

www.pibb.ac.cn

定量 PCR 检测 microRNA 表达 的数据归一化新技术 *

金幼芳^{1)**} 徐根明^{2)**} 李 艳¹⁾ 孟 丽¹⁾ 姜永厚¹⁾ 郭江峰^{1)***} 丁先锋^{1)***} (¹⁾浙江理工大学生命科学学院,杭州 310018; ²⁾杭州联川生物信息技术有限公司,杭州 310018)

摘要 数据归一化技术对研究结果的分析具有重要的作用. 在定量 PCR 实验中,通常利用稳定表达的看家基因作为实验数据归一化的内参,但最近的研究表明,这些看家基因的表达量在不同的生理病理过程中也表现出显著的变化,不适合作为数据归一化处理的基准.针对这一问题,提出一种新的数据处理技术,利用单细胞归一化方法(percellome),对定量 PCR 检测miRNA 表达的数据进行处理,显著提高了数据处理的准确性.以 8 周龄 /40 周龄小鼠脑为实验材料,选择 14 种 microRNA的表达情况进行了检测.在研究中,将 3 种不同拷贝数的人工合成的 RNA 片段(spike RNA)作为内参加入到样品中,用于microRNA 表达检测的归一化基准.研究发现,未经处理的 microRNA 单细胞拷贝数的变化范围为 2.0×10⁵~4.3×10⁵,而经单细胞归一处理,上述表达变化范围为 2 到 26 倍.该项研究还发现,看家基因 U6 ncRNA 和 5S rRNA 的表达水平存在显著的变化,在以基因组 DNA 为归一化基准时,其表达量变化为 1.5 和 4.8 倍,而在以 RNA 水平为归一化基准时,其表达量变化为 5.8 和 3.8 倍,表明这些基因不适合作为数据处理的基准.据此,为 microRNA 的定量研究提供了一种新的、可靠的归一化方案.

关键词 单细胞归一化,定量 PCR, spike RNA, miRNA 学科分类号 Q81,Q5

DOI: 10.3724/SP.J.1206.2010.00397

MicroRNA(miRNA)是一类通过抑制翻译调控 基因表达的非编码小 RNA,在动植物及真菌生长 的时序性调节[1-3]、细胞增殖与凋亡[4-5]、肿瘤发生、 免疫调节和抗病毒1677等方面发挥了重要的作用. 目前,miRNA 表达的定量检测通常通过实时定量 RT-PCR、基因表达克隆、RNA 杂交和微阵列芯片 杂交[®]等技术来实现,在定量 RT-PCR 研究中,通 常用管家基因 U6 ncRNA 和 5S rRNA 作为 miRNA 表达量的内参[9-12]. 虽然管家基因的应用在一定程 度上解决了定量的基准问题,但最近的研究也揭示 了其中的一些令人担心的问题. Lee 等四的研究表 明,当用12种常用看家基因作为数据处理的内参 时,芯片表达数据组内及组间存在相当大的差异; Tang 等对斑马鱼胚胎发育以及组织形成过程中看 家基因的表达情况进行了研究,发现在斑马鱼不同 的发育阶段,所研究的9种看家基因都存在显著的 表达变化[14-15].这些研究结果表明,看家基因并不 是表达数据归一化的一个好的基准.

为了对表达数据进行归一化处理,有的研究人员向被检测样品中加入一定量的外源 RNA,并以此为基准处理其他表达数据,得到了很好的技术效果.如 Holstege 等¹¹⁶采用加入 spike RNA 的方法,在基因组水平对循环通路的调节进行了研究,Hill 等¹¹⁷也在杂交过程中加入一定比例的外源 cRNA 作为标准品来均一化寡核苷酸探针芯片的检测数据.此外,Talaat 等用基因组 DNA 作为内参基因研究肺结核分支杆菌(*Mycobacterium tuberculosis*)的基因表达情况¹¹⁸⁻¹⁹;利用正义和反义 cRNA 作为外源标

^{*} 浙江省自然科学基金(Y2100681,Y2080586)和国家高技术研究发展计划 (2007AA02Z165)资助项目.

^{**} 共同第一作者.

^{***} 通讯联系人.

丁先锋. Tel: 0571-86843516, E-mail: xfding@zstu.edu.cn 郭江峰. Tel: 0571-86843302, E-mail: jfguo@zstu.edu.cn 收稿日期: 2010-11-28, 接受日期: 2010-12-23

准品,分析 cDNA 杂交芯片基因表达水平的检测结果和 mRNA 的表达^[15,20].

为了确定基因的绝对量,通常先将外源标准品 进行梯度稀释并制备标准曲线,在利用标准曲线对 样本的检测值进行绝对定量^[21].例如 Hekstra 等^[21] 利用序列特异性梯度寡核苷酸确定芯片杂交中 mRNA 的绝对拷贝数;Kanno 等^[23]通过基因组 DNA 的含量来确定被检测组织中的细胞数量,同 时将一系列不同浓度的外源 mRNA 加入到样品中, 利用外源 mRNA 绘制标准曲线从而鉴定样品 mRNA 的绝对表达量.另外,统计完整数据也可 以在一定程度上改善实验数据和归一化标准之间的 非线性关系^[24].

