Techniques and Methods FzN=

0) )L S i R
Progress in Biochemistry and Biophysics
' 'J 2022,49(6):1155~1164

www.pibb.ac.cn

577k

A Comparative Evaluation of Several Matrix
Completion Algorithms for Protein Structure
Determination”

LI Zhi-Cheng"”"", WEI Xian”, LI Jin-Ting"”
("Department of Physics, Taiyuan Normal University, Jinzhong 030619, China;
Dnstitute of Computational and Applied Physics, Taiyuan Normal University, Jinzhong 030619, China;

SDepartment of Science, Taiyuan Institute of Technology, Taiyuan 030008, China)

Abstract Objective
resonance (NMR) spectroscopy experiments is a hot topic in biophysics, because understanding the spatial structure of a protein is
In this

Nowadays, how to determine an accurate three-dimensional protein structure from nuclear magnetic

crucial to research its function. However, this is a large challenge due to the serious lack of experimental data. Methods
paper, the problem of protein structure determination was solved by matrix completion (MC) algorithms of recovering a distance
matrix. Firstly, the initial distance matrix model was established, then its missing data were recovered by the MC algorithms at
different sampling ratios. The subsequent stage involved adding the noise model to evaluate the noise resistance of the algorithms.
Four proteins with different topological structures and 6 off-the-shelf MC algorithms were selected for testing. Results  The results
show that these algorithms have good performance in a certain range of sampling ratios and noises. More specifically, the advantages
of different algorithms in the case of accurate sampling and noisy sampling are compared by analyzing the average and standard

deviation of the root-mean-square deviation (RMSD) and computational time, which are two important indexes about algorithms.

Conclusion

We can conclude that 6 different MC algorithms have different performances and advantages for the problem of

protein structure determination. These characteristics provide a basis for the development of a new MC algorithm. The results of this

paper have potential promotion in the field of protein research based on MC algorithms.
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Proteins are composed of ordered amino acid
chains, which are vital macromolecules of cells in
organisms.  Determining the three-dimensional
structure of proteins is central to biophysics and
bioinformatics because it is important to understand
the physical, chemical and biological properties of
proteins and to analyze possible interactions with
(XRD)

crystallography was the main tool for obtaining

other  proteins'.  X-ray  diffraction
protein information in the early period of protein
structure determination'”. However, the introduction
of the nuclear magnetic resonance (NMR) technique is
a breakthrough because NMR made it possible to
obtain protein information in an aqueous environment
much closer to the native state of a protein®®*. The
protein NMR method conventionally involves sample
preparation, peak picking,

spectral  assignment,

protein structure determination, distance matrix, matrix completion, noise resistance

nuclear Overhauser effect spectroscopy (NOESY) >
assignment, structure calculation and refinement!”) as
demonstrated in Figure 1. Because long distances
(>5 A, 1 A=10"" m) are difficult to be measured by
NMR
information is the main challenge for this problem. To

experiment™, lacking sufficient distance

this end, the protein NMR methods rely profoundly on
complex computational algorithms and techniques, e.
g. distance geometry®'?, molecular dynamics!'*',

(MC)

The proposed matrix completion
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Fig. 1 The procedure of protein NMR structure determination

(a) Sample preparation: NMR experiments can directly measure protein samples in solution state; (b) NMR experiments: involving peak picking,

spectral assignment, nuclear Overhauser effect spectroscopy (NOESY) assignment; (c) NMR spectroscopy: the sources of experimental data;

(d) Distance constraints: obtaining a set of distance constraints from spectrums (the intensity of an NOE is the 6th power inversely proportional to the

distance between two nuclei); (e) Structural calculation: the resulting geometric restraints are used as input for the structural calculation.

