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Abstract Design of enzyme binding pocket to accommodate substrates with different chemical structure is a great challenge.

Traditionally, thousands even millions of mutants have to be screened in wet-lab experiments to find a ligand-specific mutant and

large amount of time and resources are consumed. To accelerate the screening process, we propose a novel workflow through

integration of molecular modeling and data-driven machine learning method to generate mutant libraries with high enrichment ratio

for recognition of specific substrate. We collected all the M. jannaschii tyrosyl-tRNA synthetase (Mj. TyrRS) mutants reported in the

literature to compare and analyze the sequence and structural feature and difference between mutant and wild type Mj. TyrRS. Mj.

TyrRS is used as an example since the sequences and structures of many unnatural amino acid specific Mj. TyrRS mutants have been

reported. Based on the crystal structures of different Mj. TyrRS mutants and Rosetta modeling result, we found D158G/P is the

critical residue which influences the backbone disruption of helix with residue 158-163. Our results showed that compared with

random mutation, Rosetta modeling and score function calculation can elevate the enrichment ratio of desired mutants by 2-fold in a

test library having 687 mutants, while after calibration by machine learning model trained using known data of Mj. TyrRS mutants

and ligand, the enrichment ratio can be elevated by 11-fold. This molecular modeling and machine learning-integrated workflow is

anticipated to significantly benefit to the Mj. tyrRS mutant screening and substantially reduce the time and cost of wet-lab

experiments. Besides, this novel process will have broad application in the field of computational protein design.
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Genetic code expansion technology[1] has been
widely used in biological research and can be applied
in monitoring protein conformational change[2] caused
by PTM[3] such as biophysical probe[4], improving
enzyme activity[5] and designing proteins with novel
catalytic functions[6-8]. Through this technology, we
can incorporate artificially designed unnatural amino
acid (UAA) into almost any specific site of target
protein. Usually an orthogonal tRNA and amino acyl-
tRNA synthetase (aaRS) mutant pair is necessary for
recognition of specific UAA and subsequent acyl
ligation to tRNA. There are more than 100 UAAs and
their corresponding orthogonal aaRS mutants have
been reported, UAAs with novel chemical structures,

biophysical and biological function will significantly
benefit to the biological research and protein
therapeutics[9]. Identification of the UAA’s
corresponding aaRS by researchers has never stopped.
Traditionally, an aaRS mutant recognizing specific
UAA is selected by several rounds of positive and
negative screening from large and diverse aaRS
mutant libraries designed rationally from wild type
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(WT) aaRS[1]. The screening process is very tedious,
manpower-costing and error-prone. Thus, a more
rapid and efficient method to identify aaRS mutant for
specific UAA is in urgent need.

From the perspective of computational
chemistry, finding aaRS mutant for specific UAA is a
problem in protein design. The sequence space of WT
aaRS as receptor is explored with the goal of finding
the mutant having lowest binding free energy to the
UAA ligand. In recent years, computational chemistry
based-molecular modelling methods, such as protein
homology modelling[10], protein structure
prediction[11-12], molecular docking[13] and protein
design[12, 14-16] have been rapidly developed. Large
number of successful cases on enzyme design for
substrate selectivity[17] are reported.

Recently there have been great advances in
artificial intelligence (AI) technology, such as
machine learning (ML) and deep learning. AI has
been used in computer vision, speech recognition,
machine translation, small-molecule drug design[18],
protein engineering[14], antibody structure
prediction[19], antibody design[20], protein structure
prediction[11] and protein design[21]. In general, AI can
extract representative features of protein sequence and
structure from large amount of chemical molecule and
protein data, learn internal patterns which can’t
explicitly spotted by human, and utilize
experimentally validated properties such as binding
affinity data, IC50 and enzyme activity as labels to
train a model which can be used to predict which
sample has target property of interest from huge
number of molecules and diversified protein mutant
libraries. For example, improved score function of
molecular docking software[22], improved protein
design performance[23] and accurate prediction of
thermostability for protein mutants[24] have been
achieved through ML and deep learning. Combined
with computational chemistry-based method, data-
driven AI method is giving satisfactory solution and
accurate prediction on many biological problems.

In this work, we collected all the M. jannaschii
tyrosyl-tRNA synthetase (Mj. TyrRS) mutants
reported in the literature to compare and analyze the
sequence and structural feature and differences
between mutants and WT Mj. TyrRS. Then we use
Rosetta EnzymeDesign method[25] to model the
structure and predict binding pose of UAA-Mj. TyrRS

mutant pair. Finally, ML model is integrated to
calibrate the score function for aaRS substrate
selectivity prediction and mutant design to achieve
better prediction accuracy. We think the improved Mj.
TyrRS-UAA selectivity prediction model will be
extremely useful for in silico screening of UAA-
specific aaRS mutants.

1 Crystal structures comparison between
Mj. TyrRS mutant and WT

Firstly, we collected the information of all UAAs
and corresponding Mj. TyrRS mutants whose high-
resolution X-ray crystal structures have been released,
as shown in Figure 1, Table 1 and Supplementary
material Table S1. In total there are 52 UAAs and 132
TyrRS mutants. The X-ray crystal structures of 18
TyrRS mutants have been reported (Table 1). The
diversity of UAAs (Figure 1) is large. Both of small
and large, polar and non-polar, hydrophilic and
hydrophobic substitution groups of p-hydroxy of Tyr
are included in these UAAs. In WT Mj. TyrRS,
hydrogen bond network between tyrosine hydroxy
group and pocket residues stabilizes the tyrosine
ligand and lowers the binding free energy (Figure 2).
In order to recognize other UAAs in Figure 1,
mutations with different amino acid types and
physicochemical properties have to be introduced to
accommodate different chemical properties.