尽管上述工作在一定程度上实现了基因表达的 相对及绝对定量,但相关研究仅涉及 mRNA 的表 达检测,至今未见在 miRNA 表达检测中单细胞归 一化方法的报道.本研究在对基因组 DNA 和 spike RNA 的拷贝数进行归一化处理的基础上,对定量 PCR 检测单细胞 miRNA 表达量进行分析,显著提 高了计算 miRNA 表达差异值和绝对拷贝数的准 确性.

1 材料和方法

1.1 实验材料与样品准备

8 周龄和40 周龄 C57BL/6 小鼠购自中国科学 院动物中心(上海),小鼠断颈处死后取脑组织,迅速置于液氮中速冻保存,每个年龄组有3只小鼠.

设计不同于已知 miRNA 序列的 3 种 spike RNA,由上海吉玛制药技术有限公司(GenePharma) 合成. 其序列如表 1 所示.

Table 1	Sequence	of spike RNA
---------	----------	--------------

ID	Sequence $(5' \sim 3')$	Length/nt
Spike RNA 1	CGACGCGUUUAUUUCGGACUAG	22
Spike RNA 2	CCGGUCUGUAUAGACUGCGUAA	22
Spike RNA 3	GGGGUCUAGGUAUCACAACUAA	22

1.2 miRNAs 和内参

本实验采用小鼠脑组织中表达的 14 种 miRNAs 作为目的基因, U6 ncRNA 和 5S rRNA 作 为内参基因,基因序列如表 2.

ID	Sequence $(5' \sim 3')$	Length/nt
mmu-let-7	UGAGGUAGUAGGUUGUAUAGU	21
mmu-miR-9	UCUUUGGUUAUCUAGCUGUAUG	22
mmu-miR-15a	UAGCAGCACAUAAUGGUUUGUG	22
mmu-miR-21	UAGCUUAUCAGACUGAUGUUGA	22
mmu-miR-26a	UUCAAGUAAUCCAGGAUAGGC	21
mmu-miR-27a	UUCACAGUGGCUAAGUUCCGC	21
mmu-miR-122	UGGAGUGUGACAAUGGUGUUUGU	23
mmu-miR-132	UAACAGUCUACAGCCAUGGUCG	22
mmu-miR-135b	UAUGGCUUUUCAUUCCUAUGUG	22
mmu-miR-138	AGCUGGUGUUGUGAAUCAGGCCG	23
mmu-miR-141	UAACACUGUCUGGUAAAGAUGG	22
mmu-miR-143	UGAGAUGAAGCACUGUAGCUC	21
mmu-miR-153	UUGCAUAGUCACAAAAGUGAUC	22
mmu-miR-221	AGCUACAUUGUCUGCUGGGUUU	22
U6 ncRNA	GUGCUCACUUCGGCAGCACAUAUACUAAAACUG	107
	GAAUGAUACAGAGAAGAGCAACAUGGCCCCUGC	
	UCAAGGAUGACAGACAAAAUCGUGAAGAGUUCC	
	GUAUUUUU	
5S rRNA	GUCUACGGCCAUACCACCCUGAACGCGCCCGAU	120
	CUCGUCUGAUCUCGGAAGCUAAGCAGGGUCGGG	
	CCUGGUUAGUACUUGGAUGGGAGACCGCCUGGG	
	AAUACCGGGUGCUGUAGGCUU	

Table 2 Sequence of miRNA and reference control

1.3 引物设计

借助 DNAStar(DNASTAR, Inc., Madison, USA) 软件, 对每种 miRNA 进行引物设计,包括反转录 茎环引物,qPCR 扩增的正、反向引物.对于内参

基因,只设计正向、反向扩增引物.引物序列详见 表3,由上海生工生物工程技术服务有限公司完成 引物合成.扩增产物由2%的琼脂糖凝胶电泳验证.

