Piper Eta Progress in Biochemistry and Biophysics 2025,52(5):1179~1195

www.pibb.ac.cn

经颅电刺激改善阿尔茨海默病的神经分子机制*

袁 湲 陈壮飞 付 玉**

(昆明理工大学医学院,昆明650500)

缩略表: 三转基因小鼠模型 (triple transgenic, 3×Tg); 五突变家族性阿尔茨海默病小鼠模型 (five familial Alzheimer's disease mutations, 5×FAD); 阿尔茨海默病 (Alzheimer's disease, AD); 解整合素金属蛋白酶10 (a disintegrin and metalloproteinase 10, ADAM10); 阿尔茨海默病评估量表-认知分量表 (Alzheimer's disease assessment scale-cognitive subscale, ADAS-Cog); 日 常生活能力 (activities of daily living, ADL); 成年海马神经发生 (adult hippocampal neurogenesis, AHN); 淀粉样前体蛋白 (amyloid precursor protein, APP); 淀粉样前体蛋白/早老素1双转基因小鼠模型 (amyloid precursor protein/presenilin 1, APP/ PS1); 经颅直流电刺激 (transcranial direct current stimulation, tDCS); 阳极 tDCS (anode tDCS, atDCS); β淀粉样蛋白 (amyloid β-protein, Aβ); β位点淀粉样前体蛋白剪切酶1 (β-site amyloid precursor protein cleaving enzyme, BACE1); BCL-2相 关X蛋白 (BCL-2-associated X protein, Bax); 血脑屏障 (blood brain barrier, BBB); 双侧颈总动脉闭塞 (bilateral common carotid artery occlusion, BCCAO); B细胞淋巴瘤2基因 (B-cell lymphoma-2, Bcl2); 脑源性神经营养因子 (brain-derived neurotrophic factor, BDNF); 5-溴脱氧尿嘧啶核苷 (5-bromo-2'-deoxyuridine, BrdU); 钙调素依赖蛋白激酶II (calcium/ calmodulin dependent protein kinase II, CAMKII); 脑血流量 (cerebral blood flow, CBF); 核心结合因子β亚基 (core-binding factor, β subunit, CBFB); 中性肽链内切酶 (neutral endopeptidase, CD10); 画钟测验 (clock drawing test, CDT); 情境恐惧 辨别任务 (contextual fear discrimination task, CFDT); 胆碱乙酰化转移酶 (choline acetyltransferase, ChAT); 反应元件结合蛋 白 (cAMP-response element binding protein cAMP, CREB); 阴极tDCS (cathode tDCS, ctDCS); Ephrin B型受体2 (Ephrin type-B receptor 2, EphB2); 兴奋性突触后电位 (excitatory postsynaptic potential, EPSP); 食品和药物管理局 (food and drug administration, FDA); 面孔-名字联想记忆任务 (face-name association memory task, FNAT); 伽马氨基丁酸 (γ-aminobutyric acid, GABA); 胶质纤维酸性蛋白 (glial fibrillary acidic protein, GFAP); 离子钙结合适配器分子1 (ionized calcium binding adapter molecule 1, IBA-1); 胰岛素降解酶 (insulin-degrading enzyme, IDE); 免疫球蛋白G (immunoglobulin G, IgG); 白介 素 (interleukin, IL); 异亮氨酸 (isoleucine, Ile); L型氨基酸转运蛋白1 (L-type amino acid transporter 1, LAT1); 脂蛋白受体 相关蛋白 (lipoprotein receptor-related protein 1, LPR1); 长时程增强 (long-term potentiation, LTP); 促炎表型 (classical activation, M1); 交替激活表型 (alternative activation, M2); 微管相关蛋白2 (microtubule-associated protein 2, MAP2); 大脑 中动脉栓塞 (middle cerebral artery occlusion, MCAO); 运动诱发电位 (motor evoked potentials, MEP); 简易精神状态检查 (mini-mental state examination, MMSE);蒙特利尔认知评估 (montreal cognitive assessment, MoCA);神经元核心抗原 (neuronal nuclei antigen, NeuN); 神经丝蛋白200 (neurofilament 200, NF200); N-甲基-D-天冬氨酸 (N-methyl-D-aspartic acid, NMDA); 一氧化氮 (nitric oxide, NO); 神经血管单元 (neurovascular unit, NVU); 物体识别 (object recognition, OR); 磷 酸化钙调素依赖蛋白激酶II (phosphorylated calcium/calmodulin dependent protein kinase II, pCAMKII);磷酸化cAMP反应元件 结合蛋白 (phosphorylated cAMP-responsive element binding protein, pCREB); 血小板衍生生长因子受体β (platelet-derived growth factor receptor β, PDGRFβ); 正电子发射断层成像 (positron emission tomography, PET); tau蛋白磷酸化 (phosphorylated tau protein, p-tau); 蛋白酪氨酸磷酸酶基因 (phosphatase and tensin homolog deleted on chromosome ten, PTEN); 雷氏听觉词语学习测验 (Rey auditory verbal learning test, RAVL); 活性氧类 (reactive oxygen species, ROS); 相对 血红蛋白含量 (relative hemoglobin content, rHb); S100钙结合蛋白β (S100 calcium binding protein β, S100β); 短潜伏期传入 抑制 (short-latency afferent inhibition, SAI) 脊髓损伤 (spinal cord injury, SCI); SD大鼠 (Sprague Dawley rat, SD rat); 血氧 饱和度(oxygen saturation, SO2); 经颅交流电刺激(transcranial alternating current stimulation, tACS); 经颅电刺激 (transcranial electrical stimulation, tES); 肿瘤坏死因子α (tumor necrosis factor-α, TNF-α); 血流速度 (blood flow velocity, Velo); 血管性痴呆 (vascular dementia, VD); 野生型 (wild type, WT); 词识别任务 (word recognition task, WRT); 胱天蛋 白酶3 (caspase-3); 脂质过氧化物酶 (lipid peroxidase, LPO)。

摘要 阿尔茨海默病 (Alzheimer's disease, AD) 是常见且严重的痴呆症之一, 严重危害患者的身心健康和生活质量, 同时给 社会带来沉重的负担。近年来, 经颅电刺激 (transcranial electrical stimulation, tES) 在改善AD认知功能方面表现出巨大的

Tel: 0871-65936267, E-mail: fuyu@kust.edu.cn

^{*} 国家自然科学基金(82360271,81760258),云南省"万人计划"青年拔尖人才专项(YNWR-QNBJ-2018-056,YNWR-QNBJ-2018-027) 和云南省应激与神经系统损伤创新团队(202305AS350011)资助。

^{**} 通讯联系人。

收稿日期: 2024-09-20, 接受日期: 2025-01-06

潜力,主要包括经颅直流电刺激(transcranial direct current stimulation, tDCS)和经颅交流电刺激(transcranial alternating current stimulation, tACS)两种类型。本文综述了tDCS和tACS改善AD的神经分子机制,其共性主要体现在发挥神经保护作用、通过增加脑血流量来改善神经血管障碍、影响神经胶质细胞的状态和功能、减少Aβ和p-tau蛋白、影响神经可塑性。 值得注意的是,tDCS在优化神经血管单元、改善血脑屏障(blood brain barrier,BBB)方面展现出独特的积极影响。此外, 在非AD啮齿类动物的研究中,tES在神经保护、神经胶质细胞、神经可塑性方面还表现出在AD研究中尚未探讨的、更为 具体的神经分子机制。这些发现为深入理解tES的作用原理、AD的病理机制,以及探索治疗其他具有相似病理特征疾病的 新途径提供了理论基础。

关键词 经颅电刺激,阿尔茨海默病,神经保护,神经胶质细胞,神经血管障碍,神经可塑性
 中图分类号 B842, B845 DOI: 10.16476/j.pibb.2024.0413 CSTR: 32369.14.pibb.20240413

阿尔茨海默病 (AD) 已成为全球第七大死 因^[1],带来重大医疗、社会和经济负担^[2],它是 一种退行性的、不可逆的大脑疾病,严重影响患者 的认知功能和日常活动^[3]。然而,目前尚未有特 效药能够治愈 AD或有效逆转疾病进程。美国食品 和药物监督管理局(FDA)批准的AD非抗体药物 主要是胆碱脂酶抑制剂和N-甲基-D-天冬氨酸 (NMDA) 受体拮抗剂^[45]。胆碱脂酶抑制剂主要 包括:他克林、多奈哌齐、加兰他敏和卡巴拉 汀^[67]。其中,他克林因其肝毒性已被撤回^[6]。其 他药物可改善患者认知,但仍存在争议,比如多奈 哌齐未能有效阻止AD的进展,加兰他敏和卡巴拉 汀使患者身体出现一些副作用^[7]。此外, NMDA 受体拮抗剂美金刚能够改善AD患者的临床症状, 但并不能从根本上治愈 AD^[8]。近年来, FDA 还批 准了3种针对β淀粉样蛋白(Aβ)的单克隆抗体药 物:阿杜那单抗、伦卡奈单抗和多奈单抗,但它们 对患者认知功能的改善也没有达到临床预期^[9-11]。 因此, AD的药物研发工作仍面临诸多挑战。

近年来,非药物且非侵入性的物理干预策略已 成为AD治疗研究的热点。其中,经颅电刺激 (tES)在改善AD患者认知功能方面表现出巨大的 潜力及应用前景^[12-14]。tES主要包括经颅直流电刺 激(tDCS)和经颅交流电刺激(tACS)。tDCS根 据电极极性又分为阳极tDCS(atDCS)和阴极 tDCS(ctDCS)。tDCS通过特异性地靶向和调节受 损或不活跃神经元的活动,增强患者大脑残余的可 塑性来改善认知功能。它产生一个微弱电流(通常 为1~2 mA)到大脑的特定区域,通过极性依赖的 方式调节神经元的兴奋性^[15]。tACS通过在头皮上 实施特定频率的微弱电流来牵引脑内潜在的神经元 群^[16]。在 AD 中,由于伽马节律的神经振荡失 调^[17],tACS常采用40Hz的伽马节律作为刺激频 率^[18-20],目前很少有报道使用其他频率进行研究。 神经牵引可以促进刺激频率下的神经振荡活动,在 认知或感觉运动过程中直接与正在进行的神经活动 相互作用,诱导神经振荡的携带或同步,并增强目 标脑区和特定神经振荡相关的认知或感觉功 能^[21-23]。总之,tDCS和tACS为AD的非药物治疗 提供了重要的研究方向。