theory!'¢"!7]

problem. MC aims at recovering a low-rank matrix

provides a promising way to solve this

from a partial sampling of its entries. In the early stage
of MC development, one typical example is the
famous Netflix problem, which aims to predict the
user’s preferences for different types of movies based
on a very sparse existing data set. In 2009, Candes and
Recht!" proposed that a matrix could be recovered
with a very high probability if the number m of
sampled entries obeys m=>Cn'?rlogn, where C is a
positive constant, n and r are dimension and rank of
the matrix, respectively. Subsequently, Candes and
Tao!"”! improved this result to m=>Cnrlogn. Afterward
(201 generalized the standard MC problem by
proposing a simpler and more general method. In the

Gross

meantime, the MC problem with noise was also
[21]

proposed. Candes and Plan'“" proposed that a matrix
could be recovered accurately with Gaussian random
noise and bounded noise if m obeys m=>Cnrlog’n. With
the development of MC theory, it has received
increasing interest and has been applied to various

fields, such as protein structure calculation!**"!

[28]

, image
processing®?7), traffic sensing

In this paper, the protein NMR structure
determination is addressed as an MC problem. In our
previous work, the MC-based accelerated proximal
gradient (APG) ® algorithm and scaled alternating
steepest descent (ScaledASD)*®! algorithm have been
investigated in recent years. In 2017, we applied the
APG algorithm to protein structure calculation and
demonstrated the effectiveness of the algorithm by
analyzing the accuracy and error of the calculation
results™. In 2019, a new algorithm, ScaledASD,
originally applied in image processing, was tested for
protein structure calculation, the results show the
algorithm overcomes the shortcomings of insufficient
NMR data to a certain extent'**!. To further explore the
effectiveness of MC in the field of protein structure
estimation, 6 MC algorithms were selected to be tested
and compared their performance in this paper. The
remainder of the paper is organized as follows:
Section 1 gives a detailed description of our method
MC and quality
assessment. In Section 2, we evaluate the performance

including the problem model,

of 6 different MC algorithms under accurate sampling
as well as noisy sampling, and make a detailed
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analysis. Finally, the conclusions and some

perspectives are elaborated in Section 3.
1 Methods

1.1 Problem model

For a protein molecule, each atom can be
considered as a three-dimensional point in space. We
assume the target protein has » atoms, then the protein
structure consists of a set of points {x,, x,, -*-, x,}, X,
R3. The coordinate matrix is defined as X= [ xp5 =5
x,] eR™. Based on this, we can define a Euclidean
distance matrix (EDM), whose elements stand for the
distance between two atoms, such that

D; = H X T X zvVizf € {172»"%”} (1)

j
where || x || is the Euclidean distance norm of vector x.

Obviously, we can transform a coordinate matrix X
into a Euclidean distance matrix D according to
Equation (1). Conversely, a Euclidean distance matrix
D can also be converted back into a coordinate matrix
X by a general approach”. In detail, we induce the
Gram matrix G = XX”. Gram matrix G and distance
matrix D have the following transformation relations:

1
G =~ HDH )
(2) (®)
WL,
BT .
s N
s S 4
e . Random .
NN . o sampling p:
o _{ﬁ"! H' " —
LA
| H{ﬁ'r
'l

1
where H = [ — —11%, I and 1 stand for the unit matrix
n

and the all-ones vector, respectively. Consider the
eigenvalue decomposition of G:

G=VAV" 3)
where V' is an nxn square matrix, and A is a diagonal
matrix in which the elements on the diagonal are the
corresponding eigenvalues. Then
matrix corresponding to the protein structure is

the coordinate

calculated as:
X =VA"» 4)
That is to say, a protein structure can be
determined as long as the complete distance matrix is
known.
short
distances from NMR experiments and some covalent

Although we can gain some partial

bond lengths information™", the distance data are still
too sparse to determine a protein structure. To
ameliorate this situation, MC algorithms are used to
recover the incomplete initial distance matrix. Taking
into account the condition of the uniform sampling
distribution, we will sample the remaining distances
randomly. Once the distance matrix is recovered, the
protein structure is determined in light of the previous
discussion. The proposed framework is shown in
Figure 2.