miRNA name	Primer name	Sequences $(5' \sim 3')$	Length/nt	Amplicon size/bp
SR ^a 1	S-L primer ^b	GTCGTATCCAGTGCAGGGTCCGAGG	50	60
		TATTCGCACTGGATACGACCTAGTC		
	F-primer ^c	GGGCGACGCGTTTATTTC	18	
	R-primer ^d	AGTGCAGGGTCCGAGGTATTC	21	
SR 2	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	62
		TATTCGCACTGGATACGACTTACGC		
	F-primer	CGCGCCGGTCTGTATAG	17	
	R-primer	CAGTGCAGGGTCCGAGGTAT	20	
SR 3	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	63
		TATTCGCACTGGATACGACTTAGTT		
	F-primer	ACAGTCGGGGTCTAGGTATCACA	23	
	R-primer	AGTGCAGGGTCCGAGGTATTC	21	
mmu-let-7a	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	61
		TATTCGCACTGGATACGACACTATA		
	F-primer	GCCGCGTGAGGTAGTAGGTT	20	
	R-primer	GTGCAGGGTCCGAGGTATTC	20	
mmu-miR-9	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	64
		TATTCGCACTGGATACGACCATACA		
	F-primer	GCCGCGTCTTTGGTTATCTA	20	
	R-primer	CAGTGCAGGGTCCGAGGTATT	21	
mmu-miR-15a	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	65
		TATTCGCACTGGATACGACCACAAA		
	F-primer	GCCGCGTAGCAGCACATAAT	20	
	R-primer	CCAGTGCAGGGTCCGAGGTA	20	
mmu-miR-21	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	64
		TATTCGCACTGGATACGACTCAACA		
	F-primer	GCCGCGTAGCTTATCAGACT	20	
	R-primer	CAGTGCAGGGTCCGAGGTATT	21	
mmu-miR-26a	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	63
		TATTCGCACTGGATACGACGCCTAT		
	F-primer	GCCGCGTTCAAGTAATCCA	19	
	R-primer	CAGTGCAGGGTCCGAGGTAT	20	
mmu-miR-27a	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	62
		TATTCGCACTGGATACGACGCGGAA		
	F-primer	CCGCGTTCACAGTGGCTAAGTT	22	
	R-primer	CAGTGCAGGGTCCGAGGTATTC	22	
mmu-miR-122	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	65
		TATTCGCACTGGATACGACACAAAC		
	F-primer	GCCGCGTGGAGTGTGACA	18	
	R-primer	CAGTGCAGGGTCCGAGGTATTC	22	
mmu-miR-132	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	64
		TATTCGCACTGGATACGACCGACCA		
	F-primer	GCCGCGTAACAGTCTACAGC	20	
	R-primer	CAGTGCAGGGTCCGAGGTATTC	22	
mmu-miR-135b	S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	63
		TATTCGCACTGGATACGACCACATA		
	F-primer	GGGCGTATGGCTTTTCA	17	
	R-primer	CAGTGCAGGGTCCGAGGTA	19	

Table 3Primer sequence

2011, 30 (3)	2011	l:	38	(5)
--------------	------	----	----	-----

			Continued
Primer name	Sequences $(5' \sim 3')$	Length/nt	Amplicon size/bp
S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	65
	TATTCGCACTGGATACGACCGGCCT		
F-primer	GGGCGAGCTGGTGTTGTGAA	20	
R-primer	CCAGTGCAGGGTCCGAGGTATT	22	
S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	63
	TATTCGCACTGGATACGACCCATCT		
F-primer	GGGCGTAACACTGTCTGGTAAAG	23	
R-primer	CAGTGCAGGGTCCGAGGTATT	21	
S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	64
	TATTCGCACTGGATACGACGAGCTA		
F-primer	CGGGCGTGAGATGAAGC	17	
R-primer	CAGTGCAGGGTCCGAGGTAT	20	
S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	63
	TATTCGCACTGGATACGACGATCAC		
F-primer	GGGCGTTGCATAGTCACA	18	
R-primer	CAGTGCAGGGTCCGAGGTA	19	
S-L primer	GTCGTATCCAGTGCAGGGTCCGAGG	50	64
	TATTCGCACTGGATACGACAAACCC		
F-primer	GCCGCGAGCTACATTGTCTG	20	
R-primer	CAGTGCAGGGTCCGAGGTATTC	22	
F-primer	CTCACTTCGGCAGCACATA	19	94
R-primer	AACTCTTCACGATTTTGTCTGTC	23	
F-primer	TCTACGGCCATACCACCCTGAA	22	67
R-primer	GGCCCGACCCTGCTTAG	17	
	Primer name S-L primer R-primer S-L primer S-L primer S-L primer S-L primer S-L primer R-primer S-L primer F-primer R-primer S-L primer F-primer R-primer F-primer R-primer F-primer R-primer F-primer R-primer R-primer R-primer R-primer R-primer R-primer R-primer R-primer R-primer	Primer nameSequences (5'~3')S-L primerGTCGTATCCAGTGCAGGGTCCGAGG TATTCGCACTGGATACGACCGGCCTF-primerGGGCGAGCTGGTGTTGTGAAR-primerCCAGTGCAGGGTCCGAGGTATTS-L primerGTCGTATCCAGTGCAGGGTCCGAGG TATTCGCACTGGATACGACCCATCTF-primerGGGCGTAACACTGTCTGGTAAAGR-primerCAGTGCAGGGTCCGAGGTATTS-L primerGTCGTATCCAGTGCAGGGTCCGAGG TATTCGCACTGGATACGACGAGGTF-primerCAGTGCAGGGTCCGAGGTATTS-L primerGTCGTATCCAGTGCAGGGTCCGAGG TATTCGCACTGGATACGACGAGCAF-primerCGGGCGTGAGATGAAGCR-primerCAGTGCAGGGTCCGAGGGTCCGAGG TATTCGCACTGGATACGACGATCACF-primerGGGCGTTGCATAGTCACAR-primerGGGCGTTGCATAGTCACAR-primerGGCGTACCGAGGGTCCGAGG TATTCGCACTGGATACGACGATCACF-primerGTCGTATCCAGTGCAGGGTCCGAGG TATTCGCACTGGATACGACAAACCCF-primerGCCGCGAGCTACATTGTCTGR-primerCAGTGCAGGGTCCGAGGTATTCF-primerCAGTGCAGGGTCCGAGGTATTCF-primerCAGTGCAGGGTCCGAGGACATAR-primerAACTCTTCACGACATAR-primerAACTCTTCACGACATACCACCTGAAR-primerAACTCTTCACGACCTGAAR-primerGGCCCGACCCTGCTTAG	Primer nameSequences $(5' \sim 3')$ Length/ntS-L primerGTCGTATCCAGTGCAGGGTCCGAGG50TATTCGCACTGGATACGACCGGCCTTATTCGCACTGGATACGACCGGCCTF-primerGGGCGAGCTGGTGTTGTGAA20R-primerCCAGTGCAGGGTCCGAGGTATT22S-L primerGTCGTATCCAGTGCAGGGTCCGAGG50TATTCGCACTGGATACGACCCATCTTATTCGCACTGGATACGACCCATCTF-primerGGGCGTAACACTGTCTGGTAAAG23R-primerCAGTGCAGGGTCCGAGGTCCGAGG50TATTCGCACTGGATACGACGAGGTCCGAGG50TATTCGCACTGGATACGACGAGCTA17R-primerCGGGCGTGAGATGAAGC17R-primerCAGTGCAGGGTCCGAGGGTCCGAGG50TATTCGCACTGGATACGACGAGCACAC18R-primerGGGCGTTGCATAGTCACA18R-primerGGGCGTACCAGGGTCCGAGGA50TATTCGCACTGGATACGACGAGGACCAAACCC19S-L primerGTCGTATCCAGTGCAGGGTCCGAGG50TATTCGCACTGGATACGACGAGGTCCGAGG50TATTCGCACTGGCAGGGTCCGAGGACAAACCC18R-primerCAGTGCAGGGTCCGAGGACAAACCC20F-primerGCCGCGAGCTACATTGTCTG20R-primerCAGTGCAGGGTCCGAGGTATTC22F-primerCTCACTTCGGCAGCACATA19R-primerAACTCTTCACGACATGTCTGTC23F-primerTCTACGGCCATACCACCTGAA22R-primerGGCCCGACCTTAG17

