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Abstract Objective Nowadays, how to determine an accurate three-dimensional protein structure from nuclear magnetic

resonance (NMR) spectroscopy experiments is a hot topic in biophysics, because understanding the spatial structure of a protein is

crucial to research its function. However, this is a large challenge due to the serious lack of experimental data. Methods In this

paper, the problem of protein structure determination was solved by matrix completion (MC) algorithms of recovering a distance

matrix. Firstly, the initial distance matrix model was established, then its missing data were recovered by the MC algorithms at

different sampling ratios. The subsequent stage involved adding the noise model to evaluate the noise resistance of the algorithms.

Four proteins with different topological structures and 6 off-the-shelf MC algorithms were selected for testing. Results The results

show that these algorithms have good performance in a certain range of sampling ratios and noises. More specifically, the advantages

of different algorithms in the case of accurate sampling and noisy sampling are compared by analyzing the average and standard

deviation of the root-mean-square deviation (RMSD) and computational time, which are two important indexes about algorithms.

Conclusion We can conclude that 6 different MC algorithms have different performances and advantages for the problem of

protein structure determination. These characteristics provide a basis for the development of a new MC algorithm. The results of this

paper have potential promotion in the field of protein research based on MC algorithms.
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Proteins are composed of ordered amino acid
chains, which are vital macromolecules of cells in
organisms. Determining the three-dimensional
structure of proteins is central to biophysics and
bioinformatics because it is important to understand
the physical, chemical and biological properties of
proteins and to analyze possible interactions with
other proteins[1]. X-ray diffraction (XRD)
crystallography was the main tool for obtaining
protein information in the early period of protein
structure determination[2]. However, the introduction
of the nuclear magnetic resonance (NMR) technique is
a breakthrough because NMR made it possible to
obtain protein information in an aqueous environment
much closer to the native state of a protein[3-4]. The
protein NMR method conventionally involves sample
preparation, peak picking, spectral assignment,

nuclear Overhauser effect spectroscopy (NOESY) [5-6]

assignment, structure calculation and refinement[7] as
demonstrated in Figure 1. Because long distances
(>5 Å, 1 Å =10-10 m) are difficult to be measured by
NMR experiment[8], lacking sufficient distance
information is the main challenge for this problem. To
this end, the protein NMR methods rely profoundly on
complex computational algorithms and techniques, e.
g. distance geometry[9-12], molecular dynamics[13-15].

The proposed matrix completion (MC)
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theory[16-17] provides a promising way to solve this
problem. MC aims at recovering a low-rank matrix
from a partial sampling of its entries. In the early stage
of MC development, one typical example is the
famous Netflix problem, which aims to predict the
user’s preferences for different types of movies based
on a very sparse existing data set. In 2009, Candès and
Recht[18] proposed that a matrix could be recovered
with a very high probability if the number m of
sampled entries obeys m≥Cn1.2rlogn, where C is a
positive constant, n and r are dimension and rank of
the matrix, respectively. Subsequently, Candès and
Tao[19] improved this result to m≥Cnrlogn. Afterward
Gross[20] generalized the standard MC problem by
proposing a simpler and more general method. In the
meantime, the MC problem with noise was also
proposed. Candès and Plan[21] proposed that a matrix
could be recovered accurately with Gaussian random
noise and bounded noise if m obeys m≥Cnrlog6n. With
the development of MC theory, it has received
increasing interest and has been applied to various
fields, such as protein structure calculation[22-25], image
processing[26-27], traffic sensing[28].

In this paper, the protein NMR structure
determination is addressed as an MC problem. In our
previous work, the MC-based accelerated proximal
gradient (APG) [29] algorithm and scaled alternating
steepest descent (ScaledASD) [26] algorithm have been
investigated in recent years. In 2017, we applied the
APG algorithm to protein structure calculation and
demonstrated the effectiveness of the algorithm by
analyzing the accuracy and error of the calculation
results[22]. In 2019, a new algorithm, ScaledASD,
originally applied in image processing, was tested for
protein structure calculation, the results show the
algorithm overcomes the shortcomings of insufficient
NMR data to a certain extent[23]. To further explore the
effectiveness of MC in the field of protein structure
estimation, 6 MC algorithms were selected to be tested
and compared their performance in this paper. The
remainder of the paper is organized as follows:
Section 1 gives a detailed description of our method
including the problem model, MC and quality
assessment. In Section 2, we evaluate the performance
of 6 different MC algorithms under accurate sampling
as well as noisy sampling, and make a detailed