(© (d

Fig. 2 The schematic diagram of protein structure determination based on MC

(a) The contour of the distance matrix containing only known short distances, including the atomic distances obtained from NMR experiments and

covalent bond lengths; (b) The contour of the distance matrix after random sampling; (c) The contour of the complete distance matrix recovered by

MC; (d) Transforming the complete distance matrix into a three-dimensional protein structure.

1.2 Matrix completion (MC)

As explained previously, MC is the problem of
recovering a low-rank matrix from partial entries. A
direct approach is to find a matrix D with the
minimum rank that best approximates the underlying
matrix D':

minimize rank (D), subjecteto P, (D)= P,(D") (5)

where € is a set of the indices for known elements, P,
denotes the sampling operator restricted to the entries
indexed by Q, that is, D has the same elements as D,
for the entries in Q. Solving the problem (5) is
challenging because rank minimization is non-convex

(18]

and generally NP-hard"®. A convex and tractable

approach is proposed to replace the rank objective
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with the nuclear norm!*?, then the problem (5) can be
approximated by the following formulation:
_,subjectto P,(D)=P,(D"), (6)

minimize || D
where || D |, denotes the nuclear norm of matrix D,

namely, the sum of its singular values. To enhance the
anti-noise performance of the problem, an alternative
and stable approach is used by relaxing the equality
constraint:

L1 Nt
minimize E||PQ(D) - P,(D )||F +A|D

(D

where |+ ||, denotes the Frobenius norm of the matrix,

A is a parameter that controls the rank of matrix D. In
this process, it is necessary to compute a singular
value decomposition (SVD)"*! in each iteration. There
have been many algorithms proposed for the problem
(7), such as the accelerated proximal gradient (APG)
algorithm!®”), the hard thresholding algorithms!'”! and
the scaled gradients on Grassmann manifolds
(ScGrassMC) method™,

Taking into account the computational
complexity of SVD, an alternative method based on
matrix factorization was proposed. In detail, for an n-
dimensional distance matrix D, it can be written into a
simple factorization form: D=XY where XeR"" and Ye
R™ (7 is the rank of the matrix). Then the problem is
transformed into solving the minimization of the

following function:
o] 2
minimize 5" P,(D°) - P,(XY) HF (8)

Solving the problem (8) generally uses an
alternating minimization approach, which is widely
used for optimization problems. The algorithms based
on the matrix factorization model include low-rank
matrix fitting (LMaFit) algorithm®), alternating
steepest descent (ASD) algorithm and its scaled
variant (ScaledASD)®!,

1.3 Quality assessment

In the field of structural biology, the accuracy of
a molecular conformation is generally measured by
the root-mean-square deviation (RMSD), which is a
measure of the “average” deviation between the
structure.

computed structure and the reference

Assume X denotes the computed -configuration
optimally aligned to the reference configuration X* by
the alignment procedure®”, then the RMSD is defined
by the following formula:
RMSD = Lz" X, - x
Vn =

2

)

where n is the number of atoms, x; denotes the
coordinate of the ith atom. A more accurate structure
corresponds to a smaller RMSD value. Typically, the
RMSD value less than 2 A represents a high-
resolution model”!.

2 Results and discussion

In this paper, we studied the protein structure
determination problem using 6 MC algorithms, listed
in Table 1. Four proteins with different topological
structures were selected as the target protein for
testing in Table 2. For simplicity, we just took 1G6J as
an example in this section. For the other proteins,
similar results are obtained in Supplementary. All the
tests in our work were carried out on a Windows 10
PC with a 3.1 GHz Intel Core i9-9900 CPU and 32
GB of memory. In our test, the information of the
initial distance matrix includes short distances (less
than 5 A) between hydrogen atoms and covalent bond
lengths. To reach the sampling conditions of MC, the
remaining distances need to be randomly sampled.
For testing purposes, we firstly presume the sampling
distances are accurate, and the case of the sampling
distances with noise is discussed in 2.2.

