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Abstract　Objective  This study aimed to develop a light-weighted classification network for hepatocellular carcinoma (HCC) 

and non-HCC malignancies based on the automatic analysis of brightness change in contrast-enhanced ultrasound (CEUS).  

Methods  This retrospective study comprised 131 patients diagnosed with HCC and 30 patients with non-HCC malignancies. We 

used the YOLOX network to detect the tumor region of interest on B-mode ultrasound and CEUS images. A custom-developed 

algorithm extracted brightness change curves in the tumor and adjacent liver parenchyma regions from CEUS images. We also 

developed one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt and 1D-CNN), and machine-learning 

methods such as support vector machine, ensemble learning, K-nearest neighbor, and decision tree, to analyze brightness change 

curves and classify HCC and non-HCC malignancies. Results  Area under the receiver operating characteristic curve (AUC) of 

these machine-learning methods were 0.70, 0.56, 0.63, and 0.72 respectively. Meanwhile, the 1D-ResNet, 1D-ConvNeXt and 1D-

CNN demonstrated AUCs of 0.72, 0.82 and 0.84 for HCC and non-HCC classification based on brightness change curves. 

Conclusion  The 1D-CNN model can differentiate between patients with HCC and non-HCC malignancies at an accuracy that 

surpass those of machine learning and other deep learning methods. This paper provides a user-friendly and cost-efficient computer-

aided diagnostic solution to aid radiologists in clinical decision-making of HCC.
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Primary liver cancer ranks as the sixth most 
commonly diagnosed cancer globally and is the third 
leading cause of cancer-related mortality. This 
category consists predominantly of hepatocellular 
carcinoma (HCC), accounting for 75% – 85% of 
cases; intrahepatic cholangiocarcinoma (ICC), 
comprising 10% – 15% of cases; and other rare 
types[1]. HCC has a more favorable prognosis and is 
usually treated with local ablation techniques, such as 
radiofrequency and transarterial 
chemoembolization[2-3]. ICC, a major non-HCC liver 
malignancy, is characterized by aggressive behavior, 
treatment challenges, and poor prognosis. The 
primary curative treatment for ICC involves surgical 

methods, such as liver resection. In the clinical 
setting, ICC is easily misidentified as HCC or cancer 
of unknown primary origin[4-7]. Therefore, precise and 
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early diagnosis of HCC is crucial for promptly 
initiating the correct treatment[2-3, 8].

Although a liver biopsy remains the standard 
method for HCC diagnosis, it is often unnecessary in 
patients with typical imaging characteristics of focal 
lesions[2-3, 9]. Contrast-enhanced ultrasound (CEUS) is 
a commonly employed imaging modality for detecting 
and assessing tumor blood flow perfusion in HCC 
because of its operational simplicity, immediate 
results, non-invasiveness, absence of radiation 
exposure, and portability[9-11]. It effectively visualizes 
the blood supply to the tumor and its adjacent liver 
tissue, offering insightful hemodynamic information 
for differential liver cancer diagnosis[2-3]. HCC is 
generally diagnosed using CEUS features following 
standard guidelines, including typical arterial phase 
hyperenhancement and late washout onset (greater 
than or equal to 60 s) with mild washout intensity[8, 10]. 
Washout onset typically occurs within 1 min, sooner 
in ICC than that in HCC. In addition, the washout 
degree is more pronounced in ICC than in HCC[10-13]. 
Radiologists' interpretation of features, such as 
enhancement and washout intensity, is highly 
subjective and requires extensive training. Diagnostic 
accuracy is significantly influenced by the 
radiologist's experience and expertise[14-16].