本文旨在综述tES在AD患者及AD啮齿类动物模型中的神经分子机制,主要围绕其在神经保护、脑血管功能调节、神经胶质细胞活性、Aβ和tau蛋白磷酸化(p-tau)水平调节、神经可塑性等方面的作用(图1,表1,2)。其中,部分内容在AD上的直接研究相对有限,本文还纳入了tES在其他非AD啮齿类动物疾病模型以及正常或野生型(WT)动物上的研究结果,以进行对比分析(图2,表3)。本综述不仅能够增强对tES作用机理的理解,同时也有助于揭示AD病理机制,并为探索tES治疗其他具有类似病理特征的疾病提供有价值的参考。

1 tES发挥神经保护作用

1.1 维持神经元的正常功能和生存

AD脑内典型的病理症状是细胞外的Aβ沉积和细胞内p-tau形成的缠结。Aβ和p-tau沉积具有高度的神经毒性,促进细胞凋亡。胱天蛋白酶3(caspase-3)作为一种关键的凋亡执行蛋白酶,其表达上调,进一步加剧了淀粉样前体蛋白(APP)的水解,产生高水平的细胞毒性Aβ肽,造成显著的神经丧失和神经元损伤^[24]。同时,AD的神经递质系统受损,涉及伽马氨基丁酸(GABA)能、胆碱能和谷氨酸能神经传递异常。GABA能神经元是

人类大脑中最丰富的抑制性神经元,其功能失调并 导致神经功能中断^[25]。胆碱能神经元异常表现为 神经递质减少、神经元减少、受损和退化^[26-27]。 Aβ是谷氨酸能系统功能障碍的原因,会产生缓慢 的兴奋性神经毒性,导致神经元丧失^[28]。

在AD患者研究中, tACS 可维护胆碱能神经 元的正常功能;在AD大鼠/小鼠模型中,atDCS通 过改善神经元状态、抑制神经元凋亡、改善胆碱能 神经元,从而维护神经元的正常功能和生存。在 AD患者中, tACS以楔前叶为刺激靶点, 以短潜伏 期传入抑制 (SAI) 作为间接测量胆碱能神经传递 的指标。结果发现, tACS改善了患者的胆碱能神 经传递及其认知功能^[29-30]。在AD大鼠/小鼠模型 上, 主要是 APP/PS1 小鼠和海马 Aβ 注射大鼠, atDCS以额叶为刺激靶点,可改善莫里斯水迷宫测 试下的空间学习和记忆能力[31-33],并通过改善神 经元状态、抑制神经元凋亡、改善胆碱能神经元, 维护了神经元的正常功能和生存。改善神经元状态 具体表现为:海马神经元的排列更整齐,尼氏染色 更深、密度更高^[31, 33]。在AD小鼠上, atDCS还可 以维持神经元的完整性,并显著增加神经丝蛋白 200 (NF200) 和神经元核心抗原 (NeuN) 的表达 水平^[31, 34]。NF200被广泛用于标记神经元, NeuN 是成熟神经元的标志。同时,降低 caspase-3 的表 达水平,抑制细胞凋亡^[34]。在AD大鼠上, atDCS 还可以增加胆碱乙酰化转移酶(ChAT)的表达水 平,以此改善了胆碱能神经元, ChAT 是胆碱能神 经元的关键酶,参与乙酰胆碱的合成^[32-33]。

在其他啮齿类动物模型的研究中, atDCS 和 ctDCS 通过维持神经元的正常功能和生存,并促进 神经发生、GABA能和谷氨酸能神经传递、抑制细 胞凋亡及调节特定的信号通路发挥神经保护作用。 在WT小鼠中, atDCS 的神经保护作用一方面表现 在诱导脑室下区的神经发生^[35],并通过增加神经 干/祖细胞的增殖、分化和存活增强海马神经发生, 这与减少齿状回的 GABA 能抑制有关,但 BDNF 水平无显著变化^[36],另一方面可增强初级运动皮 层的谷氨酸能突触传递^[37]。ctDCS的神经保护作 用表现在诱导脑室下区的神经发生,其程度还大于 atDCS^[35]。在双侧颈总动脉闭塞(BCCAO)小鼠 模型中, atDCS治疗后, 5-溴脱氧尿嘧啶核苷 (BrdU) /NeuN 阳性细胞明显增多(它通常用来标 记新成熟的神经元),并通过激活 Ephrinb1-EphB2-MAP-2-NMDAR 信号转导通路,促进海马神经发

生^[38]。该通路在干细胞增殖、突触可塑性和记忆 形成中起重要作用, Ephrinb1诱导中枢神经系统和 前体神经细胞中的干细胞增殖, EphB2 可通过 NMDA受体激活途径参与突触可塑性和记忆形成, 并可能由MAP2介导,这是激活突触结构和功能重 建的另一个关键因素, NMDA 受体参与中枢神经 系统的发育^[38]。在血管性痴呆(VD)大鼠模型 中, atDCS治疗后, 海马CA1区和大脑皮质中的神 经元状态几乎正常并促进了神经元的存活^[39]。在 大脑中动脉栓塞 (MCAO) 大鼠模型中, ctDCS 治 疗后,脑缺血半暗袋区域的尼氏小体数量明显增 加,并通过降低 caspase-3 水平和 Bax/B 细胞淋巴瘤 2基因(Bcl2)的比值,抑制神经元凋亡^[40]。另有 研究表明, ctDCS可以通过抑制L型氨基酸转运蛋 白1(LAT1)的过度激活,降低神经元内异亮氨酸 (Ile) 水平,进而抑制 Ile-核心结合因子 β 亚基 (CBFB)-蛋白酪氨酸磷酸酶基因(PTEN)信号转 导通路,从而提供神经保护作用^[41]。

在AD脑中, atDCS和tACS可维护神经元的正 常功能和生存,从而发挥神经保护作用(图1)。 此外, atDCS和ctDCS在WT小鼠和脑缺血动物模 型中也具有神经保护作用,其相关机制与AD的病 理机制密切相关(图2)。例如,"AD的血管假说" 认为,脑血流量(CBF)不足也是AD的重要发病 机制之一^[42]。脑缺血动物模型在多个地方表现出 与AD相似的病理特征,如海马神经发生受损^[43]、 细胞凋亡加剧^[44],以及IIe显著升高^[45]等。在脑 缺血动物模型中, atDCS和ctDCS对上述病理机 制、信号转导通路以及神经相关蛋白的表达均表现 出改善作用,这为tDCS治疗AD提供了新的视角 和潜在的靶点。

1.2 减少氧化应激

AD的病理特征之一表现为氧化应激水平的升高^[46],这主要由活性氧类(ROS)的产生、积累 及其失衡所致,是Aβ诱导神经毒性的关键原因, 进而导致蛋白质、脂质和DNA损伤,最终引发神 经元死亡^[47]。此外,氧化应激作为连接AD不同 假说及机制的桥梁,可能始于AD的早期阶段,并 在其发病机制中起着关键作用^[48-49]。

在AD临床患者中, atDCS以双侧颞顶为刺激 靶点,减少了氧化应激,并改善了患者的认知功 能,表现为血浆中的一氧化氮(NO)水平升 高^[50]。过量产生的ROS引起的氧化应激被认为是 减少内皮细胞NO最重要的机制,而NO在维持血 管功能和抗氧化应激中起重要作用^[51]。然而,另 一项研究以颞顶为刺激靶点,患者的认知虽得到改 善,但血浆中的脂质过氧化物酶(LPO,氧化应激 的标志物)水平无显著变化^[52]。

在AD大鼠/小鼠模型中,关于tES对氧化应激 水平影响的研究几乎没有。VD是除AD外较为常 见的痴呆症,与AD具有相似的病理特征,如都涉 及脑血管病变机制。有研究表明,atDCS能够显著 抑制VD大鼠海马丙二醛(脂质过氧化指标)和 ROS的水平,同时提高抗氧化酶如超氧化物歧化 酶和谷胱甘肽的水平^[39]。简言之,atDCS可以通 过增强抗氧化防御系统,对抗慢性脑血流不足引起 的氧化应激,从而保护海马神经元免受ROS过载 引起的损伤。

因此, atDCS在AD患者中通过减少氧化应激 改善认知, 但效果存争议(图1)。而在VD大鼠模 型中, atDCS能显著抑制氧化应激并保护海马神经 元(图2), 为探究 atDCS对AD氧化应激的具体作 用机制提供了一些参考。

2 tES改善脑血管功能障碍

脑血管功能障碍在AD的发病机制中起着关键 作用,患者表现为CBF减少^[53],神经血管单元 (NVU)受损^[54]和血脑屏障(BBB)完整性受 损^[55]。CBF的区域性减少进而导致突触功能的衰 竭^[56],并与认知功能下降有关^[57]。NVU为Aβ的 清除提供必要的营养物质和氧气,并在调节CBF、 维持 BBB和细胞间信号转导方面具有重要作 用^[58-59]。BBB在清除Aβ中起着主要作用,BBB受 损将导致Aβ广泛沉积,进而加剧AD患者的认知 功能障碍^[60-61]。

atDCS和tACS分别显著增加了APP/PS1小鼠 模型和AD患者的CBF。atDCS以额叶为刺激靶点, 改善了APP/PS1小鼠的脑血管功能障碍,表现为 CBF、血流速度、血氧饱和度增加,相对血红蛋白 含量降低,但并未探究其认知是否改善^[62]。tACS 以颞叶或额颞叶为刺激靶点,AD患者颞叶的CBF 增加,并与情景记忆的改善相关,但其整体的认知 功能并未得到显著改善^[63]。

tDCS能够显著增强AD患者和APP/PS1小鼠模型的NVU活性。这种增强作用主要通过改善神经元功能、促进神经胶质细胞的健康状态以及改善脑血管的生理功能实现。在AD患者上,atDCS以左背外侧前额叶为靶点,阴极置于右背外侧前额叶,