For a reliable model of the mutant structure, the
backbone fluctuation introduced by mutation should
be small compared with that introduced by WT. It has
been reported that some mutations can change the
backbone conformation[26], so next we aligned the
crystal structures of Mj. TyrRS mutants and WT and
then calculated the RMSD of backbone N, CA, C, O
of binding pocket residues between mutant and WT to
compare the structural difference. As shown in Table
1 and Figure 3a, the structures with PDB ID 1ZHO,
1ZH6, 2AG6, 3D6U, 3D6V have average backbone
RMSD larger than 1.2, of which backbone
conformation is changed by mutation compared with
WT. Other mutants have small backbone fluctuation
which can be ignored when building the homology
model. Four of the 16 mutant structures have large
backbone fluctuation (Table 1). In Figure 3b, the
backbone RMSD of different binding pocket residues
are compared. We can see residues 158-163 have
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larger RMSD than other residues, which are on the
alpha helix near UAA ligand. Four representative
mutant structures are chosen and superimposed on
WT structure, as shown in Figure 4. In the structures
of 1ZH0 and 2AG6 the backbone change of alpha

helix is large, while in those of 2HGZ and 4PBR the
change is small. This implies it may be difficult to
obtain accurate UAA and pocket residue binding pose
for mutants bearing large backbone conformation
change in homology model.

(a) (b)
Tyr32

Asp158

Gln155
Leu65

His70
Tyr151

Tyr ligand 

Fig. 2 Crystal structures of WT Mj. TyrRS and tyrosine complex（PDB ID：1J1U）
The figure is rendered by Pymol[27]. (a) Mj. TyrRS is shown as cartoon. Tyrosine ligand is shown as sticks. Surrounding residues are shown as lines.

(b) The binding pocket of tyrosine ligand. Tyrosine forms hydrogen bond network with Tyr32, Asp158 and Gln155, which stabilizes the hydroxy

group of tyrosine.

Fig. 1 Chemical structures of the UAAs recognized by Mj. TyrRS mutants whose X-ray crystal structures have been solved
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How different mutations induce the backbone
conformation change remains unclear. It was reported
that in pTyr Mj. TyrRS, D158G mutation acted as a
helix breaker and caused the rearrange of the helix
and opened up the pocket to accommodate the bulky
UAA[26]. Though pCNF Mj. TyrRS has the same
D158G mutation, no obvious backbone conformation
change is observed (Table 1). To further investigate
the critical residues affecting the helix conformation,
we calculated AAindex[40] (531 types of numerical
indices representing various physicochemical and

biochemical properties of amino acids) of residues
158-163 for the 17 Mj. TyrRS in Table 1. Totally
there are 531×6=3 186 features for each TyrRS
mutant. We performed analysis of variance (ANOVA)
by sklearn[41] to find which residue and AAindex
property will contribute most to the discrimination of
TyrRS helix backbone disruption. The top largest 10
f_values are from residue 158 and have P < 0.001.
The 10 AAindex types are related to the intrinsic
secondary structure propensities of the amino acids
(Table 2), which implies that residue 158 may

Table 1 UAA index and name，aaRS mutation，PDB ID and X-ray crystal structure backbone RMSD of
UAA binding pocket residues1）