^a Spike RNA; ^b Stem-Loop primer; ^c Forward primer; ^d Reverse primer.

1.4 DNA 定量

在液氮中研磨组织样品,加入 1.5 ml 细胞裂解 缓冲液(10 mmol/L Tris-HCl, pH 8.0, 0.1 mol/L EDTA 和 0.5% SDS);取 20 μl 匀浆样品在 37℃下温浴 1 h,进行 RNase 处理(0.2 μl 10 g/L RNase A, 37℃ 30 min)和蛋白酶 K 处理(1 μl 20 g/L 蛋白酶 K, 55℃ 3 h).含有基因组 DNA 的溶液用 TE 缓冲液 稀释 100 倍(10 mmol/L Tris-HCl, pH 7.5, 1 mmol/L EDTA).取 5 μl 稀释液加至 96 孔板中,加入等体 积 4×SYBR Green I (Amersco Inc., Ohio, USA),和 1×ROX (Invitrogen, California, USA). DNA 浓度由 ABI PRISM 7000 序列检测系统(Applied Biosystems, California)测定,具体步骤为: 30℃ 15 min, 1 个 循环; 31℃ 5 s, 30℃ 30 s. 在反应最后一个循环 收集荧光信号.入DNA(TakaRa 公司,大连)作为标 准品,每次测量进行 3 次重复.

1.5 RNA 的提取和反转录反应

取 1.5 ml Ezol 试剂(GenePharma,上海)加入样 品匀浆液中,充分混匀.取 0.8 ml 混合液转移至另 一离心管中,另加 3 种不同拷贝的 spike RNA 和

0.2 ml 氯仿. spike RNA 的浓度见表 4. 将该混合 物涡旋 15 s, 室温下放置 3 min, 4℃, 12 000 r/min 离心 15 min. 取上清, -20℃ 沉淀过夜. 4℃, 12 000 r/min 10 min 收集沉淀. 用 1 ml 75%乙醇洗 涤沉淀, 35 μ l DEPC-水溶解沉淀, 得到 RNA 溶 液. RNA 样本质量由琼脂糖凝胶及 NanoDrop 分光 光度 计 (NanoDrop Technologies Inc., Wilmington, USA)评估.