Fig. 1 The procedure of protein NMR structure determination
(a) Sample preparation: NMR experiments can directly measure protein samples in solution state; (b) NMR experiments: involving peak picking,

spectral assignment, nuclear Overhauser effect spectroscopy (NOESY) assignment; (c) NMR spectroscopy: the sources of experimental data;

(d) Distance constraints: obtaining a set of distance constraints from spectrums (the intensity of an NOE is the 6th power inversely proportional to the

distance between two nuclei); (e) Structural calculation: the resulting geometric restraints are used as input for the structural calculation.
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analysis. Finally, the conclusions and some
perspectives are elaborated in Section 3.

1 Methods

1.1 Problem model
For a protein molecule, each atom can be

considered as a three-dimensional point in space. We
assume the target protein has n atoms, then the protein
structure consists of a set of points {x1, x2, …, xn}, xi∈
R3. The coordinate matrix is defined as X=[x1; x2; … ;
xn] ∈Rn×3. Based on this, we can define a Euclidean
distance matrix (EDM), whose elements stand for the
distance between two atoms, such that

Dij =  xi - xj 2,∀i,j ∈ {1,2,⋯,n} (1)

where  x is the Euclidean distance norm of vector x.

Obviously, we can transform a coordinate matrix X
into a Euclidean distance matrix D according to
Equation (1). Conversely, a Euclidean distance matrix
D can also be converted back into a coordinate matrix
X by a general approach[30]. In detail, we induce the
Gram matrix G = XXΤ. Gram matrix G and distance
matrix D have the following transformation relations:

G = - 12 HDH (2)

where H = I - 1
n
11Τ, I and 1 stand for the unit matrix

and the all-ones vector, respectively. Consider the
eigenvalue decomposition of G:

G = VΛVΤ (3)

where V is an n×n square matrix, and Λ is a diagonal
matrix in which the elements on the diagonal are the
corresponding eigenvalues. Then the coordinate
matrix corresponding to the protein structure is
calculated as:

X = VΛ1 2 (4)

That is to say, a protein structure can be
determined as long as the complete distance matrix is
known.

Although we can gain some partial short
distances from NMR experiments and some covalent
bond lengths information[31], the distance data are still
too sparse to determine a protein structure. To
ameliorate this situation, MC algorithms are used to
recover the incomplete initial distance matrix. Taking
into account the condition of the uniform sampling
distribution, we will sample the remaining distances
randomly. Once the distance matrix is recovered, the
protein structure is determined in light of the previous
discussion. The proposed framework is shown in
Figure 2.

1.2 Matrix completion （MC）
As explained previously, MC is the problem of

recovering a low-rank matrix from partial entries. A
direct approach is to find a matrix D with the
minimum rank that best approximates the underlying
matrix D0:
minimize rank(D ), subjecte to PΩ (D ) = PΩ (D0 ) (5)

where Ω is a set of the indices for known elements, PΩ

denotes the sampling operator restricted to the entries
indexed by Ω, that is, D has the same elements as D0

for the entries in Ω. Solving the problem (5) is
challenging because rank minimization is non-convex
and generally NP-hard[18]. A convex and tractable
approach is proposed to replace the rank objective

Fig. 2 The schematic diagram of protein structure determination based on MC
(a) The contour of the distance matrix containing only known short distances, including the atomic distances obtained from NMR experiments and

covalent bond lengths; (b) The contour of the distance matrix after random sampling; (c) The contour of the complete distance matrix recovered by

MC; (d) Transforming the complete distance matrix into a three-dimensional protein structure.
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with the nuclear norm[32], then the problem (5) can be
approximated by the following formulation:

minimize  D *, subject to PΩ (D ) = PΩ (D0 ), (6)

where  D ∗ denotes the nuclear norm of matrix D,

namely, the sum of its singular values. To enhance the
anti-noise performance of the problem, an alternative
and stable approach is used by relaxing the equality
constraint:

minimize 12  PΩ (D ) - PΩ (D0 ) 2
F
+ λ D * (7)

where  · F denotes the Frobenius norm of the matrix,

λ is a parameter that controls the rank of matrix D. In
this process, it is necessary to compute a singular
value decomposition (SVD)[33] in each iteration. There
have been many algorithms proposed for the problem
(7), such as the accelerated proximal gradient (APG)
algorithm[29], the hard thresholding algorithms[17] and
the scaled gradients on Grassmann manifolds
(ScGrassMC) method[34].

