a grant from The National Natural Science Foundation of China(51376132).

^{**} Corresponding author.

Tel: 86-21-55270218, E-mail: zjulily@163.com

Received: October 25,2018 Accepted: January 18,2019