Using time-intensity curve (TIC) analysis to 
interpret CEUS videos effectively solves diagnostic 
challenges[17]. This method involves manually plotting 
and comparing the average intensity levels on a 
timescale for the following two specific areas 
identified by radiologists: within the suspected tumor 
and in a parenchymal region devoid of significant 
vessels. This process generates two curves depicting 
the contrast uptake during CEUS[18]. This method 
provides accurate brightness quantification on CEUS, 
thereby assisting in a more precise diagnosis[15]. Pei et 
al. used software to generate TICs and extracted 4 
quantitative parameters (time-to-peak, rising slope, 
maximum intensity, and rising time) to differentiate 
between focal nodular hyperplasia and HCC. The 
results indicate that this method can enhance 
diagnostic accuracy beyond the capabilities of 
standard CEUS examinations. Moreover, it is more 
advantageous for differential diagnosis than analyzing 
hemodynamics alone[19].

Numerous computer-aided diagnostic systems 
using TIC analysis have emerged recently to support 
clinicians[20-21]. For example, Liu et al. extracted 18 

quantitative parameters related to time, intensity, and 
velocity from TICs and used a support vector machine 
(SVM) to predict the response of forecasts with HCC 
to hepatic artery chemoembolization with 81.0% 
accuracy[22]. Similarly, Kondo et al. trained an SVM 
classifier using 28 manually selected features, 
including TIC and enhancement morphology 
parameters, achieving an accuracy of 87.7% for HCC 
across three classifications[16]. Streba et al. analyzed 
TICs to categorize HCC and 4 additional liver 
diseases[18]. These methods typically rely on the 
empirical determination of features and 
experimentally established parameters. Unlike 
methods relying on manually defining features, deep-
learning methods use unsupervised feature learning. 
For example, Wu et al. implemented deep belief 
networks to differentiate between benign and 
malignant focal liver lesions using TIC analysis[23]. 
Their results indicated that the performance of the 
deep learning approach surpasses that of conventional 
machine learning methods.

These studies demonstrate the effectiveness of 
the automated TIC analysis as a valuable technique, 
offering clinicians rapid and dependable diagnostic 
support[18]. However, existing methods for HCC 
classification have several limitations. Labeling tumor 
regions manually on B-mode ultrasound (BUS) and 
CEUS images requires extensive clinical expertise 
and significant time investment by radiologists[24], and 
outcomes are influenced by an individual radiologist's 
subjective experience[16]. Machine-learning 
classification methods often depend on handcrafted 
features that limit the extraction of a wide range of 
features and end-to-end learning[24]. No deep learning 
models have been designed specifically to analyze the 
brightness change curves to differentiate HCC from 
non-HCC malignancies.

To overcome these limitations, we used a 
YOLOX network[25] to identify the region of interest 
(ROI), including the tumor and adjacent normal liver 
tissues, on the BUS images. We then extracted 
brightness change curves from CEUS images using a 
custom-developed algorithm, which depicts 
immediate temporal brightness variations in the tumor 
and liver parenchyma. We also developed one-
dimensional convolutional neural network (1D-CNN) 
models and used several traditional machine-learning 
methods to explore their capability to differentiate 
HCC from non-HCC malignancies by analyzing 
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brightness change curves.

1　Materials and methods

1.1　Patients
The retrospective study protocol was approved 

by the Human Research Ethics Committee of Sun Yat-
sen University Cancer Center (approval number: 
GYX2020-017) and adhered to the tenets of the 
Declaration of Helsinki. Only anonymized 
retrospective data were used for research. We gathered 
data from patients diagnosed with liver cancer who 
underwent CEUS at the Sun Yat-sen University 
Cancer Center. The inclusion criteria for this study 
were: (1) patients presenting with hypervascular liver 
nodules as verified through CEUS; (2) available BUS 
and CEUS data; (3) lesions confirmed to be HCC via 
histological analysis or identified as non-HCC based 
on histological or clinical evidence. The exclusion 
criteria were: (1) patients who had received 
chemotherapy, interventional treatment, or local 
treatment; (2) patients whose CEUS videos shook 
excessively; (3) difficult tumor location; (4) tumors 
obscured by shadows; (5) tumors extended beyond the 
view boundary. Based on these criteria, 161 patients 
were included in this study. The cohort included 131 
HCC cases (121 males and 10 females, aged 52±12.38 
years) and 30 non-HCC malignancies (15 males and 
15 females, aged (51.23±10.43) years). In the HCC 
group, 5.34% (7 patients) had multiple tumors, and 
99.2% were >10 mm in diameter. Similarly, 26.7% (8 
patients) in the non-HCC group had multiple tumors, 
with 91.7% exceeding 10 mm.
1.2　Ultrasound data collection