Taking into account the computational
complexity of SVD, an alternative method based on
matrix factorization was proposed. In detail, for an n-
dimensional distance matrix D, it can be written into a
simple factorization form: D=XY where X∈Rn×r and Y∈
Rr×n (r is the rank of the matrix). Then the problem is
transformed into solving the minimization of the
following function:

minimize 1
2  PΩ (D0 ) - PΩ (XY ) 2

F
(8)

Solving the problem (8) generally uses an
alternating minimization approach, which is widely
used for optimization problems. The algorithms based
on the matrix factorization model include low-rank
matrix fitting (LMaFit) algorithm[35], alternating
steepest descent (ASD) algorithm and its scaled
variant (ScaledASD)[26].

1.3 Quality assessment
In the field of structural biology, the accuracy of

a molecular conformation is generally measured by
the root-mean-square deviation (RMSD), which is a
measure of the “average” deviation between the
computed structure and the reference structure.
Assume X denotes the computed configuration
optimally aligned to the reference configuration X* by
the alignment procedure[36], then the RMSD is defined
by the following formula:

RMSD = 1
n
∑
i = 1

n

 xi - x*i 2
(9)

where n is the number of atoms, xi denotes the
coordinate of the ith atom. A more accurate structure
corresponds to a smaller RMSD value. Typically, the
RMSD value less than 2 Å represents a high-
resolution model[37].

2 Results and discussion

In this paper, we studied the protein structure
determination problem using 6 MC algorithms, listed
in Table 1. Four proteins with different topological
structures were selected as the target protein for
testing in Table 2. For simplicity, we just took 1G6J as
an example in this section. For the other proteins,
similar results are obtained in Supplementary. All the
tests in our work were carried out on a Windows 10
PC with a 3.1 GHz Intel Core i9-9900 CPU and 32
GB of memory. In our test, the information of the
initial distance matrix includes short distances (less
than 5 Å) between hydrogen atoms and covalent bond
lengths. To reach the sampling conditions of MC, the
remaining distances need to be randomly sampled.
For testing purposes, we firstly presume the sampling
distances are accurate, and the case of the sampling
distances with noise is discussed in 2.2.

Table 1 List of MC algorithms evaluated in this paper

Algorithm

APG

NIHT

ScGrassMC

LMaFit

ASD

ScaledASD

Main techniques

Accelerated Proximal Gradient

Iterative Hard Thresholding

Grassmannian Manifolds

Low-rank Matrix Fitting

Alternating Steepest Descent

Scaled Alternating Steepest Descent

References

［29］

［17］

［34］

［35］

［26］

［26］
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2.1 Results for 6 MC algorithms under accurate
sampling

To evaluate the performance of the
aforementioned algorithms, we calculate the RMSD
related to all atoms between the reconstructed
structure and the reference structure in the case of
accurate sampling under the sampling ratios ranging
from 1% to 10%. The corresponding Protein Data
Bank (PDB) [42] model is selected as the reference
structure. For all the aforementioned algorithms, the

number of the maximum iteration and the relative
residual tolerance is set to 500 and 10-5, respectively.
For each algorithm and each sampling ratio, we
calculated 100 times randomly and recorded the
average value and standard deviation of the RMSD
and the computational time. The standard deviation
can reflect the stability of calculation results
statistically, namely, a smaller standard deviation
indicates a more stable calculation result. The results
are shown in Figure 3.

Table 2 The information of four test proteins

PDB ID

1G6J

2M5Z

1B4R

1CN7

Description

Ubiquitin

Antimicrobial protein

PKD domain 1 from Liver fatty

Ribosomal protein L30

Topology

α+β

α

β

α/β

Atoms

1 228

762

1 114

1 648

Residues

76

44

87

105

References

［38］

［39］

［40］

［41］

Fig. 3 The performance curve of 6 algorithms with different sampling ratios ranging from 1% to 10% for testing 1G6J
(a) The average RMSD value, denoted by RMSD (ave); (b) The standard deviation of RMSD, denoted by RMSD (std); (c) The average computational