UAA

Index

000

001

003

004

005

009

015

018

020

035

042

049

053

058

062

065

066

068

Full name of UAA

L-tyrosine

p-Methoxy-L-phenylalanine

3-(2-Naphthyl)-L-alanine

3-Iodo-L-tyrosine

p-Benzoyl-L-phenylalanine

p-Acetyl-L-phenylalanine

p-Cyano-L-phenylalanine

p-(3-Trifluoromethyl-3H-

diazirin-3-yl)-phenylalanine

Bipyridylalanine

3-Nitro-L-tyrosine

p-Bromo-L-phenylalanine

p-(2-Tetrazole)-L-phenylalanine

3,5-Difluoro tyrosine

3-o-Methyl tyrosine

3,5-Dichloride tyrosine

4-(2-bromoisobutyramido)-

phenylalanine

4-Trans-cyclooctene-

amidopheylalanine

O-phosphotyrosine

Abbrevation

of UAA

Tyr

pMeF

H-2Nal-OH

3IY

pBpa

pAcF

pCNF

TfmdPhe

BpyAla

3NT

pBrF

p-Tpa

F2Y

OMeTyr

Cl2Y

BibaF

Tco-amF

pTyr

Mj. TyrRS mutation

Wild type

Y32Q D158A E107T L162P

Y32L D158P I159A L162Q A167V

H70A D158T

Y32G E107P D158G I159T

Y32L D158G I159C L162R

Y32L L65V F108W Q109M

D158G I159A

Y32I H70F E107S Q109M D158P

I159L L162E

Y32G L65Y H70A Q155E D158G

I159W L162S

Y32H H70C D158S I159A L162R

Y32L E107S D158P I159L L162E

Y32L L65I Q109M D158G L162V

V164G

Y32R L65Y H70G F108N Q109C

D158N L162S

Y32E L65S H70G Q109G D158N

L162V

Y32L L65I H70G F108I Q109L

Y114G D158S L162M

Y32G L65E F108W Q109M

D158S L162K

Y32G L65E F108W Q109M

D158S L162K

Y32S L65A F108K Q109H D158G

L162K

PDB ID

1J1U

1U7X

1ZH0

2ZP1

2HGZ

1ZH6

3QE4

3D6U

2PXH

4NDA

2AG6

3N2Y

4HJX

4HPW

4NX2

4PBR

4PBT

5U36

Average backbone

RMSD of pocket

residues between

mutant and WT

0

1.02

2.20

0.36

0.38

1.27

0.68

2.15

0.40

0.39

2.12

0.33

0.84

0.88

0.76

0.25

0.57

2.33

Large mutant

backbone

fluctuation

compared

with WT

No

No

Yes

No

No

Yes

No

Yes

No

No

Yes

No

No

No

No

No

No

Yes

Reference

［28］

［29］

［30］

［31］

［32］

［33］

［34］

［35］

［36］

［30］

［37］

［3］

［38］

［39］

［39］

［26］

1）Crystal structures of mutants with the same sequence are only shown once.
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Fig. 3 Crystal structure backbone heavy atom RMSD of UAA binding pocket residues（12 in total）between mutants
（21 in total） and WT

(a) For each mutant, backbone RMSD of pocket residues is calculated and plotted using Boxenplot showing different quantiles. (b) For each pocket

residue, backbone RMSD from all mutants and WT is calculated and shown.

(a) 2HGZ (b) 4PBR (c) 1ZH0 (d) 2AG6

Fig. 4 Comparison of the alpha helix containing residues 155-166 between 4 representative mutants and WT of Mj. TyrRS
in X-ray crystal structure

WT structure is colored in magenta (a), light pink (b), green (c) and magenta (d), respectively.
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influences the secondary structure. AAindex type and
value versus backbone disruption or not is shown in
Figure 5. We can see that the distribution of the
AAindex value is different for TyrRS with different
helix backbone. Each of the 10 AAindex can be used
to separate the TyrRS mutant with helix backbone
disruption from others. This indicates that D158P/G
mutation is a helix breaker and can disrupt the
backbone conformation, which should be taken into
consideration when building homology model for the
TyrRS mutants to obtain accurate structure model.

2 Rosetta modelling of UAA-Mj. TyrRS
mutant complex

To facilitate the TyrRS wet-lab screening process
and reduce the time and resource cost, molecular
modelling is carried out to predict which TyrRS
mutant can recognize the target UAA. First we use
Rosetta EnzymeDesign[25] to model the backbone
change and AA side chain packing to accommodate
specific UAA ligand for each of the 6 864 UAA-
mutant pair complexes (52 UAAs times 132 TyrRS
mutants). The crystal structure of WT Mj. TyrRS
(PDB ID 1J1U) is used as input template.
Representative modeling results are shown in Figure
6. For mutants with PDB ID 2HGZ and 4PBR, no
obvious backbone disruption is observed in crystal
structure (Table 1). In Figure 6a, the predicted binding
pose for 2HGZ is accurate, while in Figure 6b, for
4PBR the predicted orientation of UAA ligand
deviates from the true position in crystal structure and
leads to inaccurate side chain packing of residue
Lys162 and Ser158, which may be caused by wrong
selection of BibaF conformation. For mutants with
PDB ID 1ZH0 and 2AG6, large backbone disruption
is observed in crystal structure (Table 1). Though the
UAA ligand position and conformation (Figure 6c and
6d) is accurately modeled, the side chain of AA
surrounding the binding pocket deviates a lot from the
crystal structure mainly due to inaccurate modeling of
the alpha helix with residues 158-163. The results

Table 2 The top 10 AAindex types contributing most to
the discrimination of TyrRS helix backbone disruption

Position

158

158

158

158

158

158

158

158

158

158

AAindex type

MUNV940104

ROBB760104

MUNV940105

BLAM930101

BUNA790103

QIAN880134

MUNV940101

ONEK900101

RACS820114

QIAN880112

f_value

27.745 47

27.262 113

26.026 208

25.948 507

25.905 193

25.607 837

24.323 819

23.726 363

23.355 244

22.679 82

P

0.000 063

0.000 069

0.000 089

0.000 09

0.000 091

0.000 097

0.000 126

0.000 144

0.000 156

0.000 181

Fig. 5 Boxplot of AAindex type and value versus backbone disruption or not
Each subplot shows a different AAindex type. There are 17 data points in each subplot, which is the AAindex value of residue 158 from 17 Mj. TyrRS

mutants. 1 is for backbone disruption while 0 is not.
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indicate that for mutants with little disruption on helix
158-163, Rosetta model is accurate enough to predict

the binding pose, but for mutants with large
disruption, the opposite is true.