NVU活性显著增强,除视觉空间认知能力无显著 变化外,其注意力、工作记忆和语言能力均得到显 著改善^[64]。在APP/PS1小鼠上,atDCS以额叶为 刺激靶点,NVU活性显著增强,具体表现为 NeuN46、NeuN48、脂蛋白受体相关蛋白(LPR1) 和血小板衍生生长因子受体β(PDGRFβ)的表达 增加,星形胶质细胞足突与血管的覆盖率增加^[65]。

atDCS以额叶为刺激靶点可改善APP/PS1小鼠的BBB^[65]。具体表现为血管密度和长度增加,这 表明atDCS促进了血管生成,从而有助于改善脑组 织的血液供应和营养支持,使免疫球蛋白G(IgG) 的外渗率(BBB通透性的可量化指标)降低,表 明BBB的完整性得到了恢复或增强。还可以使紧 密连接蛋白(occludin)的表达升高,它是内皮细 胞特异性连接蛋白的标志物,对维持BBB的完整 性至关重要^[65]。

简言之,tES可增加CBF,atDCS通过调节 NVU内不同细胞类型及其分子标记物的表达,实 现了对NVU功能的整体改善,atDCS通过增加血 管密度和长度、降低BBB通透性、提高occludin表 达改善BBB(图1)。值得注意的是,另有研究观 察到,在SD大鼠模型的研究中,tDCS的极性不同 对CBF状态的影响不同,即atDCS增加CBF, ctDCS则减少^[66-68]。因此,探究ctDCS是否引起 AD的CBF减少,将为tDCS治疗时选择atDCS而 非ctDCS提供重要证据。

3 tES影响神经胶质细胞

神经胶质细胞中, tES研究最多的是星形胶质 细胞和小胶质细胞,两者在AD病理发展过程中发 挥双重作用。在正常情况下,星形胶质细胞参与 Aβ的清除和降解,维持BBB的正常功能^[18],小胶 质细胞对Aβ清除也具有积极作用^[69]。然而,在 Aβ、炎症等病理条件下,反应性星形胶质细胞会 分泌血管通透性因子、促炎因子和过量的谷氨酸, 加重或引起BBB损伤和炎症,诱导神经元兴奋性 毒性,并参与内源性Aβ的生成^[65, 70-72]。反应性小 胶质细胞也会进一步促进神经退行性变,具有神经 毒性和促炎作用^[69]。此外,小胶质细胞的极化状 态是指其在不同环境刺激下所表现出的特定细胞状 态和功能。根据功能和特性,小胶质细胞的极化状 态主要划分为两种:激活极化状态和抑制极化状 态。其中,激活极化状态又可细分为促炎性(M1) 表型和白介素-4(IL-4)诱导的交替激活(M2)表 袁湲,等:经颅电刺激改善阿尔茨海默病的神经分子机制 ·1183·

 Fig. 1
 Neuromolecular mechanisms of tES in AD clinical cases and AD mouse/rat models

 图1
 tES在AD临床病例和AD大鼠/小鼠模型中的神经分子机制

/表示该指标显著上升, \表示该指标显著下降, →表示该指标无显著变化。

型。小胶质细胞通过表型转化发挥双重作用,其中 M1表型分泌促炎细胞因子,加重炎症反应和神经 损伤,M2表型分泌抗炎细胞因子和脑源性神经营 养因子(BDNF)。BDNF抑制炎症反应,对中枢神 经系统具有重要的保护作用^[73-74]。

星形胶质细胞的研究以APP/PS1小鼠模型和 Aβ注射大鼠模型为主,刺激靶点均为额叶。研究 发现:atDCS改善了AD大鼠和小鼠在水迷宫测试 下的空间学习记忆能力^[31-33],并通过抑制星形胶 质细胞的激活来减轻炎症反应;atDCS治疗后, AD大鼠/小鼠胶质纤维酸性蛋白(GFAP)的表达 量减少^[31-34,65],GFAP是成熟星形胶质细胞的标志 物,同时,波形蛋白(Vimentin)和S100钙结合 蛋白β(S100β)的表达量也有所减少^[65], Vimentin是星形胶质细胞前体标记物,S100β是血 管星形胶质细胞标记物。

小胶质细胞的研究除使用 APP/PS1 小鼠模型 外,在 AD临床患者上也有少量报道。tACS 以 AD 小鼠海马为刺激靶点,免疫荧光结果显示治疗后小 胶质细胞的细胞体直径减小,这一变化通常被认为 是细胞活化的一个积极标志,并推测通过小胶质细 胞 M2 表型的吞噬活性降低了海马中的 Aβ^[18]。与 此相悖的是,一项 AD临床病例的研究发现,tACS 以双侧颞叶为刺激靶点,正电子发射断层成像 (PET)结果显示治疗后其中一名受试者小胶质细 胞激活显著降低,其他三名受试者变化不显著^[19]。 由于小胶质细胞的M1和M2表型在AD中发挥了相 反的作用,然而在这两项研究中,并未针对小胶质 细胞的不同表型进行检测。此外,这两项研究涉及 的对象和刺激位点都不同,并且样本量较小(仅4 名受试者),这些均可能引起结果的不一致。

在其他啮齿类动物模型的研究中, atDCS 通过 抑制星形胶质细胞的激活,抑制小胶质细胞向M1 表型的转化,并促进M2表型的转化,从而减轻神 经炎症^[73]。此外,这些变化还伴随着炎性因子水 平的显著下降,以及抗炎因子和 BDNF 水平的升 高。在VD大鼠上,经atDCS治疗后,星形胶质细 胞和小胶质细胞活化程度降低,且显著降低了白介 素-1β(IL-1β)、白介素-6(IL-6)、肿瘤坏死因子α (TNF-α)等促炎因子的水平,减轻了海马炎症反 应^[39]。在脊髓损伤(SCI)大鼠上,小胶质细胞 M1表型的比例降低, M2表型的比例增加, 促炎 因子IL-6、IL-1β、TNF-α水平显著降低, 抗炎因 子白介素-10(IL-10)和BDNF水平增加^[73]。在 WT小鼠上,小胶质细胞(IBA-1)的组成性表达 下降^[35],小胶质细胞的激活伴随着 IBA-1 抗原表 达的增加^[75]。

此外,在MCAO大鼠上,atDCS和ctDCS对星 形胶质细胞的激活、小胶质细胞的表型以及神经炎 症具有不同表现。ctDCS可抑制星形胶质细胞和小 胶质细胞的活化,降低GFAP和IBA-1的过度表达;同时IL-6、IL-1β和TNF-α水平显著降低,IL-10水平显著升高,减轻了神经炎症^[40]。然而, Braun等^[76]的研究结果与上述发现存在争议,他 们指出,ctDCS显著增加小胶质细胞的M1表型极 化,M2表型极化不受影响,即导致促炎反应, atDCS并未引起小胶质细胞的显著变化。

atDCS在AD大小鼠模型中主要通过抑制星形 胶质细胞的激活来减轻神经炎症;而tACS则主要 对AD小鼠和AD患者的小胶质细胞活化状态产生 不同的影响(图1)。相比之下,ctDCS此方面的研 究相对较少。其次,在其他啮齿类动物模型的研究 发现,atDCS可以抑制小胶质细胞向M1表型转化, 促进M2表型转化(图2),那么在AD中,是否涉 及类似的机制以减轻神经炎症?此外,在AD中, 神经胶质细胞的不同激活状态对大脑既有害又有 益^[77],基于此建立tES在AD中可靠的干预策略, 是函待解决的问题。

4 tES影响Aβ和p-tau的水平

AD的两大病理特征为Aβ和p-tau沉积。Aβ是 AD相关淀粉样斑块的主要成分,由APP通过β分 泌酶和γ分泌酶的连续裂解产生^[78],主要沉积在大 脑皮层和海马等区域;p-tau是AD发病过程中的一 个早期事件,会形成神经纤维缠结,在内侧颞叶中 积累,并向颞叶外扩散^[79]。这些聚集物与神经元 间功能障碍有关,在突触水平上干扰神经元间的通 讯,并在介导神经元回路整体活性的变化中发挥作 用,导致神经变性^[19,80]。

一方面, atDCS能够引起 AD 患者的认知功能 改善和 Aβ 水平的变化,并在 AD 动物模型中得到 进一步验证。atDCS 以颞顶为刺激靶点,AD 患者 的认知得到改善^[52]。此外,与正常人相比,AD 患 者本身的血浆 Aβ1-42 水平较低,但该水平却能够 被 atDCS 显著增强,这可能是因为 atDCS 促进了 Aβ 从脑组织向血浆的转移^[52]。另有研究发现, tDCS 分别以左右背外侧前额叶为阳极和阴极,患 者血浆中 Aβ 的寡聚化水平也显著降低^[64]。另一方 面,在 APP/PS1 小鼠的研究中,atDCS 和 ctDCS 均 以额叶为刺激靶点,但在不同的刺激参数下对 Aβ 的影响不同。5 d 的 atDCS 或 ctDCS 刺激虽改善了 AD 小鼠的认知,但 Aβ 水平无显著变化^[81]。而 10 d 的 atDCS 刺激显著降低 Aβ 水平^[31, 34, 65]。研究 还发现, atDCS 主要通过调节与 Aβ 生成和降解相 关的分子途径发挥清除 Aβ的作用,表现为 APP 和 BACE1(淀粉样蛋白前体β分解酶I,是参与 Aβ生 成的重要活性分子)水平降低,以及 ADAM10(α 分泌酶,可催化 APP 的非淀粉样蛋白裂解)水 平^[34,65]、CD10 和 IDE(两种参与 Aβ降解的主要 肽酶)水平升高^[34]。

tACS可降低 APP/PS1 小鼠的 Aβ 水平,但是否 降低 AD 患者的 Aβ 水平存在争议。tACS 以海马为 刺激靶点,21 d及 28 d的治疗后显著降低 AD 小鼠 海马的 Aβ 水平^[18]。tACS 在 AD 患者中的结果因检 测手段和标志物的不同而异。以双侧颞叶为刺激靶 点,PET 成像显示 AD 患者脑内的 Aβ 沉积无显著 变化^[19];然而,在另一项研究中患者血清中的 Aβ 40:42 比值显著降低^[82]。

相较于Aβ的研究而言,p-tau的研究相对较 少。当atDCS以颞顶为刺激靶点,AD患者血浆中 的p-tau水平有降低的趋势,但并不显著^[52]。而 tACS则可显著降低AD患者脑内的p-tau水平^[19]。 除此之外,目前尚未有研究探讨tDCS或tACS对 AD动物模型中p-tau水平的影响。

简言之,在一定周期内,tES可引起AD中Aβ 和p-tau水平的变化(图1)。虽然Aβ学说受到质 疑,但atDCS的研究表明,Aβ水平的变化与认知 的改善仍存在联系,这为以Aβ为靶点治疗AD提 供支持。然而,tES对Aβ和p-tau沉积的影响存在 一些疑问,比如,tACS可引起AD患者脑内p-tau 水平而非Aβ的变化,这是否说明p-tau是tACS的 特异性靶点或Aβ水平的变化需要更长的治疗周期?