time, denoted by Time (ave); (d) The standard deviation of computational time, denoted by Time (std).
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Figure 3 shows the visual comparison of the
aforementioned 6 algorithms applied to protein
structure determination under precise sampling. For
comparison purposes, we adjusted the scale range of
the average value and the standard deviation to be
consistent. Figure 3a shows the RMSDs (ave) for 6
algorithms. Naturally, with the increase of sampling
ratio, the RMSDs (ave) become smaller, indicating
that the calculational accuracy of algorithms becomes
higher. Although the RMSDs (ave) are relatively
larger with low sampling ratios, when the sampling
ratio exceeds 3%, almost RMSDs (ave) are below 2 Å
for all the algorithms (except the NIHT for 1B4R
shown in Figure S1), that is to say, high accuracy can
be obtained. Notably, when the sampling ratio
exceeds 7%, the RMSD values are almost close to 0,
indicating that the recovered structures are high-
resolution extremely. As can be seen in Figure 3b, the
RMSD (std) tends to decrease as the sampling ratio
increases. Especially under high sampling ratios
(more than 7%), all the RMSDs (std) are almost close
to 0, that is, the calculation of the algorithms turns to
be more stable under high sampling ratios. According
to Figure 3a, b, ScGrassMC is slightly more
prominent than other algorithms, because its RMSDs
(ave) and RMSDs (std) are relatively lower in most
sampling ratios. Figure 3c shows the average
computational time, by and large, the calculation costs
less time with the increase of sampling ratio for all the
algorithms. This seems to be natural because the
scarcity of initial data can lead to more computations.
NIHT and APG cost relatively more time, especially
under low sampling ratios, while the computational
times are significantly reduced under high sampling
ratios. In Figure 3d, we can see that the Times (std)
have lower values with high sampling ratios. On the
whole, LMaFit and ScaledASD are more prominent in
computational time because they cost less
computational time and are more stable. Similar
results with different sampling ratios for testing
1B4R, 2M5Z, 1CN7 are shown in Figure S1-S3,
respectively.
2.2 Results for 6 MC algorithms under noisy
sampling

In practical molecular conformation problems,
the distance information tends to bring some noise, so
it is instructive to consider the noise resistance ability

of the algorithm in protein structure determination. To
evaluate the anti-noise performance of the
aforementioned algorithms, different levels of noise
are added to the sampling distances. In this paper, we
have tested with a “normal” noise model akin to
Reference [43], i. e., the noisy distances d̄ij are given
by:

d̄ij = (1 + σzij ) dij (10)

where σ is a positive parameter, called noise factor,
the value of zij accords with standard normal
distribution N(0, 1), dij is the accurate sampling
distance. Obviously, the noise level can be controlled
by the noise factor σ, the noise becomes larger as the
value of σ increases. In this section, the sampling ratio
is set to 10%, and each test is still calculated 100
times randomly.

We can see in Figure 4a, the RMSDs (ave)
become larger and larger following the increasing
noise factor. All the algorithms are still able to
produce a fairly accurate structure (RMSD<2 Å)
when the noise factor is less than 15%. Meanwhile,
within this noise range, the RMSDs (std) are also
relatively stable according to Figure 4b. If the noise
factor exceeds 15%, the RMSDs (std) become larger,
that is, the stability of calculational accuracy is worse
in high noise situations. Figure 4c shows the average
computational time under different levels of noise. It
is not immediately obvious that the computational
time and noise have an explicit correlation. However,
ScGrassMC and NIHT cost more computational time
than other algorithms. Compared with Figure 3c, the
computational time of the two algorithms is more
sensitive to noise. We infer that the noisy distance
data increases the number of iterations of calculation,
which makes the computational time longer. Taking
the ScGrassMC algorithm with a sampling ratio of
10% as an example, when there is no noise, the
average number of iterations of calculation is 34,
while when the noise factor reaches 10%, the average
value of the number of iterations is 500, which is the
maximum iteration set in our test. From Figure 4d, for
most algorithms, Times (std) are small, indicating that
the computational time is relatively stable. In
comparison, the Times (std) of NIHT are slightly
larger, and the Times (std) of ScGrassMC are larger
only in high noise. Overall, in the case of noisy
sampling distances, ASD and ScaledASD perform
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superior both in terms of computational accuracy and
computational time. Similar results in the case of
sampling distances corrupted different levels of noise

for testing 2M52, 1B4R, 1CN7 are shown in Figure
S4-S6 respectively.