Table 4 Copy number of spike RNA in sample homogenate

	=	-	
ID	Spike RNA 1	Spike RNA 2	Spike RNA 3
Copy number	1.0×10 ¹¹	1.0 ×10 ⁹	1.0×10^{7}

反转录系统包括 0.5 µl 纯化的总 RNA 与 DEPC-H₂O 共 2.25 µl 溶液, 70℃ 温浴 5 min, 迅速 置冰上 3 min. 接着在混合物中加 0.25 µl 2 µmol/L 茎环引物, 0.5 µl dNTP (各 10 mmol/L, TaKaRa 公 司), 1 µl 5×RT 缓冲液, 0.25 µl RevertAid[™]M-MuLV

1.6 Q-PCR

Q-PCR 是在序列检测系统 (PRISM 7000, Applied Biosystems)利用 SYBR Green I PCR 试剂盒 (GenePharma)完成. 10 μ l PCR 溶液包含 5 μ l 2× SYBR PCR master mix, 0.1 μ l Taq DNA polymerase (5 U/ μ l), 0.2 μ l 正向引物(10 μ mol/L), 0.2 μ l 反 向引物(10 μ mol/L), 0.4 μ l 反转录产物,最后加双 蒸水至总体积 10 μ l. 反应在 96 孔板中进行, 95° 10 min, 40 个循环包括 95°C 15 s 和 60°C 1 min. 每个反应有 3 次重复.

2 结 果

2.1 标准品的分析

合成的 spike RNA 作为标准样品,其扩增结果 通过 2%琼脂糖凝胶验证.其扩增条带单一、明 亮,如图1所示.

Spike RNA 稀释 7 个浓度梯度,借助 SDS (Sequence Detection System)软件分析其原始拷贝数

Fig. 1 The amplified product of standard sample *M*: 50 bp DNA ladder; *I*: Standard sample; 2: Negative control.

和 $C_{\rm T}$ 值之间的线性关系(图 2). 标准样品的 PAE (PCR amplification efficiency, PCR 扩增效率)计算 按公式(1):

 $PAE = 10^{(-1/k)} - 1 \quad (稀释因子 = 0.1) \tag{1}$

公式中 k 是标准样品的标准曲线的斜率. 曾有研究报道 PAE 值接近 1,说明扩增效率高^[25]. 通过(1)计算得出 PAE 值接近 1.

(a)Amplification plot of standard sample over seven orders of magnitude. (b) The standard curve of standard sample. (c) The dissociation curve of standard sample.

2.2 标准曲线

合成另一 spike RNA 作为标准品绘制标准曲 线,其序列为: 5' CGCUGUUGGUGUAAGCACA-GUA 3',茎环引物为: 5' GTCGTATCCAGTGCA-GGGTCCGAGGTATTCGCACTGGATACGACTAC-TGT 3',正向引物: 5' TCCGCGCTGTTGGTGT-AAG 3',反向引物: 5' AGTGCAGGGTCCGAG-GTATTC 3'.标准样品用 DEPC-H₂O稀释,从 5.0×10⁸稀释至 5.0×10²拷贝数共7个浓度梯度(稀 释因子为 0.1)分别作为反转录的模板进行 Q-PCR 反应.

2.3 数据分析

通过 ABI PRISM 7000 得出数据, 原始数据导入 Excel, 借助 origin 7.5 软件(OriginLab Corporation, Massachusetts, USA)分析. "percellome" 法用于数据的归一化分析. RNA 提取过程中的损失率(*LR*)用以下公式评价:

$$LR(i) = (Si_1 - Si_2)/Si_1$$
(2)

公式中 $Si_1(i = 1, 2, 3)$ 是样品匀浆液中 3 条 spike RNAs 的拷贝数, Si_2 是 3 条 spike RNAs 在总 RNA 的拷贝数. 所以,在提取过程中 RNA 的平均 损失率(LR_a)为:

 $LR_a = (LR(1) + LR(2) + LR(3))/3$ 样本均质液中的细胞数(*CN*)可计算为: $CN = C \times 1/d$ (3) 或 *CN*' = *C*' × 1' / *e* (3)' 公式中 *C* 为模板中 DNA 浓度(mg/L), 1 是 1µl 的模板浓度, *d* 是每个二倍体细胞中的 DNA 重量, 为 5.0×10⁻³ ng/ 个. *C*′为总 RNA 的浓度(μg/L), l′ 是 1 μl 的总 RNA, *e* 为每个细胞中的总 RNA 的重 量,为 15 pg^[26].

所以,样品匀浆液中的每个二倍体细胞miRNAs(*Ci*_m)的拷贝数可计算为:

 $Ci_{\rm m} = Ci_{\rm TR}/((1-LR_{\rm a})\times CN)$ (4) 或 $Ci_{\rm m}' = Ci_{\rm TR}/((1-LR_{\rm a})\times CN')$ (4)'

公式中 Ci_{IR} (*i* = 1, 2, 3, …14)是总 RNA中 14 条 miRNA 的拷贝数. 由此可计算出不同周龄段小鼠 的 miRNA 的表达差异值:

 $FCi_m = |Ci_m1/Ci_m2|$ (5) 或 $FCi_m' = |Ci_m1'/Ci_m2'|$ (5)' Ci_m1 及 Ci_m2 (*i* = 1, 2, 3, … 14) 或 Ci_m1' 及 Ci_m2' (*i* = 1, 2, 3, … 14)

代表 14 条 miRNAs 中每一条 miRNA 在每个 细胞中,两个不同周龄段(8 周龄和 40 周龄)的绝对 拷贝数.