BUS examinations were performed by expert 
radiologists specializing in abdominal imaging using 
the Acuson Sequoia 512 system (Siemens; Mountain 
View, CA, USA). The quantification of the lesions, 

including their count, dimensions, spatial distribution, 
and sonographic appearance, as well as the 
characteristics of the hepatic backdrop, was 
meticulously recorded. CEUS was performed by 
using a 4C1 convex array probe (Siemens). Low-
mechanical index CEUS, with a dynamic range set to 
80 dB, was conducted subsequent to the intravenous 
administration of 2.0 ml of SonoVue contrast agent 
(Bracco Imaging; Milan, Italy), followed by a saline 
solution flush of 5 ml. A timer was started when the 
contrast agent was injected. Imaging was recorded at 
8 fps on cine clips for 80 s. After an 80-second 
interval, the lesion underwent periodic scanning over 
a 5-minute duration to delineate washout 
characteristics.
1.3　ROI extraction

This study employs YOLOX network[26] to 
automatically label tumor ROI. This model consists of 
5 fundamental components: the input, feature 
extraction, convolution block attention module, 
feature fusion, and prediction. It outputs the tumor's 
central coordinates (x, y) and delineates its dimensions 
using a bounding box, which was used to obtain the 
ROI on the BUS images (Figure 1a). These 
coordinates were mapped directly on CEUS, and 
superfluous borders were removed systematically. The 
identified ROI encompassed the tumor and a portion 
of the surrounding liver parenchyma. We defined the 
8 corners as the liver parenchyma region, constituting 
1% of the ROI, and the remainder as the tumor 
(Figure 1b). The dataset contains a total of 4 830 BUS 
images, which are divided into training, verification 
and prediction sets in the ratio of 6:2:2. The YOLOX 
annotation results were manually verified by 
experienced radiologists. The YOLOX demonstrated 
an accuracy of 95.13% in test set, confirming its 
superior capability in identifying liver tumors and 
their surrounding tissues.

Fig. 1　Region of interest （ROI） extraction
（a）  Extracting ROI on BUS and CEUS. （b）  The blue area is defined as the liver parenchyma； the remaining area is defined as the tumor.
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1.4　 Generating the brightness change curves 
dataset

The production process comprised the following 
steps.

a. CEUS ROIs were converted to grayscale and 
organized chronologically. The pixel values were 
averaged over the tumor and liver parenchyma 
regions, generating two curves representing the 
brightness change over time.

b. Gaussian filtering and cubic spline 
interpolation were used to refine the curves. Besides, 
refer to the radiologists' diagnostic protocols[2, 9-10], the 
first 180-second brightness change curve (Figure 2) 
were intercepted, for this time window can effectively 
capture the brightness variation of tumor, while 

minimize the redundant information.
c. The quantitative parameters for the machine-

learning methods were derived from the brightness 
change curves. For example, the CEUS4 dataset[19] 
was formed by extracting the following four features: 
time to peak, rising slope, maximum intensity, and 
rising time. The TJ18 dataset[22] was constructed by 
extracting 18 important features, including 5 time-
related features, 6 intensity-related features, and 7 
speed-related features.

d. To emulate the radiologist's diagnostic pattern 
of comparing the brightness changes in the tumor and 
liver parenchyma[19, 23], the two brightness change 
curves were divided point-by-point to generate a third 
composite curve. These curves were inputted into a 
1D-CNN model for training and verification.

1.5　Building the classification models
This study developed 3 deep learning models and 

four machine-learning methods to differentiate HCC 
from non-HCC malignancies by analyzing the 
brightness change curves (Figure 3).