5 tES影响神经可塑性

在 AD 脑中,神经可塑性受损具体表现在皮质 和突触可塑性受损两方面,两者与认知障碍的产生 密切相关^[83-84]。长时程增强(LTP)是研究学习记 忆相关突触可塑性的细胞模型^[85],LTP 显著受损 是 AD 的一个重要病理特征^[86]。在 AD 患者中,有 研究使用运动诱发电位(MEP)振幅的平均变化 来衡量皮质可塑性,即LTP 样皮质可塑性^[87]。在 AD 动物模型中,兴奋性突触后电位(EPSP)是评 估突触可塑性的电生理指标^[88]。BDNF 在保持学 习和记忆中的突触可塑性发挥着重要作用,是突触 可塑性的分子指标^[89]。此外, cAMP 反应元件结 合蛋白(CREB)、磷酸化 钙 调素 依赖 蛋 白 激 酶 II (pCAMKII)等也是突触可塑性的子指标。

AD临床研究发现, atDCS能改善神经可塑性 进而改善患者的认知功能。以左背外侧前额叶为靶 点,5d刺激后,患者认知功能在1月后表现出改 善,该研究者猜测 atDCS 可能引起长期的突触可塑 性改善^[90]; 30 d 刺激后,患者的 MEP 增强,皮质 可塑性得到改善,并与认知改善相关^[84]。在3×Tg 和5×FAD小鼠中, atDCS 对突触可塑性的影响因 刺激靶点和参数的不同而异。atDCS在海马实施, 海马 EPSP、LTP 无显著变化,小鼠认知未得到改 善^[91]; atDCS 在额叶实施,海马 EPSP、LTP 增 强^[92]。在5×FAD小鼠中, tACS 在额叶实施, 5d 刺激后, EPSP升高^[93]。上述两项研究均未同时检 测小鼠认知。值得注意的是,上述研究并未检测到 BDNF、CREB、pCREB、pCAMKII、小清蛋白 (parvalbumin) 等突触可塑性相关分子指标的显著 性变化 [91-93]。

在探究 atDCS 或 tACS 对 AD 小鼠突触可塑性的研究中,常使用WT 小鼠进行对比分析,并发现 其结果因实验模型而异。研究发现, atDCS 增强了 WT小鼠海马LTP^[91,94]。在上游机制中,pCREB和pCAMKII水平增加,下游效应物BDNF水平增加,这表明atDCS可能通过激活CREB和CAMKII信号通路来促进BDNF的表达,进而增强突触可塑性^[91]。此外,还有研究观察到,BDNF启动子I上的组蛋白乙酰化增强,*BDNF*外显子I、IV的mRNA增加,BDNF水平增加,这些发现进一步支持了atDCS通过CREB/BDNF途径增强突触可塑性的机制^[94]。但也有研究表明,在应用atDCS后并未观察到海马LTP的增强^[92],同样,在应用tACS后也未发现EPSP的显著变化^[93]。

atDCS和tACS均能对AD脑的皮质可塑性、突 触可塑性产生影响,体现在MEP升高、LTP增强 以及EPSP升高等方面,但并未导致相关的分子指 标发生显著改变(图1);而在WT小鼠中(图2), 不仅观察到可塑性指标的变化,也观察到相关分子 水平的明显变化^[91,94]。因而,同等刺激下对AD 和WT小鼠神经可塑性影响不同,可能预示了AD 病理机制的特殊复杂性。

Table 1 Summary of tES parameters, cognitive test tasks and results, and indices of neuromolecular mechanisms in AD patients

表1	AD患者中tES参数设置、	认知测试任务与测试结果以及神经分子机制检测指标的总统
		and an and the second s

	tES	刺激位点	刺激参数	认知测试	测试结果	神经分子机制检测指标
tDCS	atDCS, ctDCS ^[50]	阳极/阴极: 双侧 颞顶; 对电极: 左侧三角肌	1.5 mA、15 min/d、单次	WRT	atDCS改善; ctDCS趋于损害	氧化应激: NO ↗ (atDCS); 未提及 (atDCS)
	atDCS ^[52]	石國 <u>用加</u> 阳极: 左/右侧 颞顶; 阴极: 左臂	2 mA、每侧各20 min/d、10 d	MMSE、MoCA、CDT	改善	氧化应激: LPO→, Aβ1- 42, ⁄, p-tau→
	tDCS ^[64]	阳极: 左背外侧 前额叶; 阴极: 右背外侧前额叶	2 mA、30 min/d、84 d	注意力、工作记忆; 语言能力 视觉空间能力	改善 无影响	Aβ↘; NVU活性ノ
	tDCS ^[84]	阳极:左背外侧 前额叶;阴极: 右背外侧前额叶	2 mA、20 min/次、2次/d、 30 d	MMSE、ADAS-Cog	改善	皮质可塑性: MEP↗
	tDCS ^[90]	阳极:左背外侧 前额叶;阴极: 右侧额叶	2 mA, 20 min/d, 5 d	MMSE、即刻记忆;延迟 性回忆	改善(1月后)	1
tACS	tACS ^[19]	双侧颞叶	2 mA、 40 Hz、 60 min/d、 20 d	ADAS-Cog、MMSE; MoCA、ADL	无影响	小胶质细胞激活↘, Aβ →, p-tau↘
	tACS ^[29]	楔前叶;右侧三 角肌	1.5 mA、40 Hz、60 min、 单次	RAVL, FNAT	改善	胆碱能神经传递: SAI↗

•1186•	生物化学与生物物理进	展 Prog. Biochem. B	Prog. Biochem. Biophys.		2025; 52 (5)	
				续表1		
tES 刺湯	效位点 刺激参数	认知测试	测试结果	神经分子机制检测	则指标	
tACS ^[30] 内侧 楔前叶 角	顶叶和 1.5 mA、40 Hz、60 min、 ; 右侧三 单次)肌	RAVL, FNAT	改善	胆碱能神经传递:	SAI⊅	
tACS ^[63] 右侧额 分患者) 叶(部	颞叶(部 2 mA、40Hz、60 min/d ; 双侧颞 分患者)	ADAS-Cog、MMSE; MoCA、ADL	无影响	CBF↗		
tACS ^[82] 双便	J颞叶 2 mA、40 Hz、20 min/d、3	0 d MMSE、ADAS-Cog	改善	Аβ40:42 🔪		

/表示该指标显著上升, \表示该指标显著下降, →表示该指标无显著变化。

Table 2 Summary of tES parameters, cognitive test tasks and results, and indices of neuromolecular mechanisms in AD rodents

表2	AD啮齿类动物中tES参数设置、	认知测试任务与测试结果以及神经分子机制检测指标的总	结
124	AD咽囚关则彻中ILO梦奴以且、	以和烈风在另一烈风泊未以及神经力于机制性烈泪物的	同

实验对象		tES	刺激位点	刺激参数	认知测试及结果	神经分子机制检测指标
AD	APP/	atDCS	额叶	150 μA、 30 min/d、	水迷宫:改善;物体	神经保护:NF200/、海马神经元排列整齐、尼氏染
小鼠	PS1 [31]			10 d	识别:无影响	色更深;星形胶质细胞:GFAP↘; Aβ42↘
	APP/ PS1 ^[34]	atDCS	额叶	150 μA、 30 min/d、 10 d	水迷宫:改善;物体 识别:改善;物体定 位:改善	神经保护: NeuNノ、维持神经元完整性; 细胞凋亡: caspase-3\; 星形胶质细胞: GFAP\; Aβ42\、APP \、BACE1\、ADAM10ノ、CD10ノ、IDEノ
	APP/ PS1 ^[62]	atDCS	额叶	150 μA、 30 min/d、 10 d	/	脑血管功能障碍: CBF↗、Velo↗、SO2↗、rHb↘
	APP/ PS1 ^[65]	atDCS	额叶	150 μA、30 min/d、 10 d	1	NVU: NeuN467、NeuN487、LRPI7、PDGFRβ7、 GFAP、、Ibal、、星形胶质细胞足突在血管中的覆盖 率7;星形胶质细胞:GFAP、、Vimentin、、S100β 、; Aβ、、APP、、BACE1、、ADAM107;BBB: Occludin7、血管密度和长度7、IgG外渗率、
	APP/ PS1 ^[81]	atDCS; ctDCS	左侧额骨	300 μA、20 min/d、 5 d	巴恩斯迷宫:改善 (atDCS);Y迷宫:改 善(ctDCS);T迷宫: 改善	$A\beta \rightarrow$
	3×Tg ^[91]	atDCS	左海马	250 μA、 30 min/d、 3 d	物体识别:无影响; 水迷宫:无影响	突触可塑性: LTP→、EPSP→、BDNF→、CREB→、 pCREB→、pCAMKII→
	5×FTD [92]	atDCS	双侧额骨	200 μA、 20 min/d、 10 d	/	突触可塑性: LTP/、EPSP/、BDNF→、CREB→、 pCREB→
	APP/ PS1 ^[18]	tACS	海马	130 μA、40 Hz、 20 min/d、7~28 d	Y迷宫:无影响(7~ 14d);Y迷宫:改善 (21~28d)	小胶质细胞: 直径↘ (21 d); Aβ→ (7~14 d); Aβ↘ (21~28 d)
	5×FTD [93]	tACS	双侧额叶	200 μA、 40 Hz、 20 min/d、 10 d	/	突触可塑性: EPSP /; BDNF→、CREB→、pCREB →、parvalbumin→
AD 大鼠	Aβ注 射 ^[32]	atDCS	额叶	200 μA、 30 min/d、 10 d	水迷宫: 改善	胆碱能系统: ChAT↗; 星形胶质细胞: GFAP↘
	Aβ注 射 ^[33]	atDCS	右侧额叶	20 /60/100/200 μA、 20 min/d、 10 d	水迷宫: 改善	神经保护:海马神经元的尼氏染色更深;胆碱能系统: ChATノ;星形胶质细胞:GFAP↘

tDCS实验中,对电极在胸腹部、胸部或脖颈; ノ表示该指标显著上升, \表示该指标显著下降, →表示该指标无显著变化。

Table 3 Summary of tES parameters, cognitive test tasks and results, and indices of neuromolecular mechanisms in non-AD rodents