To test whether the correct backbone
conformation of residues 158-163 helix having
D158G/P mutation can be predicted, this segment is
de novo remodeled using KIC loop modeling
method[42] in Rosetta modelling. 1 000 models are
generated for each of the 4 mutants with PDB ID
1ZH0, 1ZH6, 2AG6 and 3D6U using homology
model in previous step as input. The backbone RMSD
to crystal structure are calculated and plotted against
total energy (Figure 7). Scatter plot in funnel shape
can be observed for all 4 mutants, which indicates the
amount of backbone conformation sampling is enough
to find local minimum energy point. For the lowest
energy structure, the RMSD to crystal structure is
3.65, 2.41, 3.74 and 4.39 Å in the 4 mutants. The
lowest RMSD to crystal structure in 1 000 models of

the 4 mutants is 0.94, 0.47, 0.49 and 0.48,
respectively. The rmsd_to_crystal for the top 10
models ranked by total_energy_score and total_score_
rank for the top 10 models ranked by rmsd_to_crystal
on 4 TyrRS mutants are shown in Figure 8a and 8b,
respectively. To further analyze the modeled structure,
crystal structure, input Rosetta model, model with
lowest RMSD to crystal, model with lowest energy
are superimposed. We can see that model for 1ZH6
has the most ideal funnel plot (Figure 7b) and model
with the lowest energy has least deviation from crystal
structure (Figure 8d), though 2.41 Å RMSD may still
not be accurate enough for UAA-TyrRS binding
affinity prediction. For the remaining 3 mutants,
model structure close to the native crystal structure
has been generated but we can't pick it up due to the

(c) 1ZH0

(b) 4PBR(a) 2HGZ

(d) 2AG6

pBrF

His70

Trp108

Met109

Gly32

Ile159

Glu65

Tyr161

Lys162

Ser158
His70

Ala67

Phe108

Gln109

Arg161

Leu162

Ser159
Thr158

Gly32

Leu65Leu

His70

Ala67

Phe108

Gln109

Leu65

Pro158-C

Leu32

Gly32

His70

Leu32

Tyr161-M

Tyr161-C
Pro158-M

Phe108

Gln109

Leu65

Glu162
Leu159Pro158

Tyr161

pBpa BibaF

H-2Nal-OH

Fig. 6 Comparison of the binding pose and binding pocket residues of 4 Mj. aaRS mutants from X-ray crystal structure
and Rosetta model

Corresponding UAA and binding site residues are shown as sticks. (a) PDB ID: 2HGZ. Crystal: green. Model: magenta. (b) PDB ID: 4PBR. Crystal:

blue. Model: yellow. (c) PDB ID: 1ZH0. Crystal: white. Model: green. (d) PDB ID: 2AG6. Crystal: yellow. Model: magenta.
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Fig. 7 Scatter plot for rmsd_to_crystal vs total_energy_score in 1 000 models generated by Rosetta de novo loop modelling
for TyrRS mutants with PDB ID 1ZH0，1ZH6，2AG6 and 3D6U

Fig. 8 Structure analysis of Rosetta de novo loop modelling results on TyrRS mutants with PDB ID 1ZH0，1ZH6，2AG6
and 3D6U，respectively

(a) Box plot of rmsd_to_crystal for the top 10 models ranked by total_energy_score on 4 TyrRS mutants. (b) Box plot of total_score_rank for the top

10 models ranked by rmsd_to_crystal on 4 TyrRS mutants. (c, d, e, f) Structure superimposition of crystal structure (in green), original Rosetta model

using WT crystal structure as template (in blue), remodeled model with the lowest RMSD to crystal structure within the 1 000 models (in magenta)

and remodeled model with the lowest energy within the 1 000 models (in yellow) on 4 TyrRS mutants.
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error of Rosetta energy function (Figure 8).

3 Methods

3.1 Rosetta molecular modelling
Preparation of the UAA ligand was performed as

described in the Rosetta tutorial for ligand
preparation[43]. Briefly, the chemical structure of UAA
is drawn using Marvin JS[44] and converted to smiles
format. Cheminformatics tool RDKit[45] is used to
generate low-energy conformations and perform
energy minimization based on the smiles of UAA.
The ligand parameter file used in Rosetta modelling is
made by molfile_to_params.py[43].

The UAA-Mj. TyrRS mutant complex model is
built using Rosetta EnzymeDesign[25] application with
default parameters as described in Rosetta tutorial[46].
Briefly, the amino acid mutation in the mutants is
written in resfile and passed into the application along
with the UAA ligand parameter file. Catalytic residues
of the aaRS formatting hydrogen bond with UAA is
fixed using constraint file. For each complex,
nstruct = 10 is used and the structure with the lowest
total score is kept for further analysis.

The residues 158-163 segment of Mj. TyrRS is
de novo modeled using KIC loop modeling method as
described in Rosetta tutorial[47] with default
parameters. 1 000 models are generated for each input
structure. The RMSD between modeled structure and
crystal structure is calculated by in-house script
written using biopython[48].
3.2 Machine learning

PROFEAT, dpocket and rfscore descriptors of
UAA ligand, Mj. TyrRS mutant protein and UAA- Mj.
TyrRS mutant complex is calculated on http://www.
descriptordb.com/ with default parameters.

Feature engineering, model selection and
hyperparameter optimization are performed by
PyCaret[49]. 90% of the full data is used in 5-fold CV
(cross validation) and the rest 10% of data is used as
test set. The feature space is transformed using
'zscore' method. 'ignore_low_variance' option is set to
True and all categorical features with statistically
insignificant variances are removed from the dataset.
Feature selection is used and 'feature_selection_
threshold' is set to 0.8.