Table 1 List of MC algorithms evaluated in this paper

Algorithm Main techniques References
APG Accelerated Proximal Gradient [29]
NIHT Iterative Hard Thresholding [17]
ScGrassMC Grassmannian Manifolds [34]
LMaFit Low-rank Matrix Fitting [35]
ASD Alternating Steepest Descent [26]
ScaledASD Scaled Alternating Steepest Descent [26]
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Table 2 The information of four test proteins
PDB ID Description Topology Atoms Residues References
1G6J Ubiquitin at+p 1228 76 [38]
2M5Z Antimicrobial protein o 762 44 [39]
1B4R PKD domain 1 from Liver fatty B 1114 87 [40]
ICN7 Ribosomal protein L30 o/B 1648 105 [41]

2.1 Results for 6 MC algorithms under accurate
sampling

To the of the
aforementioned algorithms, we calculate the RMSD

evaluate performance

related to all atoms between the reconstructed
structure and the reference structure in the case of
accurate sampling under the sampling ratios ranging
from 1% to 10%. The corresponding Protein Data
Bank (PDB) " model is selected as the reference
structure. For all the aforementioned algorithms, the

(@
10

: APG
:NIHT

: ScGrassMC
: LMaFit

: ASD

: ScaledASD

RMSD (ave)/A

number of the maximum iteration and the relative
residual tolerance is set to 500 and 1075, respectively.
For each algorithm and each sampling ratio, we
calculated 100 times randomly and recorded the
average value and standard deviation of the RMSD
and the computational time. The standard deviation
the
statistically, namely, a smaller standard deviation

can reflect stability of calculation results
indicates a more stable calculation result. The results

are shown in Figure 3.

(b)
10+
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/
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Fig. 3 The performance curve of 6 algorithms with different sampling ratios ranging from 1% to 10% for testing 1G6J
(a) The average RMSD value, denoted by RMSD (ave); (b) The standard deviation of RMSD, denoted by RMSD (std); (¢) The average computational

time, denoted by Time (ave); (d) The standard deviation of computational time, denoted by Time (std).
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Figure 3 shows the visual comparison of the
applied to protein
structure determination under precise sampling. For

aforementioned 6 algorithms

comparison purposes, we adjusted the scale range of
the average value and the standard deviation to be
consistent. Figure 3a shows the RMSDs (ave) for 6
algorithms. Naturally, with the increase of sampling
ratio, the RMSDs (ave) become smaller, indicating
that the calculational accuracy of algorithms becomes
higher. Although the RMSDs (ave) are relatively
larger with low sampling ratios, when the sampling
ratio exceeds 3%, almost RMSDs (ave) are below 2 A
for all the algorithms (except the NIHT for 1B4R
shown in Figure S1), that is to say, high accuracy can
be obtained. Notably,
exceeds 7%, the RMSD values are almost close to 0,

when the sampling ratio

indicating that the recovered structures are high-
resolution extremely. As can be seen in Figure 3b, the
RMSD (std) tends to decrease as the sampling ratio
increases. Especially under high sampling ratios
(more than 7%), all the RMSDs (std) are almost close
to 0, that is, the calculation of the algorithms turns to
be more stable under high sampling ratios. According
b, ScGrassMC is
prominent than other algorithms, because its RMSDs

to Figure 3a, slightly more
(ave) and RMSDs (std) are relatively lower in most

sampling ratios. Figure 3¢ shows the average
computational time, by and large, the calculation costs
less time with the increase of sampling ratio for all the
algorithms. This seems to be natural because the
scarcity of initial data can lead to more computations.
NIHT and APG cost relatively more time, especially
under low sampling ratios, while the computational
times are significantly reduced under high sampling
ratios. In Figure 3d, we can see that the Times (std)
have lower values with high sampling ratios. On the
whole, LMaFit and ScaledASD are more prominent in
computational they cost less
computational time and are more stable. Similar
results with different sampling ratios for testing
1B4R, 2M5Z, 1CN7 are shown in Figure S1-S3,
respectively.