表3 非AD啮齿类动物中tES参数设置、认知测试任务与测试结果以及神经分子机制检测指标的总结

实验对象	tES 刺激位点	刺激参数	认知测试及结果	神经分子机制检测指标
BCCAO	atDCS 右侧额叶	75/150 μA、 30 min/d、 10 d	水迷宫: 改善	神经保护: BrdU/NeuN/; 海马神经发生: Ephrinb1
小鼠 ^[38]				↗、EphB2↗、MAP-2↗、NMDAR↗
VD大鼠 ^[39]	atDCS 海马 [#]	200 µA, 30 min/d, 10 d	水迷宫: 改善	神经保护:神经元状态正常并促进神经元存活;氧化
				应激: MDA↘、ROS↘、SOD↗、GSH↗; 星形胶质
				细胞和小胶质细胞:激活\;神经炎症: IL-1β\、IL-
				$6 \searrow$, TNF- $\alpha \searrow$
MCAO	ctDCS 运动皮质#	500 μA、15 min/d、10 d	/	神经保护:尼氏小体↗;细胞凋亡:caspase-3↘、
大鼠 [40]				Bax/Bcl2\; 星形胶质细胞: GFAP\; 小胶质细胞:
				IBA-1↘; 神经炎症: IL-6↘、IL-1β↘、TNF-α↘、
				IL-10 ∕
MCAO	ctDCS 缺血皮质	100 µA、10 min/次、8次(1 d)	/	神经保护: LAT1↘、lle↘、PTEN↘、CBFB↗
大鼠 [41]				
MCAO	atDCS 运动皮质#	$500~\mu A_{\infty}$ 15 min/d $_{\sim}$ 10 d	/	小胶质细胞: M1→、M2→ (atDCS); M1/、M2→
大鼠 [76]	ctDCS			(ctDCS)

					续表3
实验对象	tES	刺激位点	刺激参数	认知测试及结果	神经分子机制检测指标
SCI大鼠 ^[73]	atDCS	运动皮质	200 μA、 30 min/d、 10 d	/	小胶质细胞: M1↘、M2↗; 神经炎症: IL-6↘、IL-
					1β , TNF- α , IL-10 \nearrow , BDNF \nearrow
WT小鼠 ^[35]	atDCS	运动皮质#	250/500 μA、15 min/d、10 d	/	神经保护:脑室下区的神经发生/(tDCS);小胶质
	ctDCS				细胞: Iba1↘ (atDCS)
WT小鼠 ^[36]	atDCS	海马#	250 µA, 20 min/d, 10 d	情境恐惧辨别:	神经保护: AHN↗、GABA能抑制↘、BDNF→
				改善	
WT小鼠 ^[37]	atDCS	运动皮质	250 µA, 20 min/d, 3 d	/	神经保护:谷氨酸能突触传递/
WT小鼠 ^[91]	atDCS	海马	250 µA, 30 min/d, 3 d	物体识别:改善;	突触可塑性: LTP /、EPSP/、BDNF/、pCREB/、
				水迷宫:改善	pCAMKII ∕
WT小鼠 ^[92]	atDCS	双侧额骨	200 µA, 20 min/d, 10 d	/	突触可塑性: LTP→、EPSP→、BDNF→、CREB→、
					pCREB→
WT小鼠 ^[94]	atDCS	海马	350 µA、20 min、单次	水迷宫:改善;	突触可塑性: LTP ↗、EPSP↗、BDNF↗、pCREB↗
				物体识别:改善	
WT小鼠 ^[93]	tACS	双侧额叶	200 µA, 40 Hz, 20 min/d,	/	突触可塑性: EPSP→、BDNF→、CREB→、pCREB
			10 d		→, parvalbumin→

Prog. Biochem. Biophys.

生物化学与生物物理进展

tDCS实验中,对电极在胸腹部、胸部或脖颈; "[#]"示意tES的刺激位点,是依据文献提供的坐标,并参考Franklin和Paxinos小鼠脑图谱、 Paxinos和Watson大鼠脑图谱进行确认。↗表示该指标显著上升, ↘表示该指标显著下降, →表示该指标无显著变化。

6 总结与展望

·1188·

本文综述了tES治疗AD的神经分子机制,该 机制以神经保护、CBF、NVU和BBB、神经胶质 细胞、Aβ和p-tau蛋白、神经可塑性为靶点,并涉 及神经炎症和氧化应激这两个AD病理过程中的重 要环节。tES针对AD的病理过程进行干预,进而 满足改善认知的目的,展现了tES作为一种非侵入 性的物理手段在治疗AD时表现出的巨大潜力。

tACS 是在tDCS 之后出现的非侵入性脑刺激技 术,大多数关于AD患者tES的研究都是使用tDCS 进行的,这是tACS现有进展较少的原因^[95]。但值 得注意的是, tACS 在改善脑网络、诱导神经振荡 方面具有独特的优势。认知与大脑不同频段的振荡 有关,由神经元群体之间的同步相互作用产生的大 脑振荡对记忆过程至关重要^[14]。有学者认为, tACS能够增强皮层振荡的同步,而不仅仅是恢复 大脑的可塑性^[96],与tDCS相比,特定频率的 tACS在健康个体和脑部疾病患者中触发内源性慢 振荡和增强脑功能方面更有效^[97]。研究发现,在 AD 中,低频θ功率增加,中高频α、β功率下 降^[50],此外,受损的高频γ振荡以及 θ 与 γ 功率的 比值增加,可能是认知功能障碍的原因之一^[98-99]。 tACS 在治疗 AD 的过程中,不同的刺激位置均引 起AD患者大脑振荡的改善。经楔前叶治疗后, AD患者β和γ功率增加, θ功率降低^[29]; 经双颞叶 治疗后,γ功率增加^[19, 63];经左角回治疗后,θ与 γ功率的比值下降^[100],θ和γ振荡的增加减少^[14]。 tACS由于其安全性^[101]和可控制性,被认为是最 具创新性的调节健康和病理的技术之一^[102]。

2025; 52 (5)

tES 参数的选择和刺激位点的确定,对于研究 其效应是非常重要的。在AD临床患者中,常选择 双侧颞叶、左背外侧前额叶、楔前叶、颞顶叶等作 为刺激位点,电流强度为1.5~2 mA, tACS 刺激频 率为40 Hz, 单次刺激时长为15~60 min, 刺激周期 为1~84d等。在啮齿类动物研究中,常选择额叶、 海马等作为刺激位点,小鼠电流强度为130~ 300 µA, 大鼠电流强度为100~500 µA, tACS 刺激 频率为40 Hz, 单次刺激时长为15~80 min, 刺激周 期为1~28 d等。海马病变是AD早期的典型症 状^[103],其中Aβ和p-tau在海马大量沉积,海马振 荡失调,这些病理变化与记忆缺陷密切相关^[14]。 tES则被认为主要影响大脑的外层,因此一些内部 的认知通路,如依赖于中脑和其他扣带回和海马等 深层结构的认知通路,可能对tES不敏感。这可能 是在动物模型中常以海马作为刺激位点, 但在 AD 患者中未选择海马的原因。鉴于海马等深层结构在 AD病理过程中发挥着关键作用,如何安全有效地 对这些结构进行刺激,是未来需要解决的重要 难题。

根据前文所述, atDCS和tACS对AD患者认知 功能的改善是显著的,患者除表现出皮肤刺痛的轻 微副作用外^[63],大多数文献认为tES的安全性是 有保障的。然而,ctDCS的研究则存在一些负面报 道。例如,以双侧颞顶为刺激靶点,参数为 1.5 mA、15 min,损害了患者的工作记忆^[50]。在 啮齿类动物研究中,ctDCS不影响小胶质细胞的 M2表型的极化,但却增加M1表型的极化,从而 引发促炎反应^[76]。此外,ctDCS还可降低 CBF^[66-68]。但也有不同的发现,ctDCS能够改善 AD小鼠的空间记忆,其机制与神经网络的改善有 关^[81],同时,ctDCS在脑缺血动物模型的神经保 护方面也极具优势^[40,41]。因此,ctDCS的神经分 子机制可能同时涉及神经胶质细胞、CBF、神经网 络,神经保护等多个方面,仍需进一步研究,在临 床上应用ctDCS时需格外谨慎。