The hyperparameters for the 15 ML models we
used are listed below:

Light Gradient Boosting Machine (boosting_type

= 'gbdt', class_weight=None, colsample_bytree=1.0,
importance_type='split', learning_rate=0.1, max_depth
=-1, min_child_samples=20, min_child_weight=
0.001, min_split_gain=0.0, n_estimators=100, n_jobs=
-1, num_leaves=31, objective=None, random_state=5,
reg_alpha=0.0, reg_lambda=0.0, silent=True,
subsample=1.0, subsample_for_bin=200000,
subsample_freq=0)

CatBoost Classifier (cat_features=None,
text_features=None, sample_weight=None, baseline=
None, use_best_model=None, eval_set=None, verbose
=None, logging_level=None, plot=False, column_
description=None, verbose_eval=None, metric_period
=None, silent=None, early_stopping_rounds=None,
save_snapshot=None, snapshot_file=None, snapshot_
interval=None, init_model=None)

Extra Trees Classifier (bootstrap=False,
ccp_alpha=0.0, class_weight=None, criterion= 'gini',
max_depth=None, max_features= 'auto', max_leaf_
nodes=None, max_samples=None, min_impurity_
decrease=0.0, min_impurity_split=None, min_
samples_leaf=1, min_samples_split=2, min_weight_
fraction_leaf=0.0, n_estimators=100, n_jobs=None,
oob_score=False, random_state=5, verbose=0,
warm_start=False)

Extreme Gradient Boosting (base_score=0.5,
booster= 'gbtree', colsample_bylevel=1, colsample_
bynode=1, colsample_bytree=1, gamma=0, learning_
rate=0.1, max_delta_step=0, max_depth=3,
min_child_weight=1, missing=None, n_estimators=
100, n_jobs=-1, nthread=None, objective= 'binary:
logistic', random_state=5, reg_alpha=0, reg_lambda=
1, scale_pos_weight=1, seed=None, silent=None,
subsample=1, verbosity=0)

Logistic Regression (C=1.0, class_weight=None,
dual=False, fit_intercept=True, intercept_scaling=1,
l1_ratio=None, max_iter=100, multi_class= 'auto',
n_jobs=None, penalty= 'l2', random_state=5, solver=
'lbfgs', tol=0.0001, verbose=0, warm_start=False)

Ridge Classifier (alpha=1.0, class_weight=None,
copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, random_state=5, solver= 'auto', tol=
0.001)

Random Forest Classifier (bootstrap=True,
ccp_alpha=0.0, class_weight=None, criterion= 'gini',
max_depth=None, max_features= 'auto', max_leaf_
nodes=None, max_samples=None, min_impurity_
decrease=0.0, min_impurity_split=None, min_
samples_leaf=1, min_samples_split=2, min_weight_



段秉亚，等：利用机器学习提高M. jannaschii酪氨酰tRNA合成酶底物

特异性分子建模预测的准确度2021；48（10） ·1223·

fraction_leaf=0.0, n_estimators=10, n_jobs=None,
oob_score=False, random_state=5, verbose=0,
warm_start=False)

Quadratic Discriminant Analysis (priors=None,
reg_param=0.0, store_covariance=False, tol=0.0001)

K Neighbors Classifier (algorithm= 'auto',
leaf_size=30, metric= 'minkowski', metric_params=
None, n_jobs=None, n_neighbors=5, p=2, weights=
'uniform')

Ada Boost Classifier (algorithm= 'SAMME. R',
base_estimator=None, learning_rate=1.0, n_estimators
=50, random_state=5)

Gradient Boosting Classifier (ccp_alpha=0.0,
criterion= 'friedman_mse', init=None, learning_rate=
0.1, loss= 'deviance', max_depth=3, max_features=
None, max_leaf_nodes=None, min_impurity_decrease
=0.0, min_impurity_split=None, min_samples_leaf=
1, min_samples_split=2, min_weight_fraction_leaf=
0.0, n_estimators=100, n_iter_no_change=None,
presort='deprecated', random_state=5, subsample=1.0,
tol=0.0001, validation_fraction=0.1, verbose=0,
warm_start=False)

Linear Discriminant Analysis (n_components=
None, priors=None, shrinkage=None, solver= 'svd',
store_covariance=False, tol=0.0001)

Decision Tree Classifier (ccp_alpha=0.0,
class_weight=None, criterion= 'gini', max_depth=

None, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=
None, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort= 'deprecated',
random_state=5, splitter='best')

SVM-Linear Kernel Classifier (alpha=0.0001,
average=False, class_weight=None, early_stopping=
False, epsilon=0.1, eta0=0.0, fit_intercept=True,
l1_ratio=0.15, learning_rate= 'optimal', loss= 'hinge',
max_iter=1000, n_iter_no_change=5, n_jobs=None,
penalty= 'l2', power_t=0.5, random_state=5, shuffle=
True, tol=0.001, validation_fraction=0.1, verbose=0,
warm_start=False)

Naive Bayes (priors=None, var_smoothing=
1e-09)

4 ML model and performance analysis

In the previous part, we have modeled 6 864
UAA-TyrRS mutant pairs using Rosetta modelling
and found that the energy function is not accurate
enough to discriminate the true UAA binder from the
false ones. To further improve the energy function, we
use ML to train a model to learn important energy
term and protein-ligand interactions that contribute
most to the binding energy. The flowchart of the ML
model and application is shown in Figure 9. Next each
part of the flowchart will be described.

