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Detection of Exons with Deletions and Insertions
by Hidden Markov Models
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Abstract After more and more genome sequencing projects, like the “Human Genome Project". the prediction of genes,
including their coding region and their regulatory region, has received a lot of attention. Softwares such as GENSCAN and
GeneMark are powerful, but still do not meet the requirement of the practical application. The GENSCAN predicts exons
accurately, if the sequences predicted does not have insertions and deletions in their coding regions. But if it does have,
even only one, the prediction could be disturbed seriously and satisfactory results can not be obtained. A hidden M arkov
model with states of deletions, insertions and main state is introduced to find the error of deletions and insertions. The

result shows that sensitivity and specificity in exon level are both higher than 84% on the Burset/Guigo test data set.
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1 Introduction

The “Human Genome Project" is close to be
completed, and many other genome sequencing pro-
jects, such as the mouse and the rice are being carried
out. Finding gene from uncharacterized genomic
sequence by using computational tools unquestionably
has practical interest. To locate the gene accurately
by computational methods will simplify the analysis of
large uncharacterized sequence data and will speed up
the pace of projects after genome sequencing.

The problem is relatively simple for prokaryotic
DNA sequences, since their protein coding region has
no introns and their open reading frames( ORF) are
continuous. It is more difficult for eukaryotic DNA
sequences due to the presence of introns between the
relatively short exons. Thus to discriminate exons
and introns reliably may be more difficult and
complicate. Especially, when there are insertions and
deletions in the exons, the open reading frame will be
disturbed, and the judgement of whether the
segments being detected have the property of CDS
sequences becomes confusing.

Methods of predicting potential protein coding
regions in genomic sequences have developed since
1980s. Many efforts have been devoted to this aim
and big progress has been achieved. There are a
number of computer programs for gene identification,
including SORFIND“], GenelD! 2', GeneM ark! 3],
Xpound¥, FGENEH'Y, GRAIL2'®, GeneParser!”,
Genie! !, GeneWisel”',  GENESCAN' INFO'',
Procrustes' > . Most of these programs make use of
sophisticated pattern recognition techniques such as

linear discriminant analysis, neural networks( NN),
or Hidden M arkov Models(HM M) to identify coding
regions. For example: GENSCAN (see [ 10]), the
most successful method in recent years, uses a general
HMM, where the method of Maximal Dependence
Decomposition is introduced to model the donor splice
signal. The predicting accuracy of GENSCAN is
better than most other gene finding programs.
GeneM ark is also based on HMM, and was tested on
the E. coli complete genome with most genes being
identified. Burset and Guigé compare many of these
programs with a test set of 570 whole gene sequences
by using several accuracy measures. The average
specificity and sensitivity at exon level varies from
0.17 to 0. 63 (see [ 14] and [ 15]).

The accuracy of those programs is good in DNA
sequences free of errors. But sequences newly submit-
ted to the programs, however, will often contain
artificial nucleotide insertions and deletions. It is
pointed out in [ 14], that the accuracy of those
programs will be low when there are insertions or
deletions in the coding regions of DNA sequences.

In this paper, we try to find the exons with a
few deletions or insertions on an algorithm based on
HMM. It is well known that the statistical features of
coding regions in the right open reading frame are
different from that in noncoding regions, while for
the wrong open reading frames they are not. There
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are fairly strong preferences of codons and transition
from codon to codon. Such preferences could be dis
turbed seriously when there are insertions or deletions
in coding regions and the open reading frame is bro-
ken. To take advantages of this statistical property of
coding regions, we define scores for each sliding win-
dow in a given sequence, with the consideration of
In fact,
deletion (insertion) appears in a sliding window,

when a
the

while the score under the open

possible insertions and deletions.

score becomes low,
reading frame one base pair shifted to the left ( right)
will keep as high as before. Thus we use a score sys
tem based on this phenomenon to get the observation
processes in the HMM.

2 Hidden Markov Model ( HMM)

The HMM has
pattern recognition problems , such as the speech

been successfully applied to
recognition (see [ 16]) and gene finding (see [ 10]).
In this paper the mathematical tool of HMM is
applied to uncover the pattern of transition from
codon to codon and to find the error of deletions and
insertions in exons.

A HMM is a pair of stochastic processes: an
underlying Markov chain (or field) and an observable
stochastic process (or field). The Markov chain is not
observable, and can only be understood through the
observable process.

The Markov chain (or field ) in HMM

essentially a collection of finite states connected by

1s
transitions with the Markov property. The structure
of the hidden M arkov model that we used here isillus-
trated in figure 1. The states of the Markov chain
{X“} n 21 is { M|, Mg, Mj;, J', D}, w here .-'W|, Mg,
M 3correspond to the first,

second, third codon posi

tion respectively. The state D represents the deletion
e B

Fig. 1 The hidden Markov model

Pri(C) = f'er, f P(ea e f (e e en)f
Pr(C) = f'(en.3)f (e, )f 1*(e3, ) (ca,
Pri(C) = f'(c.2)f2*(ca,e)f (e ) f 17 (ea

The log-score of the sequence C under the j-th
open reading frame (j= 1,2, 3) is defined as
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and I represents the insertion. For convenience, we

have added a start state S and an end state £. Namely
the state space of the HMM is { M, M, M3, 1, D, S,