另一方面, tES在 AD 动物上的研究涉及多种 模型。其中,小鼠以转基因模型较多。APP/PS1为 双转基因模型^[18, 31, 34, 62, 65, 81],小鼠具有显著的Aβ 沉积、神经胶质细胞的活化,较好地模拟了AD的 神经炎症和神经损伤[104-105],常用于研究神经胶质 细胞、神经保护、Aβ和p-tau、血管功能等方面。 3×Tg为三转基因模型,小鼠出现Aβ沉积和突触传 递受损^[106]。5×FAD能迅速增加Aβ,改变突触结 构和密度,并导致进行性神经元死亡和萎 缩^[107-108]。3×Tg^[91]和5×FAD^[92-93]小鼠模型常用于 研究突触可塑性。除转基因模型外,小鼠和大鼠上 都有一些药理学诱导模型,主要包括Aβ注射、胆 碱能损伤、脑缺血等模型。向大鼠脑内注射Aβ来 达到急性损伤^[32-33],常用于研究神经炎症,以及 Aβ对 AD 病理过程的影响。基于胆碱能假 说^[109-110],注射东莨菪碱可以阻碍胆碱能神经传 递,进而损害海马依赖的空间学习和记忆^[111]。同 时,该药物注射也会损害细胞的抗氧化防御机制, 引起氧化损伤[112],诱导海马神经元凋亡[113],增 加 IL-1β、IL-4 和 TNF-α 等 而 模 拟 AD 神 经 炎 症^[114]。此外,脑缺血AD动物模型通过结扎动物 的颈总动脉, 使脑组织处于缺血状态, 进而出现空 间学习和记忆的障碍[115]。值得注意的是,分子机 制的研究在AD患者上受到限制,而AD动物模型 可能无法完全复制人类 AD 的所有复杂病理变化, 因此,可同时结合多种动物模型进行研究,如已有 研究同时将APP/PS1、3×Tg和5×FAD小鼠作为研 究对象[116]。

我们先前的研究表明,AD小鼠表现出较慢的 大脑活动,GABA_A受体干预可逆转这种改变,并 改善了空间识别记忆^[117],GABA_B受体激活也能改 善AD小鼠的记忆,GABA_B受体激活和抑制还可调 节AD小鼠的整体和局部大脑振荡^[118]。以上研究 说明了以GABA受体为靶点改善AD患者的认知障 碍和恢复神经网络活动的可能性。目前,tDCS已 被证明可通过调节神经递质系统提高学习和记 忆^[119]。其他动物模型的研究也表明,atDCS对 GABA 能确实产生了积极影响。atDCS可降低 GABA 能确实产生了积极影响。atDCS可降低 GABA 能弹并增加受刺激的运动皮层的功能连 接^[120],增强WT小鼠海马神经发生,并与齿状回 的GABA 能抑制的减少有关^[36]。简言之,tDCS可 调节GABA 能系统,但两者在AD中的确切关系还 有待探讨。

综上所述,tES可以调节AD病理过程中受损 的多个环节,并改善AD认知。然而,目前的研究 并不能全面地概述tES在AD中的神经分子机制, tES的刺激方式和参数设置还未达成共识,这是 tES临床应用需要克服的一大难题。未来需在多种 认知疾病中加大对tES作用机制的研究,扩大样本 量,增强实验结果的说服力。同时,将探究到的 tES作用机制与其认知改善效果进行相关分析,增 强tES效果的可信度。

参考文献

- [1] Collaborators G 2 D A I. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet, 2024, **403**(10440): 2133-2161
- [2] Huang L K, Kuan Y C, Lin H W, et al. Clinical trials of new drugs for Alzheimer disease: a 2020-2023 update. J Biomed Sci, 2023, 30(1): 83
- [3] Miculas D C, Negru P A, Bungau S G, *et al.* Pharmacotherapy evolution in Alzheimer's disease: current framework and relevant directions. Cells, 2022, **12**(1):131
- [4] Giacobini E, Claudio Cuello A, Fisher A. Reimagining cholinergic therapy for Alzheimer's disease. Brain, 2022, 145(7): 2250-2275
- [5] Yamada M. Anti-dementia drugs (anti-Alzheimer's disease drugs). Brain Nerve, 2023, 75(5): 464-469
- [6] Bubley A, Erofeev A, Gorelkin P, et al. Tacrine-based hybrids: past, present, and future. Int J Mol Sci, 2023, 24(2): 1717
- [7] Pardo-Moreno T, González-Acedo A, Rivas-Domínguez A, et al. Therapeutic approach to Alzheimer's disease: current treatments and new perspectives. Pharmaceutics, 2022, 14(6): 1117
- [8] Villegas C, Perez R, Petiz L L, et al. Ginkgolides and Huperzine A for complementary treatment of Alzheimer's disease. IUBMB Life, 2022, 74(8): 763-779

- [9] Høilund-Carlsen P F, Revheim M E, Costa T, *et al.* Passive Alzheimer's immunotherapy: a promising or uncertain option?. Ageing Res Rev, 2023, **90**: 101996
- [10] Burke J F, Kerber K A, Langa K M, et al. Lecanemab: looking before we leap. Neurology, 2023, 101(15): 661-665
- [11] Kim A Y, Al Jerdi S, MacDonald R, et al. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol, 2024, 15: 1399121
- [12] Wang C S, Chen P S, Tsai T Y, et al. Cognitive effect of transcranial direct current stimulation on left dorsolateral prefrontal cortex in mild Alzheimer's disease: a randomized, double-blind, cross-over small-scale exploratory study. J Alzheimers Dis, 2024, 98(2): 563-577
- [13] Philippen S, Hanert A, Schönfeld R, et al. Transcranial direct current stimulation of the right temporoparietal junction facilitates hippocampal spatial learning in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol, 2024, 157: 48-60
- [14] Bréchet L, Yu W, Biagi M C, et al. Patient-tailored, home-based non-invasive brain stimulation for memory deficits in dementia due to Alzheimer's disease. Front Neurol, 2021, 12: 598135
- [15] Cheng C P W, Chan S S M, Mak A D P, et al. Would transcranial direct current stimulation (tDCS) enhance the effects of working memory training in older adults with mild neurocognitive disorder due to Alzheimer's disease: study protocol for a randomized controlled trial. Trials, 2015, 16: 479
- [16] Reed T, Cohen Kadosh R. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J Inherit Metab Dis, 2018, 41(6): 1123-1130
- [17] Altomare D, Benussi A, Cantoni V, et al. Home-based transcranial alternating current stimulation (tACS) in Alzheimer's disease: rationale and study design. Alzheimers Res Ther, 2023, 15(1): 155
- [18] Wu L, Cao T, Li S, *et al.* Long-term gamma transcranial alternating current stimulation improves the memory function of mice with Alzheimer's disease. Front Aging Neurosci, 2022, 14: 980636
- [19] Dhaynaut M, Sprugnoli G, Cappon D, et al. Impact of 40 Hz transcranial alternating current stimulation on cerebral tau burden in patients with Alzheimer's disease: a case series. J Alzheimers Dis, 2022, 85(4): 1667-1676
- [20] Xing Y, Wei P, Wang C, et al. TRanscranial AlterNating current Stimulation FOR patients with Mild Alzheimer's Disease (TRANSFORM-AD study): protocol for a randomized controlled clinical trial. Alzheimers Dement, 2020, 6(1): e12005
- [21] Santarnecchi E, Sprugnoli G, Bricolo E, *et al.* Gamma tACS over the temporal lobe increases the occurrence of *Eureka*! moments. Sci Rep, 2019, 9(1): 5778
- [22] Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci, 2013, 7: 317
- [23] Miniussi C, Harris J A, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev, 2013, 37(8): 1702-1712
- [24] Kumari S, Dhapola R, Reddy D H. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic

avenues. Apoptosis, 2023, 28(7/8): 943-957

- [25] Rivera J, Sharma B, Torres M M, et al. Factors affecting the GABAergic synapse function in Alzheimer's disease: focus on microRNAs. Ageing Res Rev, 2023, 92: 102123
- [26] Rehman I U, Park J S, Choe K, et al. Overview of a novel osmotin abolishes abnormal metabolic-associated adiponectin mechanism in Alzheimer's disease: peripheral and CNS insights. Ageing Res Rev, 2024, 100: 102447
- [27] He G, Li Y, Deng H, et al. Advances in the study of cholinergic circuits in the central nervous system. Ann Clin Transl Neurol, 2023, 10(12): 2179-2191
- [28] Thakral S, Yadav A, Singh V, et al. Alzheimer's disease: molecular aspects and treatment opportunities using herbal drugs. Ageing Res Rev, 2023, 88: 101960
- [29] Benussi A, Cantoni V, Grassi M, et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer's disease. Ann Neurol, 2022, 92(2): 322-334
- [30] Benussi A, Cantoni V, Cotelli M S, et al. Exposure to gamma tACS in Alzheimer's disease: a randomized, double-blind, shamcontrolled, crossover, pilot study. Brain Stimul, 2021, 14(3): 531-540
- [31] Luo Y, Yang W, Li N, *et al.* Anodal transcranial direct current stimulation can improve spatial learning and memory and attenuate $A\beta_{42}$ burden at the early stage of Alzheimer's disease in APP/PS1 transgenic mice. Front Aging Neurosci, 2020, **12**: 134
- [32] Yang W J, Wen H Z, Zhou L X, et al. After-effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer's disease. Neurobiol Learn Mem, 2019, 161: 37-45
- [33] Yu X, Li Y, Wen H, *et al.* Intensity-dependent effects of repetitive anodal transcranial direct current stimulation on learning and memory in a rat model of Alzheimer's disease. Neurobiol Learn Mem, 2015, **123**: 168-178
- [34] Luo Y P, Liu Z, Wang C, *et al.* Anodal transcranial direct current stimulation alleviates cognitive impairment in an APP/PS1 model of Alzheimer's disease in the preclinical stage. Neural Regen Res, 2022, 17(10): 2278-2285
- [35] Pikhovych A, Stolberg N P, Jessica Flitsch L, et al. Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int, 2016, 2016: 2715196
- [36] Yu T H, Wu Y J, Chien M E, et al. Multisession anodal transcranial direct current stimulation enhances adult hippocampal neurogenesis and context discrimination in mice. J Neurosci, 2023, 43(4): 635-646
- [37] Barbati S A, Cocco S, Longo V, *et al.* Enhancing plasticity mechanisms in the mouse motor cortex by anodal transcranial direct-current stimulation: the contribution of nitric oxide signaling. Cereb Cortex, 2020, 30(5): 2972-2985
- [38] Ma X, Cheng O, Jiang Q, et al. Activation of ephrinb1/EPHB2/ MAP-2/NMDAR mediates hippocampal neurogenesis promoted by transcranial direct current stimulation in cerebral-ischemic