2.2 Results for 6 MC algorithms under noisy

time because

sampling

In practical molecular conformation problems,
the distance information tends to bring some noise, so
it is instructive to consider the noise resistance ability

of the algorithm in protein structure determination. To

evaluate the anti-noise performance of the
aforementioned algorithms, different levels of noise
are added to the sampling distances. In this paper, we
have tested with a “normal” noise model akin to
Reference [43], i.e., the noisy distances d_ij are given
by:

d;=(1+0z,)d, (10)

where ¢ is a positive parameter, called noise factor,
the value of z; accords with standard normal
distribution N(0, 1), d; is the accurate sampling
distance. Obviously, the noise level can be controlled
by the noise factor o, the noise becomes larger as the
value of 6 increases. In this section, the sampling ratio
is set to 10%, and each test is still calculated 100
times randomly.

We can see in Figure 4a, the RMSDs (ave)
become larger and larger following the increasing
noise factor. All the algorithms are still able to
produce a fairly accurate structure (RMSD<2 A)
when the noise factor is less than 15%. Meanwhile,
within this noise range, the RMSDs (std) are also
relatively stable according to Figure 4b. If the noise
factor exceeds 15%, the RMSDs (std) become larger,
that is, the stability of calculational accuracy is worse
in high noise situations. Figure 4c shows the average
computational time under different levels of noise. It
is not immediately obvious that the computational
time and noise have an explicit correlation. However,
ScGrassMC and NIHT cost more computational time
than other algorithms. Compared with Figure 3c, the
computational time of the two algorithms is more
sensitive to noise. We infer that the noisy distance
data increases the number of iterations of calculation,
which makes the computational time longer. Taking
the ScGrassMC algorithm with a sampling ratio of
10% as an example, when there is no noise, the
average number of iterations of calculation is 34,
while when the noise factor reaches 10%, the average
value of the number of iterations is 500, which is the
maximum iteration set in our test. From Figure 4d, for
most algorithms, Times (std) are small, indicating that
stable. In
comparison, the Times (std) of NIHT are slightly

the computational time 1is relatively
larger, and the Times (std) of ScGrassMC are larger
only in high noise. Overall, in the case of noisy

sampling distances, ASD and ScaledASD perform
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superior both in terms of computational accuracy and
computational time. Similar results in the case of
sampling distances corrupted different levels of noise

@ |
o-o: APG

-4 : NIHT

s—a : ScGrassMC
o—o: LMaFit
A-A: ASD

—o : ScaledASD

RMSD (ave)/A

H==

Noise factor/%

N\, A—d Ve y -
) e ST \
: APG A, N\,

:NIHT

Time (ave)/s

: ScGrassMC
: LMaFit

: ASD

: ScaledASD

(b)

(d)

Time (std)/s

RMSD (std)/A

for testing 2M52, 1B4R, 1CN7 are shown in Figure
S4-S6 respectively.

: APG
:NIHT

: ScGrassMC
: LMaFit

: ASD

: ScaledASD

ipilye

AA, ) /
o=t e S S W S S o = S0
5 10 15

Noise factor/%
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:NIHT

: ScGrassMC
: LMaFit
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Noise factor/%

Fig. 4 The performance curve of six algorithms in the case of sampling distances corrupted different levels of noise for
testing 1G6J
(a) The average RMSD value, denoted by RMSD (ave); (b) The standard deviation of RMSD, denoted by RMSD (std); (c) The average computational

time, denoted by Time (ave); (d) The standard deviation of computational time, denoted by Time (std).