The architecture of 1D-CNN is depicted in 
Figure 4. It encompasses four 1D convolutional layers 
and a 1D pooling layer. Convolutional layers were 
employed to extract features from the input curves. 
The pooling layer reduces the computational demands 
and minimizes the influence of nonessential 
information[27]. Batch normalization was implemented 
following each convolutional layer, which can 
significantly accelerate training and improve the 
learning rate[28]. The softmax and LeakyReLU 
activation functions were applied after batch 

normalization. Global average pooling condenses 
multichannel features into a 1D vector[27, 29]. A dropout 
layer was implemented with a dropout rate set at 0.2 
to mitigate the risk of overfitting. The final layer was 
equipped with a sigmoid activation layer to generate 
scores to distinguish between HCC and non-HCC 
cases.

Besides, two mainstream deep learning models, 
Residual Network (ResNet) [30] and ConvNeXt[31], 
were converted into one-dimensional classification 
networks, designated as 1D-ResNet and 1D-
ConvNeXt, respectively, and 4 machine learning 
methods: SVM[32], ensemble learning (EL) [33], K-
nearest neighbor (KNN) [34], decision tree (DT) [35], 
have been developed to classify HCC and non-HCC 
under the same datasets.

Fig. 2　Examples of brightness change curves for HCC and non-HCC cases
The red curves indicate the brightness change in the tumor region over time. The blue curves indicate the brightness change in the liver parenchyma 
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1.6　Experimental design and analysis scheme
The computational experiments were conducted 

on a laptop equipped with a 64-bit Windows 10 
operating system, 16 GB of RAM, and an AMD 
Ryzen 5 5500U processor with integrated Radeon 
Graphics, operating at a base frequency of 2.10 GHz. 
The machine learning classification models were 
developed using MATLAB's Classification Learner 
application (R2022a), while the deep learning models 
were designed using the Keras framework in the 
Python 3.6 environment.

The 1D-CNN model contains 22 882 parameters, 
representing a 91.45% reduction compared to the 
benchmark 1D-ResNet model, which has 267 618 
parameters. In terms of computational speed, our 
method processed 32 cases in just 0.265 s. The 
model's weight storage space is only 338 KB.

Metrics of area under the receiver operating 
characteristic curves (AUC), accuracy, sensitivity, and 
specificity, were used to assess the effectiveness of the 
classification models. The closer the AUC is to 1.0, 
the better the model performs. Accuracy quantifies the 
ratio of correctly classified samples to the total sample 
count, corresponding to the model's overall 
classification power. Sensitivity and specificity 
measure the model's accuracy in correctly identifying 
HCC and non-HCC cases. These indicators are 
calculated by the following formulas:

Accuracy = TP + TN
TP + FP + TN + FN

(1)

Sensitivity = TP
TP + FN

(2)

Specificity = TN
TN + FP

(3)

AUC = ∫0

1
tpr ( fpr )dfpr = P (4)

Among them, TP, TN, FP, and FN represent the 
quantities of true positives, true negatives, false 
positives, and false negatives, respectively. tprdenotes 
the true positive rate, fpr denotes the false positive rate, 

and tpr is a function of fpr. All models underwent 

fivefold cross-validation to ensure the stability of the 
classification results. The datasets were divided into 
training and testing sets with an 8:2 ratio. In each trial, 
129 of the 161 participants were allocated to the 
training set, and 32 were designated for testing.

2　Results

The performance metrics of the 1D-CNN models 
and machine learning methods, including accuracy, 
sensitivity, and specificity, are summarized in Table 1. 
The results are presented as average values with 
corresponding ranges and 95% confidence intervals. 
In the testing cohort, the 1D-CNN model achieved an 
accuracy of 83.9%, sensitivity of 89.3%, and 
specificity of 60.0% in distinguishing HCC from non-

Fig. 3　Schematic diagram of the analysis of the brightness change curves

Fig. 4　Architecture diagram of a 1D-CNN model
Conv 1D： one-dimensional convolutional layer， BN： batch normalization， GAP： global average pooling.
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HCC malignancies.
Compared to traditional machine learning 

methods, the 1D-CNN model demonstrated 
significant improvements in accuracy (increased by 
5.6%–10.0%) and specificity (increased by 23.3%–