mice. Neuromolecular Med, 2021, 23(4): 521-530

- [39] Guo T, Fang J, Tong Z Y, et al. Transcranial direct current stimulation ameliorates cognitive impairment via modulating oxidative stress, inflammation, and autophagy in a rat model of vascular dementia. Front Neurosci, 2020, 14:28
- [40] Zhang K Y, Rui G, Zhang J P, et al. Cathodal tDCS exerts neuroprotective effect in rat brain after acute ischemic stroke. BMC Neurosci, 2020, 21(1): 21
- [41] Yao X, Kong X, Ren J, et al. Transcranial direct-current stimulation confers neuroprotection by regulating isoleucinedependent signalling after rat cerebral ischemia-reperfusion injury. Eur J Neurosci, 2023, 58(5): 3330-3346
- [42] de Torre J. The vascular hypothesis of Alzheimer's disease: a key to preclinical prediction of dementia using neuroimaging. J Alzheimers Dis, 2018, 63(1): 35-52
- [43] Salta E, Lazarov O, Fitzsimons C P, et al. Adult hippocampal neurogenesis in Alzheimer's disease: a roadmap to clinical relevance. Cell Stem Cell, 2023, 30(2): 120-136
- [44] Li J, Li D, Zhou H, et al. microRNA-338-5p alleviates neuronal apoptosis via directly targeting BCL2L11 in APP/PS1 mice. Aging, 2020, 12(20): 20728-20742
- [45] Puris E, Saveleva L, de Sousa Maciel I, et al. Protein expression of amino acid transporters is altered in isolated cerebral microvessels of 5xFAD mouse model of Alzheimer's disease. Mol Neurobiol, 2023, 60(2): 732-748
- [46] Singh Y P, Kumar N, Priya K, *et al*. Exploration of neuroprotective properties of a naturally inspired multifunctional molecule (F24) against oxidative stress and amyloid β induced neurotoxicity in Alzheimer's disease models. ACS Chem Neurosci, 2022, **13**(1): 27-42
- [47] Dhapola R, Beura S K, Sharma P, et al. Oxidative stress in Alzheimer's disease: current knowledge of signaling pathways and therapeutics. Mol Biol Rep, 2024, 51(1):48
- [48] Song T, Song X, Zhu C, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: a meta-analysis of *in vivo* magnetic resonance spectroscopy studies. Ageing Res Rev, 2021, 72: 101503
- [49] Bai R, Guo J, Ye X Y, et al. Oxidative stress: the core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev, 2022, 77: 101619
- [50] Marceglia S, Mrakic-Sposta S, Rosa M, et al. Transcranial direct current stimulation modulates cortical neuronal activity in Alzheimer's disease. Front Neurosci, 2016, 10: 134
- [51] Alusik S, Jedlickova V, Paluch Z, *et al.* Plasma levels of nitrite/ nitrate and inflammation markers in elderly individuals. Bratisl Lek Listy, 2008, **109**(7): 289-292
- [52] Khedr E M, Salama R H, Abdel Hameed M, et al. Therapeutic role of transcranial direct current stimulation in Alzheimer disease patients: double-blind, placebo-controlled clinical trial. Neurorehabil Neural Repair, 2019, 33(5): 384-394
- [53] Heeman F, Visser D, Yaqub M, et al. Precision estimates of relative

and absolute cerebral blood flow in Alzheimer's disease and cognitively normal individuals. J Cereb Blood Flow Metab, 2023, **43**(3): 369-378

- [54] Li T, Li D, Wei Q, *et al.* Dissecting the neurovascular unit in physiology and Alzheimer's disease: functions, imaging tools and genetic mouse models. Neurobiol Dis, 2023, **181**: 106114
- [55] Lei T, Yang Z, Li H, et al. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev, 2024, 207: 115219
- [56] Musiek E S, Chen Y, Korczykowski M, *et al*. Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement, 2012, 8(1): 51-59
- [57] Zou X, Liao Y, Jiang C, et al. Brain perfusion, cognition, and plasma Alzheimer's biomarkers in moyamoya disease. Alzheimers Dement, 2023, 19(8): 3316-3326
- [58] Liu X, Hou D, Lin F, et al. The role of neurovascular unit damage in the occurrence and development of Alzheimer's disease. Rev Neurosci, 2019, 30(5): 477-484
- [59] Stackhouse T L, Mishra A. Neurovascular coupling in development and disease: focus on astrocytes. Front Cell Dev Biol, 2021, 9: 702832
- [60] Kirabali T, Rust R, Rigotti S, et al. Distinct changes in all major components of the neurovascular unit across different neuropathological stages of Alzheimer's disease. Brain Pathol, 2020, 30(6): 1056-1070
- [61] Eisenmenger L B, Peret A, Famakin B M, et al. Vascular contributions to Alzheimer's disease. Transl Res, 2023, 254: 41-53
- [62] Luo Y P, Zhang L, Wu X Y, et al. Cerebral blood microcirculation measurement in APP/PS1 double transgenic mice at the preclinical stage of Alzheimer's disease: preliminary data on the early intervention of anodal transcranial direct current stimulation. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 3557-3560
- [63] Sprugnoli G, Munsch F, Cappon D, et al. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer's disease. Alzheimers Res Ther, 2021, 13(1): 203
- [64] Kim J, Yang Y. Alterations in cognitive function and blood biomarkers following transcranial direct current stimulation in patients with amyloid positron emission tomography-positive Alzheimer's disease: a preliminary study. Front Neurosci, 2023, 17: 1327886
- [65] Luo Y, Yang H, Yan X, et al. Transcranial direct current stimulation alleviates neurovascular unit dysfunction in mice with preclinical Alzheimer's disease. Front Aging Neurosci, 2022, 14: 857415
- [66] Wachter D, Wrede A, Schulz-Schaeffer W, et al. Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol, 2011, 227(2): 322-327
- [67] Hu S, Zheng T, Dong Y, *et al.* Effect of anodal direct-current stimulation on cortical hemodynamic responses with laser-speckle contrast imaging. Front Neurosci, 2018, **12**: 503
- [68] Mielke D, Wrede A, Schulz-Schaeffer W, et al. Cathodal

transcranial direct current stimulation induces regional, longlasting reductions of cortical blood flow in rats. Neurol Res, 2013, **35**(10): 1029-1037

- [69] Liddelow S A, Guttenplan K A, Clarke L E, *et al.* Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017,541(7638):481-487
- [70] Carter S F, Herholz K, Rosa-Neto P, et al. Astrocyte biomarkers in Alzheimer's disease. Trends Mol Med, 2019, 25(2): 77-95
- [71] Martorell A J, Paulson A L, Suk H J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and improves cognition. Cell, 2019, 177(2): 256-271.e22
- [72] Uddin M S, Lim L W. Glial cells in Alzheimer's disease: from neuropathological changes to therapeutic implications. Ageing Res Rev, 2022, 78: 101622
- [73] Tan M, Feng Z, Chen H, et al. Transcranial direct current stimulation regulates phenotypic transformation of microglia to relieve neuropathic pain induced by spinal cord injury. Front Behav Neurosci, 2023, 17: 1147693
- [74] Zhou D, Ji L, Chen Y. TSPO modulates IL-4-induced microglia/ macrophage M2 polarization via PPAR-γ pathway. J Mol Neurosci, 2020, 70(4): 542-549
- [75] Ito D, Tanaka K, Suzuki S, *et al.* Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke, 2001, 32(5): 1208-1215
- [76] Braun R, Klein R, Walter H L, *et al.* Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol, 2016, 279: 127-136
- [77] Wu Y, Eisel U L M. Microglia-astrocyte communication in Alzheimer's disease. J Alzheimers Dis, 2023, 95(3): 785-803
- [78] Zhang Y, Chen H, Li R, et al. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther, 2023, 8(1): 248
- [79] Rather M A, Khan A, Jahan S, et al. Influence of tau on neurotoxicity and cerebral vasculature impairment associated with Alzheimer's disease. Neuroscience, 2024, 552: 1-13
- [80] Vargova G, Vogels T, Kostecka Z, et al. Inhibitory interneurons in Alzheimer's disease. Bratisl Lek Listy, 2018, 119(4): 205-209
- [81] Duan M, Meng Z, Yuan D, et al. Anodal and cathodal transcranial direct current stimulations of prefrontal cortex in a rodent model of Alzheimer's disease. Front Aging Neurosci, 2022, 14: 968451
- [82] Zhou D, Li A, Li X, et al. Effects of 40 Hz transcranial alternating current stimulation (tACS) on cognitive functions of patients with Alzheimer's disease: a randomised, double-blind, shamcontrolled clinical trial. J Neurol Neurosurg Psychiatry, 2022, 93(5): 568-570
- [83] Rossini P M, Ferilli M A N, Rossini L, et al. Clinical neurophysiology of brain plasticity in aging brain. Curr Pharm Des, 2013, 19(36): 6426-6439
- [84] Li X, Chen L, Yu K, et al. Impact of twice-a-day transcranial direct current stimulation intervention on cognitive function and motor cortex plasticity in patients with Alzheimer's disease. Gen