2.4 miRNA 表达量的 "percellome" 法归一化

本研究用两种"percellome"法进行数据归一: 一种在 DNA 水平上用公式(3)计算相同样本均质液 的原始细胞数;另一种为在 RNA 水平用公式(3)' 计算相同样本均质液的原始细胞数.不同周龄段小 鼠的 miRNA 表达量的 *C*_T 值,可通过标准曲线转化 成拷贝数,样本均质液中 miRNA 的单细胞拷贝数 可参考公式(4)或公式(4)'计算,结果见表 5.

	Method 1 ¹⁾			Method 2 ²⁾	
Stage 1 ³⁾	Stage 24)	Fold-change	Stage 1	Stage 2	Fold-change
30 8595)	158 911	+ 57)	115	3 069	+ 26
N.D ⁶⁾	56		N.D	2	
2 419	941	- 38)	6	20	+ 3
838	324	- 3	14	5	- 3
254 606	432 666	+ 2	878	8 237	+ 9
6 406	25 867	+ 4	37	520	+ 14
1 118	1 997	+ 2	11	26	+ 2
209 063	102 939	- 2	565	3 183	+ 6
8 178	30 106	+ 4	42	674	+ 16
78 344	218 864	+ 3	498	5 155	+ 10
1 137	235	- 5	11	4	- 3
1 154	9 334	+ 8	9	167	+ 18
336	3 525	+ 10	5	131	+ 25
14 898	29 455	+ 2	145	670	+ 5
	Stage 1 ³⁾ 30 859 ⁵⁾ N.D ⁶⁾ 2 419 838 254 606 6 406 1 118 209 063 8 178 78 344 1 137 1 154 336 14 898	Method 1% Stage 1 ³) Stage 2 ⁴) 30 859 ⁵) 158 911 N.D ⁶) 56 2 419 941 838 324 254 606 432 666 6 406 25 867 1 118 1 997 209 063 102 939 8 178 30 106 78 344 218 864 1 137 235 1 154 9 334 336 3 525 14 898 29 455	Method 1%Stage 1 ³)Stage 2 ⁴)Fold-change $30\ 859^{5}$ $158\ 911$ $+\ 5^{7}$ N.D ⁶) 56 $2\ 419$ 941 $-\ 3^{8}$ 838 324 -3 $254\ 606$ $432\ 666$ $+\ 2$ $6\ 406$ $25\ 867$ $+\ 4$ $1\ 118$ $1\ 997$ $+\ 2$ $209\ 063$ $102\ 939$ $-\ 2$ $8\ 178$ $30\ 106$ $+\ 4$ $78\ 344$ $218\ 864$ $+\ 3$ $1\ 137$ 235 $-\ 5$ $1\ 154$ $9\ 334$ $+\ 8$ 336 $3\ 525$ $+\ 10$ $14\ 898$ $29\ 455$ $+\ 2$	Stage 13)Stage 24)Fold-changeStage 1 $30\ 859^{5}$ $158\ 911$ $+\ 5^{7}$ 115 N.D ⁶ 56 N.D $2\ 419$ 941 $-\ 3^{8}$ 6 838 324 $-\ 3$ 14 $254\ 606$ $432\ 666$ $+\ 2$ 878 $6\ 406$ $25\ 867$ $+\ 4$ 37 $1\ 118$ $1\ 997$ $+\ 2$ 11 $209\ 063$ $102\ 939$ $-\ 2$ 565 $8\ 178$ $30\ 106$ $+\ 4$ 42 $78\ 344$ $218\ 864$ $+\ 3$ 498 $1\ 137$ 235 $-\ 5$ 11 $1\ 154$ $9\ 334$ $+\ 8$ 9 336 $3\ 525$ $+\ 10$ 5 $14\ 898$ $29\ 455$ $+\ 2$ 145	Stage 13)Stage 24)Fold-changeStage 1Stage 2 30859^{5} 158911 $+5^{7}$ 115 3069 N.D ⁶⁾ 56 N.D2 2419 941 -3^{8} 6 20 838 324 -3 14 5 254606 432666 $+2$ 878 8237 6406 25867 $+4$ 37 520 1118 1997 $+2$ 11 26 209063 102939 -2 565 3183 8178 30106 $+4$ 42 674 78344 218864 $+3$ 498 5155 1137 235 -5 11 4 1154 9334 $+8$ 9 167 336 3525 $+10$ 5 131 14898 29455 $+2$ 145 670

 Table 5
 Brain miRNA expression in mouse of different age

¹⁾ Based on DNA level; ²⁾ Based on RNA level; ³⁾ 8 week-old mouse; ⁴⁾ 40 week-old mouse; ⁵⁾ The units is copy numbers per cell; ⁶⁾ No detectable PCR products after 40 cycles; ⁷⁾ Positive sign represents the miRNA expression at 40 week-old stage relative to 8 week-old stage is increase; ⁸⁾ Negative sign represents the miRNA expression at 40 week-old stage relative to 8 week-old stage is decrease.