43.3%), although its sensitivity was 1.5% lower than 
that of the DT method. Moreover, the 1D-CNN 
outperformed the 1D-ResNet and 1D-ConvNeXt 
models in terms of accuracy (enhanced by 3.8% –

5.6%), sensitivity (enhanced by 2.3-5.3%), and 

specificity (enhanced by 6.6%–10.0%).
As illustrated in Figure 5, the AUC values for 

EL, DT, KNN, SVM, 1D-ResNet, 1D-ConvNeXt, and 
1D-CNN were 0.70, 0.56, 0.63, 0.72, 0.72, 0.82, and 
0.84, respectively. These results indicate that the 1D-
CNN model exhibits best overall performance among 
the evaluated methods. Notably, the substantial 
increase in specificity achieved by the 1D-CNN can 
significantly reduce the rate of misdiagnosis of HCC, 
thereby enhancing diagnostic reliability.

3　Discussion

In this section, we will explore 4 key topics: the 
differences between brightness change curves and 
TIC curves, the advantages of our approach compared 

to 2D and 3D liver cancer classification models, the 
reasons for the lower specificity in HCC and non-
HCC classification, and the limitations of this study.

TIC and brightness change curves are two 
methods for analyzing CEUS. TIC relies on manual 

Table 1　Comparison of performance metrics between the EL， DT， KNN， SVM， and 1D-CNN， 1D-ResNet， 1D-
ConvNeXt models in testing cohorts

Model

EL

DT

KNN

SVM

1D-ResNet

1D-ConvNeXt

1D-CNN （（ours））

Accuracy/%

77.0 （71.7–82.4）

77.0 （75.3–78.7）

73.9 （72.4–75.5）

78.3 （70.1–86.5）

80.1 （70.3–89.9）

78.3 （68.2–88.2）

83.9 （（78.0––89.6））

Sensitivity/%

87.0 （73.8–100）

90.8 （（87.4––94.1））

84.7 （81.6–87.9）

87.8 （81.2–94.4）

87.0 （75.4–98.6）

84.0 （71.6–96.3）

89.3 （82.5–96.0）

Specificity/%

33.4 （1.9–64.8）

16.7 （0.65–32.7）

26.7 （10.8–42.6）

36.7 （19.8–53.5）

50.0 （35.4–64.6）

53.3 （30.6–76.0）

60.0 （（50.4––69.6））

Notes: The 95% confidence intervals for quantitative data are indicated in brackets when applicable. EL： ensemble learning； DT： decision 

tree； KNN： K-nearest neighbor； SVM： support vector machine； 1D-ResNet： one-dimensional residual network； 1D-ConvNeXt： one-

dimensional ConvNeXt；1D-CNN： one-dimensional convolutional neural network.

Fig. 5　 The receiver operating characteristic curves of EL ， DT ， KNN ， SVM ， 1D-CNN ， 1D-ResNet and 1D-
ConvNeXt models in the testing cohort
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ROI delineation by radiologists, which is subjective 
and time-consuming, focusing on early-phase 
perfusion within the first 60 s. In contrast, brightness 
change curves use YOLOX for automatic annotation, 
enabling real-time analysis with an extended 180-
second acquisition window. This captures 
comprehensive tumor perfusion dynamics, including 
late-phase washout. The automated approach 
enhances consistency and diagnostic accuracy, 
especially in distinguishing HCC from non-HCC 
malignancies.

A lot of 2D and 3D-CNN models have been 
recently applied to liver cancer classification[36-37]. 
However, these experiments have limitations. For 
example, they require manual ROI labeling by 
radiologists and substantial data storage, 
computational volume, and computational 
complexity[38]. The present study used YOLOX to 
automate the annotation of ROIs and one-dimensional 
brightness change curves for HCC and non-HCC 
classification, requiring less memory and 
computational resources. Our method reduces the 
equipment requirements for model training and 
enhances the model's suitability for implementation in 
medical devices.