Psychiatr, 2023, 36(6): e101166

- [85] Nicoll R A. A brief history of long-term potentiation. Neuron, 2017, 93(2): 281-290
- [86] Zhang H, Jiang X, Ma L, *et al.* Role of Aβ in Alzheimer's-related synaptic dysfunction. Front Cell Dev Biol, 2022, 10: 964075
- [87] Di Lorenzo F, Motta C, Bonni S, et al. LTP-like cortical plasticity is associated with verbal memory impairment in Alzheimer's disease patients. Brain Stimul, 2019, 12(1): 148-151
- [88] Arabi A, Karimi S A, Salehi I, *et al.* Effects of sesamin on $A\beta_{1-42}^{-1}$ induced oxidative stress and LTP impairment in a rat model of Alzheimer's disease. Metab Brain Dis, 2023, **38**(5): 1503-1511
- [89] Gao L, Zhang Y, Sterling K, et al. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener, 2022, 11(1):4
- [90] Meléndez J C, Satorres E, Pitarque A, et al. Transcranial direct current stimulation intervention in Alzheimer's disease and its follow-up. J Alzheimers Dis, 2023, 96(4): 1685-1693
- [91] Cocco S, Rinaudo M, Fusco S, et al. Plasma BDNF levels following transcranial direct current stimulation allow prediction of synaptic plasticity and memory deficits in 3 × tg-AD mice. Front Cell Dev Biol, 2020, 8: 541
- [92] Kim W I, Han J Y, Song M K, et al. Cognitive function improvement in mouse model of Alzheimer's disease following transcranial direct current stimulation. Brain Sci, 2020, 10(8): 547
- [93] Jeong W H, Kim W I, Lee J W, et al. Modulation of long-term potentiation by gamma frequency transcranial alternating current stimulation in transgenic mouse models of Alzheimer's disease. Brain Sci, 2021, 11(11): 1532
- [94] Podda M V, Cocco S, Mastrodonato A, et al. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Sci Rep, 2016, 6: 22180
- [95] Menardi A, Rossi S, Koch G, et al. Toward noninvasive brain stimulation 2.0 in Alzheimer's disease. Ageing Res Rev, 2022, 75: 101555
- [96] Inukai Y, Saito K, Sasaki R, *et al.* Comparison of three noninvasive transcranial electrical stimulation methods for increasing cortical excitability. Front Hum Neurosci, 2016, **10**: 668
- [97] Grimaldi D, Papalambros N A, Zee P C, et al. Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol Dis, 2020, 141: 104865
- [98] Babiloni C, Lizio R, Marzano N, et al. Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms. Int J Psychophysiol, 2016, 103: 88-102
- [99] Fan L, Mao C, Hu X, et al. New insights into the pathogenesis of Alzheimer's disease. Front Neurol, 2020, 10: 1312
- [100] Cappon D, Fox R, den Boer T, et al. Tele-supervised home-based transcranial alternating current stimulation (tACS) for Alzheimer's disease: a pilot study. Front Hum Neurosci, 2023, 17: 1168673
- [101] Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial

electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol, 2017, **128**(9): 1774-1809

- [102] Vosskuhl J, Strüber D, Herrmann C S. Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci, 2018, 12:211
- [103] Scheff S W, Price D A, Schmitt F A, et al. Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment. Neurobiol Aging, 2006, 27(10): 1372-1384
- [104] Willuweit A, Velden J, Godemann R, et al. Early-onset and robust amyloid pathology in a new homozygous mouse model of Alzheimer's disease. PLoS One, 2009, 4(11): e7931
- [105] Faure A, Verret L, Bozon B, et al. Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer's disease. Neurobiol Aging, 2011, 32(3): 407-418
- [106] Oddo S, Caccamo A, Shepherd J D, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron, 2003, 39(3): 409-421
- [107] Beglopoulos V, Tulloch J, Roe A D, et al. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice. Nat Commun, 2016, 7: 11761
- [108] Mazi A R, Arzuman A S, Gurel B, et al. Neonatal neurodegeneration in Alzheimer's disease transgenic mouse model. JAlzheimers Dis Rep, 2018, 2(1): 79-91
- [109] Renner U D, Oertel R, Kirch W. Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit, 2005, 27(5): 655-665
- [110] Ebert U, Grossmann M, Oertel R, et al. Pharmacokineticpharmacodynamic modeling of the electroencephalogram effects of scopolamine in healthy volunteers. J Clin Pharmacol, 2001, 41(1):51-60
- [111] Upadhyay P, Sadhu A, Singh P K, et al. Revalidation of the neuroprotective effects of a United States patented polyherbal formulation on scopolamine induced learning and memory

impairment in rats. Biomed Pharmacother, 2018, 97: 1046-1052

[112] Tang K S. The cellular and molecular processes associated with scopolamine-induced memory deficit: a model of Alzheimer's biomarkers. Life Sci, 2019, 233: 116695

袁湲,等:经颅电刺激改善阿尔茨海默病的神经分子机制

- [113] Hou X Q, Wu D W, Zhang C X, et al. Bushen-Yizhi formula ameliorates cognition deficits and attenuates oxidative stressrelated neuronal apoptosis in scopolamine-induced senescence in mice. Int J Mol Med, 2014, 34(2): 429-439
- [114] Demirci K, Nazıroğlu M, Övey İ S, *et al*. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia. Metab Brain Dis, 2017, **32**(2): 321-329
- [115] Nagao M, Hatae A, Mine K, *et al*. The effects of ninjinyoeito on impaired spatial memory and prefrontal cortical synaptic plasticity through α-amino-3-hydroxy-5-4-isoxazole propionic acid receptor subunit in a rat model with cerebral ischemia and β-amyloid injection. Evid Based Complement Alternat Med, 2023, 2023: 6035589
- [116] Kong Y, Cao L, Wang J, et al. Increased cerebral level of P2X7R in a tauopathy mouse model by PET using [¹⁸F] GSK1482160. ACS Chem Neurosci, 2024, **15**(11): 2112-2120
- [117] Fu Y, Li L, Wang Y, et al. Role of GABA_A receptors in EEG activity and spatial recognition memory in aged APP and PS1 double transgenic mice. Neurochem Int, 2019, 131: 104542
- [118] Yuan D, Zhou Z, Song M, et al. Role of GABAB receptors in cognition and EEG activity in aged APP and PS1 transgenic mice. Neurochem Int, 2024, 175: 105718
- [119] Barbati S A, Podda M V, Grassi C. Tuning brain networks: the emerging role of transcranial direct current stimulation on structural plasticity. Front Cell Neurosci, 2022, 16: 945777
- [120] Bachtiar V, Near J, Johansen-Berg H, et al. Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. Elife, 2015, 4: e08789

Neuromolecular Mechanisms of Transcranial Electrical Stimulation for The Improvement of Alzheimer's Disease^{*}

YUAN Yuan, CHEN Zhuang-Fei, FU Yu**

(Medical School, Kunming University of Science and Technology, Kunming 650500, China)

Graphical abstract

Created with BioGDP.com, licensed under GDP2024GW3HTE

Abstract Alzheimer's disease (AD) is one of the most common and severe dementias, severely affecting the physical and mental health and quality of life of patients and imposing a heavy burden on society. Recently, transcranial electrical stimulation (tES) has shown great potential for improving cognitive function in AD.

^{*} This work was supported by grants from The National Natural Science Foundation of China (82360271, 81760258), The Yunnan Ten Thousand Talents Plan Young and Elite Talents Project (YNWR-QNBJ-2018-056, YNWR-QNBJ-2018-027), and The Innovation Team of Stress and Disorder in Nervous System in Yunnan Province (202305AS350011).

^{**} Corresponding author.

Tel: 86-871-65936267, E-mail: fuyu@kust.edu.cn

Received: September 20, 2024 Accepted: January 6, 2025

Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are the two main forms of tES. The present review mainly summarizes the neuromolecular mechanisms of tDCS and tACS for the improvement of AD. Both techniques show similarities in exerting neuroprotective effects, improving cerebral blood flow to alleviate cerebrovascular dysfunction, affecting the state and function of astrocytes, affecting the levels of amyloid β -protein (A β) and phosphorylated tau (p-tau) proteins, and affecting neuroplasticity. Specifically, tDCS improves neuronal status, inhibits neuronal apoptosis, improves cholinergic neurons and reduces oxidative stress, etc., and further exerts neuroprotective effects, but tACS mainly maintains the normal function of cholinergic neurons to exert the effects. For the alleviation of cerebrovascular dysfunction, tDCS has particular advantages in optimizing the neural vascular unit and improving the blood-brain barrier. For astrocytes, tDCS attenuates inflammatory responses by inhibiting their activation. In contrast, the effect of tACS on the activation state of microglial cells is still controversial for enhancement in AD mice and inhibition in patients. For A β levels, the effects of tDCS in AD patients are also inconclusive, but in AD rodents, tDCS may regulate molecular pathways related to A β production and degradation, thereby removing A β . In addition, tACS reduces p-tau levels in AD patients, but tDCS shows a trend toward reduction. In short, the effect of tES on $A\beta$ and p-tau needs further investigation. Regarding neuroplasticity, tDCS improves cortical and synaptic plasticity, but tACS improves only synaptic plasticity. However, both techniques do not affect the molecular level associated with plasticity. On the other hand, this review has summarized some interesting findings of tES in non-AD rodents that may be relevant to the pathological mechanisms of AD. For neuroprotection, tDCS can promote neurogenesis, GABAergic and glutamatergic neurotransmission, modulate neuroprotection-related signaling pathways, reduce oxidative stress, and protect hippocampal neurons. In addition, tDCS inhibits conversion of microglia to the M1 phenotype and promotes conversion to the M2 phenotype, thereby reducing neuroinflammation. Importantly, tDCS induces changes in molecular indices associated with synaptic plasticity. These findings in non-AD rodents provide a reference for understanding the potential effect and possible mechanism of tES in AD and for exploring new approaches to treat other diseases with similar pathological features. In addition, tES has shown some effects in AD rodents, such as tACS improving plasticity, that have not been studied in non-AD rodents. These effects suggest the particular complexity of the pathological mechanisms of AD, which should be considered when applying the results of tES studies in non-AD rodents to AD rodents. In conclusion, this review provides a comprehensive overview of the neuromolecular mechanisms of tES in AD research and highlights its promise as a non-invasive brain stimulation technique in the treatment of AD. Furthermore, tES will play an indispensable role in the treatment of neuropsychiatric disorders and in the study of brain function.

Key words transcranial electrical stimulation, Alzheimer's disease, neuroprotection, neuroglial cells, neurovascular dysfunction, neuroplasticity

DOI: 10.16476/j.pibb.2024.0413 **CSTR:** 32369.14.pibb.20240413