Fig. 9 Flowchart of the data preparation，ML model training，prediction and application workflow
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4.1 Data preparation
We collected the chemical structure of 52 UAAs,

the sequence and X-ray crystal structure of 132 TyrRS
mutants from literature. Each UAA is paired to each
TyrRS mutant to generate data set for ML model
training. There are 6 864 UAA-TyrRS mutant pairs
and the complex model is built in the previous
section. For the specific UAA-mutant pair, if the UAA
can be recognized by the mutant, this pair is labeled
as positive and all the remaining pairs are taken as
negative sample under the assumption that TyrRS
mutant has high specificity and orthogonality for
different UAA substrate. In the final dataset, we have
132 positive samples and 6 732 negative samples. The
positive to negative ratio is 1∶51.
4.2 Feature extraction

The UAA-TyrRS mutant pairs can be described
from 3 aspects: UAA ligand, mutant protein and UAA-
mutant complex. The presentation and feature
vectorization method are listed in Table 3. The feature
is extracted from the chemical structure of UAA, the
sequence of TyrRS mutant and the 3D structure of
UAA-mutant complex model built using Rosetta
modelling. The dimension of all features is 2 644.
Dimension reduction was realized using PCA method.
100 dimensions were obtained while retaining 95% of
the information.
4.3 ML model training

10% of the data is used as test set (687 samples).
The remaining 90% data (6 177 samples) is used for
ML model training, which is randomly splitted into
training set and validation set with a ratio of 4∶1 for
5-fold CV. To overcome the problem of unbalanced

positive and negative dataset, the positive samples are
over sampled by 50-folds to make the dataset having
1∶1 ratio of positive and negative samples. Feature
engineering, model selection and hyper parameter
tuning are carried out through pycaret[49], a low-code
ML library. Fifteen ML algorithms are used to train
the model: Light Gradient Boosting Machine
(lightGBM), CatBoost Classifier, Extra Trees
Classifier, Extreme Gradient Boosting, Logistic
Regression, Ridge Classifier, Random Forest
Classifier, Quadratic Discriminant Analysis (QDA), K
Neighbors Classifier, Ada Boost Classifier, Gradient
Boosting Classifier, Linear Discriminant Analysis
(LDA), Decision Tree Classifier, SVM-Linear Kernel,
Naive Bayes Classifier. Different metrics are used to
evaluate the binary classification model performance:
accuracy, AUC, recall, precision and F1. AUC, recall,
F1 score are chosen to evaluate the performance of
ML model because they are not sensitive to the
unbalanced ratio of positive and negative samples.
4.4 ML model evaluation and explanation

Different feature combinations are explored in
the model training process. The feature_type_index,
values of best metrics and corresponding model name
having the best performance are listed in Table 4. For
different metrics, the algorithm having best
performance is different. In general, the performance
of model using all features is better than using single
type of feature (Figure 10). When using the UAA
dpocket descriptor only, Quadratic Discriminant
Analysis and Extra Trees Classifier models have best
recall and precision, respectively, while their F1 is not
the highest. LightGBM model has the best accuracy,
AUC and precision in some feature combinations.

Table 3 Feature representation method for UAA small molecule ligand and TyrRS protein receptor used in this study

Method

PROFEAT-ligand

PROFEAT-receptor

Rosetta energy score

and decomposition

dpocket

rfscore

Description

Small molecule 1D and 2D descriptors

Protein sequence descriptors using amino acid biophysical properties and compositions

Rosetta interface_E total score and energy term (fa_atr, fa_rep, fa_sol, fa_elec, fa_pair,

hbond_sr_bb, hbond_lr_bb, hbond_bb_sc, hbond_sc) decomposed into each binding pocket

residue

Dpocket (describing pocket) extracts several descriptors using atom, amino acid, alpha sphere

and volume information from the ligand binding pocket

A machine learning-based score function for protein-ligand complex

Dimension

406

1 437

6+540

35

216

Reference

[50]

[50]

[25, 51]

[52]

[53]
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Table 4 Comparison of 5-fold CV performance on different ML models and different performance metrics for UAA
specificity prediction

Features and

combination

Rosetta_6_score_

terms

Rosetta_energy_

decomposed

UAA_pocket_

descripotr

Rosetta_6_score_

terms+energy_

decomposed

All_features_above

Feature_

type_index

1

2

3

4

5

Model_

with_best_

accuracy

SVM-

Linear

Kerne

Extra Trees

Classifier

Extra Trees

Classifier

Light

Gradient

Boosting

Machine

Light

Gradient

Boosting

Machine

Best_

accuracy

0.979

0.979 6

0.979 9

0.980 1

0.979 4

Model_

with_best

_AUC

CatBoost

Classifier

Light

Gradient

Boosting

Machine

CatBoost

Classifier

CatBoost

Classifier

CatBoost

Classifier

Best_

AUC

0.736 9

0.787 4

0.804 2

0.819 3

0.822 2

Model_with_

best_recall

Decision

Tree

Classifier

Naive

Bayes

Quadratic

Discriminant

Analysis

Linear

Discriminant

Analysis

Naive

Bayes

Best_

recall

0.061 5

0.807 7

1.000 0

0.184 6

0.476 9

Model_

with_best_

precision

Naive

Bayes

Random

Forest

Classifier

Extra

Trees

Classifier

K

Neighbors

Classifier

Light

Gradient

Boosting

Machine

Best_

precision

0.176

0.400 0

0.716 7

0.650 0

0.400 0

Model_with_

best_F1

Quadratic

Discriminant

Analysis

Decision

Tree

Classifier

Extra

Trees

Classifier

Linear

Discriminant

Analysis

Linear

Discriminant

Analysis

Best_

F1

0.077 7

0.146 5

0.161 2

0.183 6

0.165 4

Fig. 10 Barplot of the best model performance on different feature combinations and different metrics
Feature_type_index is the same as that in Table 4.
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The metrics to evaluate the model performance
of 15 different ML models are shown in Figure 11.
For AUC metric, the performances of ML models
have no significant difference. For precision metric,
Extra Trees Classifier and LightGBM models have

relatively higher performance. For recall metric,
Naive Bayes method has higher performance. For F1
score, LDA and Decision Tree Classifier models have
higher performance.