Besides, our 1D-CNN model proposed in this 
study exhibited 60.0% specificity for classifying HCC 
from non-HCC, which is slightly lower than that 
reported in comparable liver cancer 
studies[16, 18-19, 22-23]. We attributed these differences to 
the following two factors: (1) differentiating HCC 
from non-HCC based solely on imaging data is 
clinically challenging for radiologists[4-7], and (2) non-
HCC belongs to a rare cancer category[4-6], and 
experiments face challenges due to insufficient non-
HCC data. Nevertheless, our 1D-CNN model 
outperformed the machine learning models. This 
superior performance can be attributed to the 1D-
CNN model's capability to automatically learn 
discriminative features from the brightness change 
curves[23-24].

This study had a few limitations. The sample size 
was small, and patients evaluated at multiple centers 
with different instruments were not included. This 
could potentially lead to the model's diminished 
ability to generalize, an over-reliance on the sampling 
instrument, and a lack of model specificity. Moving 
forward, we aim to gather more robust and extensive 
case data to enhance the model's training, thereby 

addressing the issue at hand. Our findings are 
preliminary. However, our model can be integrated 
with the BUS and CEUS models to establish a 
multimodal ultrasound network for improved HCC 
detection.

4　Conclusion

This study presents an innovative automated 
diagnostic method for differentiating HCC from non-
HCC cases. The system integrates advanced 
technologies to address key challenges: it uses the 
YOLOX network for automatic ROI labeling, 
generates brightness change curves without manual 
parameter extraction, and employs a lightweight 1D-
CNN to reduce computational costs. The 1D-CNN 
outperforms traditional machine learning methods, 
with improvements of 5.6% – 10.0% in accuracy, 
23.3%–43.3% in specificity, and 0.12–0.28 in AUC. 
It also surpasses previous 1D-ResNet and 1D-
ConvNeXt models by 3.8%–5.6% in accuracy, 2.3%
– 5.3% in sensitivity, and 6.6% – 10.0% in 
specificity. This practical system could be integrated 
into medical devices to aid clinical radiologists in 
accurately distinguishing HCC from non-HCC 
patients.
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基于超声造影图像的亮度变化曲线来
预测肝细胞癌*

陈楹楹 1） 江尚霖 1） 黄良汇 1） 曾亚光 1） 王雪花 1）** 郑 玮 2）**

（1）佛山大学物理与光电工程学院，佛山 528225；
2）中山大学肿瘤防治中心超声科华南肿瘤学国家重点实验室肿瘤医学省部共建协同创新中心，广州 510060）

摘要 目的　本研究旨在建立一种基于超声造影（CEUS）图像的亮度变化曲线来分类肝细胞癌（HCC）与非HCC恶性肿

瘤的方法。方法　本研究回顾性地纳入131例HCC患者和30例非HCC恶性肿瘤患者。首先，采用YOLOX网络自动检测B

超和超声造影图像中感兴趣的肿瘤区域；然后，开发一种定制算法从超声造影感兴趣区域提取肿瘤及邻近肝实质区域的亮

度随时间变化的曲线；最后，构建基于深度学习的一维卷积神经网络（1D-ResNet、1D-ConvNeXt和1D-CNN）和传统的机

器学习模型组，包括支持向量机、集成学习、k近邻和决策树等，来分析亮度变化曲线，并对HCC和非HCC恶性肿瘤进行

分类。结果　各机器学习方法的受试者工作特征曲线下面积（AUC）值分别为 0.70、0.56、0.63、0.72；1D-ResNet、1D-

ConvNeXt和1D-CNN的AUC分别为0.72、0.82和0.84。结论　1D-CNN可以实现基于亮度变化曲线自动分类HCC和非HCC

恶性肿瘤，其准确率高于传统的机器学习方法和其他一维深度学习模型。本文提供了一种简单、低成本的计算机辅助诊断

方案来协助放射科医生进行临床诊断HCC。

关键词 计算机辅助诊断，深度学习，肝细胞癌，对比度增强超声，亮度变化曲线
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