3 Conclusion and future work

In this paper, we have evaluated 6 MC
algorithms applied to the protein structure
determination problem. MC algorithms can
effectively overcome the shortcomings of insufficient
NMR experimental data. We took 4 proteins with
different topological structures as examples to test the
accuracy, computational time and noise resistance of
these algorithms. Our test results show that the
algorithms perform higher accuracy and shorter
computational time with the increase of sampling
ratio, and the stability of the algorithms is also higher.
Especially, when the sampling ratio exceeds 3%,
almost RMSDs are less than 2 Å, and when the
sampling ratio exceeds 7%, the RMSDs are close to 0,

which shows that all these algorithms can efficiently
generate an accurate structure. A conclusion can be
made that the algorithms perform remarkably well
when there are enough exact distance data. By
comparison, the ScGrassMC algorithm performs
better in terms of computational accuracy, while
LMaFit and ScaledASD are more advantageous in
terms of computational time. Subsequently, we tested
the noise resistance of the 6 algorithms by building
the normal noise model. The computational accuracy
decreases with the increase of noise, while when the
noise factor is less than 15%, almost RMSDs are less
than 2 Å, indicating all algorithms can produce
relatively accurate structures in this situation. An
interesting conclusion is that the NIHT and
ScGrassMC algorithms cost significantly more
computational time in the presence of noise,

Fig. 4 The performance curve of six algorithms in the case of sampling distances corrupted different levels of noise for
testing 1G6J

(a) The average RMSD value, denoted by RMSD (ave); (b) The standard deviation of RMSD, denoted by RMSD (std); (c) The average computational

time, denoted by Time (ave); (d) The standard deviation of computational time, denoted by Time (std).
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indicating that the computational times of both
algorithms are sensitive to noise. ASD and
ScaledASD have better noise resistance performance,
both in terms of computational accuracy and
computational time. The results of this paper give us a
degree of confidence that the MC algorithms are
promising in the field of protein structure
determination. In the future, a further study on
algorithmic mechanisms is our next work, which
would help us to establish a greater degree of
accuracy and efficiency in this field. We also believe
that the results of this paper can potentially promote
the development of more effective new MC
algorithms in the future.

Supplementary PIBB_20210278_Doc_S1. pdf is
available online (http://www.pibb.ac.cn or http://www.
cnki.net).
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蛋白质结构确定领域中的几种矩阵填充算法的
对比评估*

李志诚 1，2）** 韦 仙 3） 李晋婷 1，2）

（1）太原师范学院物理系，晋中 030619；
2）太原师范学院计算物理与应用物理研究所，晋中 030619；3）太原工业学院理学系，太原 030008）

摘要 目的 目前，如何从核磁共振（nuclear magnetic resonance，NMR）光谱实验中准确地确定蛋白质的三维结构是生物

物理学中的一个热门课题，因为蛋白质是生物体的重要组成成分，了解蛋白质的空间结构对研究其功能至关重要，然而由

于实验数据的严重缺乏使其成为一个很大的挑战。方法 在本文中，通过恢复距离矩阵的矩阵填充（matrix completion，

MC）算法来解决蛋白质结构确定问题。首先，初始距离矩阵模型被建立，由于实验数据的缺乏，此时的初始距离矩阵为不

完整矩阵，随后通过MC算法恢复初始距离矩阵的缺失数据，从而获得整个蛋白质三维结构。为了进一步测试算法的性能，

本文选取了4种不同拓扑结构的蛋白质和6种现有的MC算法进行了测试，探究了算法在不同的采样率以及不同程度噪声的

情况下算法的恢复效果。结果 通过分析均方根偏差（root-mean-square deviation，RMSD）和计算时间这两个重要指标的

平均值及标准差评估了算法的性能，结果显示当采样率和噪声因子控制在一定范围内时，RMSD值和标准差都能达到很小

的值。另外本文更加具体地比较了不同算法的特点和优势，在精确采样情况下，ScGrassMC算法计算的精度较高，LMaFit

和ScaledASD算法则在计算时间上更具优势。在抗噪性方面，ASD和ScaledASD算法表现更为突出。结论 本文可以得出，

MC算法应用在蛋白质结构确定领域具有很好的效果，而且不同的算法在计算中具有不同的特点和优势。这些结论为新的

MC算法的开发提供了参考。本文的研究结果对基于MC算法的蛋白质结构确定领域具有潜在的推动作用。

关键词 蛋白质结构确定，距离矩阵，矩阵填充，抗噪性

中图分类号 Q615，Q71 DOI：10.16476/j.pibb.2021.0278

∗山西省高等学校科技创新项目（2020L0513）和山西省青年科学研究项目（202103021223328）资助。

∗∗通讯联系人。

Tel：18101203596，E-mail：lizc@tynu.edu.cn

收稿日期：2021‑09‑17，接受日期：2022‑01‑17