表 5 数据表明: miR-26a 在小鼠脑中表达丰度 最高,而 miR-9 则表达丰度最低. miR-9 在 8 周龄 的小鼠脑组织中检测不到,但可在 40 周龄的小鼠 脑组织中检测到. miRNA 表达量从 2 倍到 26 倍变 化不等.

每个细胞 miRNA 绝对拷贝数用 DNA 水平归 一化比在 RNA 水平归一化所得的值大. 然而, 对 于 miRNA 表达量倍数的变化在 DNA 水平比 RNA 水平效果好. 尽管归一化方法的不同对于 miRNA 单细胞拷贝数和表达量变化倍数不同, 但这两种方 法的变化趋势却一致(图 3).

Fig. 3 The change trend between two percellome methods ●—●: DNA level; ▲—▲: RNA level.

同时,通过添加外源 spike RNA 检测 miRNA 的内参基因的表达量.在 miRNA 的归一化中常用 U6 ncRNA 和 5S rRNA 作为内参基因,但通过添加 外源 spike RNA 发现在不同周龄段内参基因表达量 会发生变化.该结果验证了前人的报道:"管家基 因"在不同年龄层或使用不同的处理方法,其表达 量会相应变化^[13-15].

3 讨 论

本研究通过添加外源 spike RNA 建立了一种在 DNA 和 RNA 两个不同水平上计算样本细胞数的方 法,从而对 miRNA 的表达量进行归一化处理的方 法.这两种单细胞归一化方法所得结果一致(图 3), 且这两种方法均可通过在样本均质液中计算单细胞 拷贝数归一 miRNA 的表达量(表 5). 从实验结果 可以看出,由于在 DNA 水平归一化所得数据重复 性比在 RNA 水平归一化好,因此,在 DNA 水平 归一化方法比在 RNA 水平归一化方法更可靠.每 个细胞中总 RNA 约为 15 pg,其 RNA 的表达量远 不如 DNA 稳定.根据 DNA 浓度进行归一化的方 法也适用于其他的非二倍体或奇数倍染色体,只需 调整公式(3)中的"d"值即可.

本研究将 spike RNA 作为内参基因对目标基因 的表达量进行归一化处理. 至今仍有许多内参基因 因难以提高绝对或相对定量数据的质量而不适用于 基因表达量的归一化分析. 图 4 从 miRNA 表达量 证明了这一结论. 利用 spike RNA 作为内参进行基 因表达量数据的归一化,需要外源性 RNA 与目的 miRNA 的扩增效率一致. 在样本均质液中,我们 通过对所有 miRNAs 的 *C*_T 值转化为拷贝数以降低 不同扩增效率带来的影响,而非使用制作一系列外 源 spike RNAs 的方法降低不同扩增效率带来的 影响.

□: DNA level; □: RNA level.

通过单细胞归一化方法,我们不仅可以得知不同周龄段小鼠脑组织的样品匀浆液中 miRNA 的原始拷贝数、表达差异值,还可以得出不同生长阶段的样品匀浆液中 miRNA 的绝对单细胞拷贝数.例如,miR-21 在 8 周龄阶段每个脑组织细胞中有 838 个拷贝数,而在 40 周龄阶段的小鼠脑组织的每个细胞中只有 324 个拷贝数.这意味 miR-21 在 8 周龄鼠脑单细胞中与 40 周龄鼠脑单细胞相差 514 个拷贝数.因此,本研究提供了一种鼠脑组织中miRNA 功能的研究方法.该单细胞归一法还适用于如 microarray 等 miRNA 表达量归一化分析.

参考文献

- Lim L P, Lau N C, Weinstein E G, et al. The microRNAs of Caenorhabditis elegans. Genes Dev, 2003, 17(8): 991–1008
- [2] Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell, 2003, 113(6): 673–676
- [3] Reinhart B J, Slack F J, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in *Caenorhabditis elegans*. Nature, 2000, 403(6772):901–906
- [4] Brennecke J, Hipfner D R, Stark A, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in *Drosophila*. Cell, 2003, **113**(1): 25–36
- [5] Baehrecke E H. miRNAs: micro managers of programmed cell death. Curr Biol, 2003, 13(12): R473-R475
- [6] Michael M Z, SM O C, van Holst Pellekaan N G, *et al.* Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res, 2003, 1(12): 882–891
- [7] 侯召华,张 建,田志刚. MicroRNA 调控固有免疫应答的分子 机制. 生物化学与生物物理学进展, 2008, 35(10):1131-1136
 Hou Z H, Zhang J, Tian Z G. Prog Biochem Biophys, 2008, 35(10): 1131-1136
- [8] Pradervand S, Weber J, Thomas J, et al. Impact of normalization on miRNA microarray expression profiling. Rna, 2009, 15 (3): 493– 501
- [9] Mestdagh P, Van Vlierberghe P, De Weer A, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol, 2009, 10(6): R64–R73
- [10] Sharbati-Tehrani S, Kutz-Lohroff B, Bergbauer R, et al. miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol, 2008, 9: 34–46
- [11] Peltier H J, Latham G J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. Rna, 2008, 14(5): 844–852
- [12] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402–408
- [13] Lee P D, Sladek R, Greenwood C M, et al. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res, 2002, 12(2): 292–297