Let us consider the probability space ( Q, F,
{(F,}, P

states space S =

) and denote the Markov chain with the

{ Sly 8325 ey Sy } o h)‘ ( Xn)n 21
while the observable stochastic process by ( Y, ). >1,

on the space ( Q, F,.{F,}.P).
Assume that
P(Yi= vyl Xoy= 20, X1y s X1, Yo o Yop) =
P(Yi= yul Xp= x4
Let A = {a;)} be the transition probability ma-

trix of the Markov chain, i e.

aj= PriXpy1=j1 X,= i}

The emission probability matrix B= {b;( 0,)}
is defined as

f)_,-( Op) = Pr{Y,= 0,1 X, = j}

We denote the initial distribution of the process
[er)n 21, b}’ II= { T[r'}s

W= Pr{iXo= s}

Then the hidden Markov model can be expressed

namely

A= (1I,A.B)

Noticing that the probability of the appearance of
a nucleotide is different in each of the three positions
Let f'(b,i) be the probability of the
nucleotide b at the codon position i; (i= 1,2, 3); ff
(b2, b1) be the conditional probability of nucleotide

of a codon.

by at the codon position j+ 1, given the nucleotide b,
1')3, hg, b[}
be the conditional probability of the nucleotide b3 at

at the codon position j (j= 1,2); and f*(

the codon position 3, given the nucleotide b> at the
codon position 2 and b at the codon position 1. For a
given DNA sequence C= cjc2 ...cs, there are three
possible open reading frames:

Frame | starting from ¢y:

C1€2€3, C4C5CE, -

Frame 2 starting from ca:

Cl, C2C3C4, CSCHCTy aus

Frame 3 starting from c3:

C1€2, €3€4C5, C6CTCE, -

The probability of C, under the j-th read frame
(j=1,2,3),

can be calculate respectively as

'(ca l)ff( es. ca) [ (ce, s, ) -

s, ) f (es. ) f1? (ta,cs A
L e3)f (s eane3)f (een 1)1

(-?9 Chy ('5}

7. ce)f

€8, €7y CG) oes

log-scord (C) = max{logaPr'(C) — 2n)
1

To illustrate the log-score, we use a 1 200 bp
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DNA sequence from the gamma-globin gene of the
human genome, extracted from EMBL, entry
AGGGLINE from 3 000 to 4 200. This gene has
three exons located at 3 066~ 3 157, 3 281~ 3 503
4393 ~ 4 521

respectively. The plots log-score® of this sequence

and ( not shown infigure 2)
without and with one deletion at 3360 are given in the
figure 2 and figure 3 respectively, in sliding window of

length 60 bp. One can see that in figure 1, the log-score’

S F 5L MR HER
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reflects the exons fairly well, while in figure 3, after the
deletion the log-score® becomes low.

In the present paper, the Baum-welch algorithm
and the EM algorithm are used to estimate iteratively
training for getting parameters. To detect the rough
positions of insertions and deletions the Viterbi
algorithm is used. The accurate splicing sites of
donors and accepters are determined the by the

technique similar to GENSCAN (see [ 10]).
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Fig. 2 The log-score of DNA sequence segment of AGGGLINE
9...
B_
7k
g ot
Qo
g0
2 4
3....
2_.
1L Jh‘
0 i
._._-.._....__.-..—.__..__._.f._,_‘ﬁ.—';//;S;E;;F;_
— — i i o=
e ady ¥ I3RS EERLERERI L = - N
bp

Fig. 3 'The log-score of DNA sequence segment of AGGGLINE with one deletion in the exon

3 Data and Result

The data for learning in our experiment are
prepared as follows. We extract a set of 400 whole
human genes from the GenBank released 112. Then
we add deletions and insertions in the coding exons
randomly both at the rate of 0.3% . This is based on

w hich

concludes that error rates for four kinds of errors

the research of Koop et al (see [ 17]),
( mismatch, ambiguities, insertions and deletions)
remains fairly constant and under 1% . We choose the
set of 570 vertebrate genes constructed by Burset/
Guigé sequence set, which is considered as a standard
clean comparison data for gene predictions, as our test

data set. This data set can be accessed through the
World Wide Web at the URL:
“http: //www. imim.
Evaluation/ Index. html"
Then we delete or insert some bases in some

es/ Geneldentification/

exon region randomly at the rate of 0. 3% to produce
the test data set with deletions and insertions in the
exons.

Four indices commonly used for the accuracy at
the exon level are: sensitivity £ESn, the proportion of
exons which are predicted correctly, in actual exons
without deletions and insertions, ME, the proportion
of actual exons without deletions or insertions are
predicted to be error exons; the specificity ESp and
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WE, the proportion of exons predicted correctly and
incorrectly respectively in all exons predicted without

T he

deletions and insertions (see [ 4] for review).
result of prediction is shown in the Table 1.

Table 1 The result of the prediction

Pridicted normal exon Pridicted error exon
Normal exon 493 77

Error exon 82 437

Thus the accuracy indices ESn, ESp, ME, WE
are as follows:

ESn= 493/(493+ 77)= 86%

ESp = 493/(493+ 82)= 85%

ME= 77/ (493+ 77)= 14%

WE= 82/(493+ 82)= 14%
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