3 Conclusion and future work

we have evaluated 6 MC
the
MC
effectively overcome the shortcomings of insufficient

In this paper,
applied
problem.

algorithms to protein  structure

determination algorithms  can
NMR experimental data. We took 4 proteins with
different topological structures as examples to test the
accuracy, computational time and noise resistance of
these algorithms. Our test results show that the
algorithms perform higher accuracy and shorter
computational time with the increase of sampling
ratio, and the stability of the algorithms is also higher.
Especially, when the sampling ratio exceeds 3%,
almost RMSDs are less than 2 A, and when the
sampling ratio exceeds 7%, the RMSDs are close to 0,

which shows that all these algorithms can efficiently
generate an accurate structure. A conclusion can be
made that the algorithms perform remarkably well
when there are enough exact distance data. By
the ScGrassMC
better in terms of computational accuracy, while

comparison, algorithm performs
LMaFit and ScaledASD are more advantageous in
terms of computational time. Subsequently, we tested
the noise resistance of the 6 algorithms by building
the normal noise model. The computational accuracy
decreases with the increase of noise, while when the
noise factor is less than 15%, almost RMSDs are less
than 2 A, indicating all algorithms can produce
relatively accurate structures in this situation. An

interesting conclusion is that the NIHT and
ScGrassMC algorithms cost significantly more
computational time in the presence of noise,
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indicating that the computational times of both
ASD
ScaledASD have better noise resistance performance,
both
computational time. The results of this paper give us a

algorithms are sensitive to noise. and

in terms of computational accuracy and
degree of confidence that the MC algorithms are
field

determination. In the future, a further study on

promising in the of protein structure
algorithmic mechanisms is our next work, which
would help us to establish a greater degree of
accuracy and efficiency in this field. We also believe
that the results of this paper can potentially promote
the development of more effective new MC

algorithms in the future.

Supplementary  PIBB 20210278 Doc S1. pdf is
available online (http://www.pibb.ac.cn or http://www.
cnki.net).
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WE B BHar, W MERIHE (nuclear magnetic resonance, NMR) S S 86 Hh v ff b ff 1 B 14 BT A — 25544 2 4= 9
YRR ) — NI TR, BN R A RO AR AR, TR AR B S (R S5 AR I D RE SR B, AR
T SL IR A 2 AU — MR KRBk . iR RS, B RE B AR MR AR RIS (matrix completion,
MC) SRR (RS MBI RS, B0, IARBE S AR PR R g ST, th TR BB B =, R AR B S A B g AN
SERESEME, BEJGE I MC SER S IR IR B A PR I B R B, NI SRAS A B 0T = 4R 4548 . O T i — 20Nk kg
AR SCHEICT 4 FASIRIFEF NS HA) (4 26 (1 A 6 AP ELAT A MC S0k T T, PR T SR A AN ) O SRARE 2R D TS [ R M 7 1
T FEIEMIRE RS, R S W 2E (root-mean-square deviation, RMSD) I3 i 8] iX A~ T 2 FEHRAY
SEIE BAREZEIPAL T IR PERE , 255 BR YR AE AR 7 R T4 il 7E — 2 Y Bl I B, RMSD {ELRIBR i 22 #F RE IX EIAR /1N
FIE . 53 AR SR B M LU T N RISE R s AR 3, ERG BRI T, ScGrassMC Sk THR RS 248 =, LMaFit
1 Scaled ASD Sk M ZE 5o ] 150 ELOL#A . ZEfiMEtEJr I, ASD I ScaledASD FLik R e . &I ASCAT LI,
MC 53 I FHAE 35 1 T R ff s AU LA AR A AR, T LR [l A SR A R B R Rl R s AR A, X258 i (1)
MCBILITF R T 2% . AR SCRIBIFGTEE TN 3T MC Bk A 3R (A T 25 46 1 R S0 2L A Ve O HEShVE .
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