We choose lightGBM[54] model for further
analysis since it’s a tree-based ensemble model which
can avoid overfitting and has been widely used in
other ML model applications. Feature importance of
the model can be easily explained. The performance
of lightGBM model on 5-fold CV and test set is
compared (Table 5). We can see the metrics are better
on test set than that on 5-fold CV.

Fig. 11 Performance of different ML models
The AUC, precision, recall and F1 score metrics are shown for 15 types of different ML models in a, b, c and d, respectively.

Table 5 Performance of lightGBM model on 5-fold
cross validation set and test set using all features

（feature_type_index 5）

LightGBM

5-fold CV

Test set

Accuracy

0.979 4

0.979 6

AUC

0.759 3

0.854 9

Recall

0.038 5

0.066 7

Precision

0.35

1

F1 score

0.068 6

0.125
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SHAP method[55] is used to calculate the feature
importance and its contribution to the binary class
label (Figure 12). According to the result, residue_
70_fa_sol and residue_34_fa_sol are considered as the
most important features by the lightGBM model
which indicates that the solvation energy of residue 34

and 70 may be important. Rosetta_interface_E and
residue_158_fa_elec are also important which is in
accordance with our domain knowledge that score
function is useful to discriminate the positive sample
to some extent.

To compare the prediction accuracy between
lightGBM model and Rosetta score, ROC and PR
curve on test set (Figure 13a and 13b) are plotted for
both methods. Better ROC and PR curve are observed
for lightGBM ML model. AUC of lightGBM model is
0.84, higher than 0.77 of Rosetta score. As a
simulation test for real wet-lab experiment, we
calculate when the number of mutants k for web-lab
experiment is given and fixed, and how many true
positive samples exist in the k mutants (Figure 13c
and 13d). For example, if we want to test 50 mutants
in wet-lab experiment out of 687 mutants, there will
be 1, 2 and 11 true positive mutants for random
sample, Rosetta score prediction and lightGBM model
prediction, respectively. The success rate is 2%, 4%
and 22%, respectively, which means Rosetta score
prediction has 2-fold elevation on enrichment ratio of
true positive mutants, while lightGBM model has 11-
fold elevation. The TyrRS mutant screening will
significantly benefit from the improvement of
prediction accuracy using ML model.

5 Discussion

5.1 Significance of the work for genetic code
expansion and computational protein design

In the field of computational protein design, it is
a great challenge to introduce mutations into proteins
to change the substrate specificity for different ligands
in a particular ligand-receptor complex system. There
have been many reports, such as using Rosetta[56] and
OSPREY[57] to design proteins to switch the substrate
and accommodate specific ligands. As a model
system, Mj. TyrRS has be mutated and designed to
bind UAA with different chemical structures as
reported before[58]. This system can be used as a
benchmark for substrate-specific protein design, as a
large number of mutants have been reported.
Comprehensive study of this system will be of great
significance to the field of protein design.

This work focuses on UAA-Mj. TyrRS complex
system which has been widely used in genetic code

Fig. 12 SHAP values of the important features from the lightGBM model
The SHAP value, which is a measurement of average impact/contribution on model output of negative (a) and positive (b) samples for the important

features are shown. The impact on negative label is in blue and the impact on positive label is in red. The features are sorted by the SHAP value.



·1228· 2021；48（10）生物化学与生物物理进展 Prog. Biochem. Biophys.

expansion research field. Through the efforts of many
research groups over 15 years in the past, a large
number of UAA and its corresponding TyrRS mutants
have been identified after spending a lot of human and
material resources, so far, there is no systematic study
to integrate these data for the development and test of
UAA virtual screening method. This paper
summarizes all the reported UAA and Mj. TyrRS
mutants, systematically analyzes them, and attempts
to establish a relatively accurate model to predict the
UAA-specific recognition of different mutants,
establishing the foundation for large-scale, high-
throughput virtual screening.

The existing methods for predicting protein
ligand interaction are probably not suitable for this
system. The reason is that the adaptability and
accuracy of score functions for different ligand-
receptor systems are different. For example, the
importance of hydrogen bond in one system may be

higher than another. Method developed for affinity
prediction of drug-target protein interaction cannot be
applied on the Mj. TyrRS system without
modification. In this paper, we calibrate the Rosetta
score function for this specific system to get better
prediction performance. Besides Rosetta molecular
modeling, other methods such as molecular docking,
MM-PBSA[59], TI[60], and FEP[61] can also be
integrated with ML in the similar way to give more
accurate prediction results in the future.
5.2 Previous work for TyrRS mutant substrate
specificity prediction and computational library
design

Several methods aiming to accelerate the
screening of aaRS mutants or design more focusing
library using computational chemistry method such as
molecular modeling and MM-PBSA[62-64] have been
reported. These results show that molecular modeling