- [14] Tang R, Dodd A, Lai D, et al. Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin (Shanghai), 2007, 39(5): 384–390
- [15] van de Peppel J, Kemmeren P, van Bakel H, et al. Monitoring global messenger RNA changes in externally controlled microarray experiments. EMBO Rep, 2003, 4(4): 387–393
- [16] Holstege F C, Jennings E G, Wyrick J J, et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell, 1998, 95 (5): 717-728
- [17] Hill A A, Brown E L, Whitley M Z, et al. Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls. Genome Biol, 2001, 2(12):RESEARCH0055
- [18] Yang Y H, Dudoit S, Luu P, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res, 2002, 30(4): e15
- [19] Talaat A M, Howard S T, Hale W t, et al. Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis. Nucleic Acids Res, 2002, 30(20): e104
- [20] Sterrenburg E, Turk R, Boer J M, et al. A common reference for cDNA microarray hybridizations. Nucleic Acids Res, 2002, 30(21): e116
- [21] Dudley A M, Aach J, Steffen M A, *et al.* Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci USA, 2002, 99(11): 7554–7559
- [22] Hekstra D, Taussig A R, Magnasco M, et al. Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays. Nucleic Acids Res, 2003, 31(7): 1962–1968
- [23] Kanno J, Aisaki K, Igarashi K, et al. "Per cell" normalization method for mRNA measurement by quantitative PCR and microarrays. BMC Genomics, 2006, 7: 64–77
- [24] Bolstad B M, Irizarry R A, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 2003, 19(2): 185–193
- [25] Skillman L C, Toovey A F, Williams A J, et al. Development and validation of a real-time PCR method to quantify rumen protozoa and examination of variability between entodinium populations in sheep offered a hay-based diet. Appl Environ Microbiol, 2006, 72(1):200–206
- [26] Chen C, Ridzon D A, Broomer A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005, 33(20): e179

A Novel Normalization Approach for MicroRNA Quantitative PCR^{*}

JIN You-Fang^{1)**}, XU Gen-Ming^{2)**}, LI Yan¹), MENG Li¹), JIANG Yong-Hou¹), GUO Jiang-Feng^{1)***}, DING Xian-Feng^{1)***}

(¹⁾College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; ²⁾ LC Science Co. Ltd, Hangzhou 310018, China)

Abstract Data normalization plays a crucial role in the interpretation of experimental result. House-keeping genes were utilized as internal controls to accurately determine the gene expression in quantitative PCR. However, significant expression variation of these internal controls was revealed recently. A novel normalization approach (per cell normalization, percellome), which is based on DNA and RNA normalization, is developed to calibrate miRNA expression in quantitative PCR. In which, a cocktail of three external RNAs with different copy numbers were spiked, so as be able to normalize miRNA expression against cell number. Gene expression of 14 miRNAs, as well as commonly used internal controls (U6 ncRNA and 5S rRNA), were examined in the brain samples of 8 and 40 week-old mice. By using "per cell normalization" method, the expression level of theses miRNAs varied from 2- to 26-fold, while the absolute miRNA copy number per cell were from 2.0×10^5 to 4.3×10^5 copies per cell. Interestingly, the fold-change of U6 ncRNA and 5S rRNA were found to be 1.5- and 4.8-fold (based on DNA normalization), and 5.8- and 3.8-fold (based on RNA normalization), indicating significant expression variations of these two house-keeping genes. The study provides an novel approach to reliably normalize miRNA expression in quantitative PCR.

Key words per cell normalization, quantitative PCR, spike RNA, miRNA **DOI**: 10.3724/SP.J.1206.2010.00397

- GUO Jiang-Feng. Tel: 86-571-86843302, E-mail: jfguo@zstu.edu.cn
- DING Xian-Feng. Tel: 86-571-86843516, E-mail: xfding@zstu.edu.c

Received: November 28, 2010 Accepted: December 23, 2010

^{*}This work was supported by grants from Natural Science Foundation of Zhejiang Province (Y2100681, Y2080586) and Hi-Tech Research and Development Program of China (2007AA02Z165).

^{**}These authors contributed equally to this work.

^{***}Corresponding author.