Fig. 13 Comparison of lightGBMML model and Rosetta score predictions
(a) Receiver operating characteristic curve, (b) Precision-recall curve and (c, d) Number of true positive samples vs number of mutants selected for

wet-lab experiment of lightGBM model and Rosetta interface_E score only prediction on test set. The scale of x axis is limited to 0-100 in (d).
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can be used to predict TyrRS substrate specificity, but
the amount of UAA and TyrRS mutants used in
previous studies is too small to give convincing
conclusion. In this work, we considered all UAA and
TyrRS mutants reported before. With thousands of
UAA-mutant pairs as training and validation data, a
more solid conclusion can be made that molecular
modeling integrated with ML can be useful in the
virtual screening of TyrRS mutant.
5.3 Discussion on the prediction result

Though the backbone disruption of helix 158-
163 can’t be precisely modeled, we think its influence
on the prediction accuracy may not be large because
there are only 58 D158G mutants and 13 D158P
mutants with a fraction of 42% in total 171 mutants
(Supplementary file Table S1). Besides, descriptors
extracted from protein sequence are not affected by
the backbone disruption of structure. Knowledge and
information learned from mutant sequence by ML
model could correct the error in the homology model
and increase the prediction accuracy.
5.4 Limitation of the work

On the one hand, for the homology modeling of
Mj. TyrRS mutants, the position of amino acid side
chain and rotamer in the binding pocket can be
recovered well, but for those with large backbone
changes, it is hard to model the backbone
conformation aligned well to crystal structure. Though
the close conformation can be sampled by Rosetta de
novo loop remodeling, the score function is not
precise enough to pick it out. The inaccuracy of
structure prediction decreases the prediction accuracy
of UAA-specific mutant. On the other hand, there are
water molecules in the UAA binding pocket of Mj.
TyrRS. The influence of water is not considered by
current molecular modeling method.

The generalization ability of ML model may be
low because the number of reported UAA and mutant
pair is small compared to the huge chemical space of
UAA and sequence space of Mj. TyrRS mutants.
Currently it is difficult to cover the diversified
chemical structure and protein sequence. One of the
solutions is deep mutational scanning[65], which uses
next generation sequencing to get phenotype of over 1
million mutants in a single experiment and generates
enough data for ML and deep learning model training
and prediction. Still, wet-lab experiments are needed
to validate the model for practical usage.

6 Conclusion

To get further knowledge of the Mj. TyrRS
structure and accelerate the time-costly screening
process of mutant for specific UAA, we collected all
the UAAs and Mj. TyrRS reported before, analyzed
the structure and sequence difference between the
mutants and found that some mutants have alternative
backbone conformation on alpha helix residue 158-
163 with D158G/P mutation, which makes accurate
mutant modelling more difficult. Rosetta modeling
and ML are integrated to give more accurate
prediction results for mutant selectivity towards
different UAAs. Different feature combinations and
ML algorithms are tested for higher model
performance. LightGBM model is chosen and the
feature importance and the contribution to the binary
class label is calculated to explain the knowledge
learned by the model. After the calibration of Rosetta
score function using lightGBM model, the enrichment
ratio of target mutant is elevated by 11-fold compared
with random mutation. Wet-lab experiment is in
progress to validate the model. We anticipate that this
proof-of-concept workflow will be of great help in the
screening of Mj. TyrRS and protein design field.

Supplementary material PIBB20200425_TableS1.
xlsx is available at paper online (http://www.pibb.ac.
cn, http://www.cnki.net)
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利用机器学习提高M. jannaschii酪氨酰tRNA合
成酶底物特异性分子建模预测的准确度*

段秉亚 孙应飞**

（中国科学院大学电子电气与通信工程学院，北京 100190）

摘要 设计结合不同化学结构底物的酶结合袋是一个巨大的挑战 . 传统的湿实验要筛选成千上万甚至上百万个突变体来寻找

对特定配体结合的突变体，此过程需要耗费大量的时间和资源 . 为了加快筛选过程，我们提出了一种新的工作流程，将分子

建模和数据驱动的机器学习方法相结合，生成具有高富集率的突变文库，用于高效筛选能识别特定底物的蛋白质突变体 .

M. jannaschii酪氨酰 tRNA合成酶（Mj. TyrRS）能识别特定的非天然氨基酸并催化形成氨酰 tRNA，其不同的突变体能够识

别不同结构的非天然氨基酸，并且已经有了许多报道和数据的积累，因此我们使用TyrRS作为一个例子来进行此筛选流程

的概念验证 . 基于已知的多个Mj. TyrRS的晶体结构及分子建模的结果，我们发现D158G/P是影响残基158~163位α螺旋蛋白

骨架变化的关键突变 . 我们的模拟结果表明，在含有687个突变体的测试数据中，与随机突变相比，分子建模和打分函数计

算排序可以将目标突变体的富集率提高2倍，而使用已知突变体和对应的非天然氨基酸数据训练的机器学习模型进行校准

后，筛选富集率可提高11倍 . 这种分子建模和机器学习相结合的计算和筛选流程非常有助于Mj.TyrRS的底物特异性设计，

可以大大减少湿实验的时间和成本 . 此外，这种新方法在蛋白质计算设计领域具有广泛的应用前景 .

关键词 酪氨酰tRNA合成酶，遗传密码扩展，酶底物特异性，Rosetta，分子建模，机器学习
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