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Abstract Learning and memory is a delicate process of acquiring, storing and reconsolidating the knowledge with a behavioral
output, which is indispensable for animals to adapt to their living environment. Defects in learning and memory contribute to some
psychiatric disorders such as schizophrenia, depression and Alzheimer’s disease, and are recently reported to be inheritable from the
parental generation to their offspring. However, it is not clear currently what the mechanism is underlying the learning and memory
inheritance due to the lack of animal models. In this perspective type of mini-review, we first briefly summarize the current
understanding of the molecular basis, neural circuit and transgenerational inheritance of learning and memory. We then focus on
discussing the possibility of using Drosophila as an animal model to study the transgenerational inheritance of learning and memory and
propose potential strategies to achieve the goal.
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Learning and memory are generally defined as a
process that requires an environmental input and a
responsive behavioral output. Learning is a behavioral
process of acquiring knowledge from transient inputs,
and memory is a physiological process of storing and
reconsolidating the knowledge that an animal
previously learned. Higher organisms are capable of
learning from experiences and adapting themselves to
the dynamic environment with their memories that
help them to discriminate potential beneficial and
harmful matters. Learning and memory are also
indispensable in all aspects of humans, determining the
way and quality of our lives according to what we
remember and forget. Defects in learning and memory
contribute to psychiatric disorders such as
schizophrenia, depression and Alzheimer’s disease,
and affect the cognitive capability and life quality of
such patients and their descendants [1-3]. In the past
decades, the molecular and neural circuit mechanisms

underlying the acquisition, storage and reconsolidation
of memory have been largely uncovered and
summarized in many comprehensive reviews [4-6],
establishing an elementary conceptual framework of
learning and memory. In this mini-review, we give a
brief summary of the molecular mechanisms of
learning and memory, and focus on examining the
discoveries on the transgenerational epigenetic
inheritance of acquired behaviors underlying the
appetitive and aversive memory. In the end, we
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highlight that Drosophila is a potentially excellent
animal model to study the transgenerational epigenetic
inheritance of learning and memory, and possible
strategies for further investigations are proposed.

1 Molecules and neural circuits underlying
the memory storage and reconsolidation

Memory refers to processing of the learnt
information, and displays many common properties
with synaptic plasticity, suggesting that synaptic
plasticity is involved in memory storage and the
strength of synaptic plasticity is linked to memory
reconsolidation [7-8]. Studies of the mammalian
behavioral conditioning have revealed that memory is
mainly stored in the hippocampus and retrieved in the
medial temporal lobe of the brain [5]. In flies with
classical conditioning of behavioral paradigms, the
mushroom body (MB) of the central brain is found to
be required for the olfactory memory[9-10], whereas the
fan-shaped body (FB) is important for the visual
pattern memory[11-12]. It is thus incontrovertible that the
genes regulating the synaptic structure and plasticity of
these brain regions are crucial for the memory
formation[4-5]. However, given that the timescale of the
gene transcription and protein turnover is several
hours, it is questionable that the long-term memory last
for even a life time long if the memory is only stored in
proteins. It is then becoming evident that the
perpetuating modifications but not the molecules
themselves would be the key features of molecular
changes [13], raising the proposition that epigenetic
mechanisms have the possibilities to preserve
memories over the entire life time [6]. In the following
parts we will briefly summarize the discoveries about
the storage, reconsolidation and epigenetic regulation
of memory (Figure 1a).
1.1 Short鄄term memory storage

Earlier studies in invertebrates with simple
models such as gill-withdrawal reflex in Aplysia, flight
trace in honeybees and olfactory learning in fruit flies
started the era of memory[14-17]. The short-term memory
that lasts for from several minutes to several hours was
first reported in the Aplysia studies on gill-withdrawal
reflex[18]. The sensory and motor neurons of Aplysia are
both found to be required for gill-withdrawal reflex.
Further serotonin and its downstream effector cAMP
(cyclic adenosine monophosphate) were reported to
regulate the release of neural transmitter glutamine and
to control the synaptic connections between the

sensory and motor neurons[18]. Later studies, using the
classical or operant conditioning, show that
gill-withdrawal reflex is increased notably when
conditioned stimuli are applied [19-21]. After the
conditioned stimulus, the cAMP signal is activated
through increased influx of calcium ions, strengthening
the synaptic connections between sensory and motor
neurons[19].
1.2 Long鄄term memory reconsolidation

Earlier studies in different invertebrate models
show that the duration of memory storage occasionally
lasts for days, weeks, or even a longer time, which is
referred as the long-term memory [5]. The synaptic
connections in the long-term memory are further
enhanced, comparing to that in the short-term memory,
which require regulator PKA (the cAMP-dependent
protein kinase) and its effector MAPK (mitogen-
activated protein kinase) [22-23]. The PKA and MAPK
signals activate the target gene expression through
preventing the binding affinity of CREB-1 (cAMP
response element binding protein-1) to DNA [24].
Further studies reveal that CREB-1 activates the
transcriptional factor C/EBP (CCAAT-enhancer
binding protein) and initiates the downstream gene
expressions, which is crucial for the synaptic growth
and connections [25-28]. Unlike the positive role of
CREB-1 in memory reconsolidation, CREB-2
suppresses the synaptic growth and inhibits the
long-term memory reconsolidation[29]. It is a conserved
pathway for memory reconsolidation that CREB-1/2
controls the expression of target genes important for
the long-term synaptic connections[30].
1.3 Epigenetic regulation of the formation and
maintenance of memory

Epigenetic mechanisms, including DNA
methylation, histone modifications and noncoding
RNAs, have been shown to be involved in memory
formation and maintenance [6-7], also see Figure 1a.
Earlier studies reported that an inhibitor targeting
DNA methyltransferase (DNMT) affects the formation
of fear memory, implying that the changes of DNA
methylation are involved in memory formation [31-33].
Recent studies showed that mice lacking a DNA
demethylase Tet 1 (ten-eleven translocation methy-
cytosine dioxygenase 1) display impaired fear memory
and spatial memory, further suggesting that Tet 1 is
important for memory formation[34-35]. The transcription
of genes that are crucial for synaptic growth are
changed in the Tet 1 knockout mice, suggesting that
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transcriptional events mediated by DNA methylation
regulate the memory formation [36]. However, it is still
unknown how the environmental inputs can change the
status of neural DNA methylation.

Histones can be modified by various chemical
groups such as methyl-, acetyl-, phospho-, and
sumo-groups, resulting in changes of gene
transcription [6]. The first report linking histone
modifications to memory formation was from the
observation that acetylation level of histone H3 in the
hippocampus is increased after contextual fear
conditioning [37]. Following these findings, many labs
tested possible roles of the histone acetyltransferases
(HATs) and histone deacetylases (HDACs) in different
behavioral paradigms and reported that histone
acetylation is crucial for auditory, spatial and
contextual memory formation and reconsolidation[38-43].
It has also been reported that histone phosphorylation
and methylation are important for memory formation
as well[44-47]. The H3K9me2 (a mark for transcriptional
repression) and H3K9me3 (a mark for transcriptional
activation) show opposite effects on memory
formation[48], both of which are the epigenetic marks on
the promoter region of BDNF (brain-derived
neurotrophic factor) gene[46].

Recent studies of noncoding RNAs have shown
that the microRNA (miRNA) plays important roles in
the memory formation in the fear conditioning
tasks [49-51]. The expression level of miRNA targets
increases (e.g. miR-34a) or decreases (e.g. miR-182)
after fear conditioning, and consequently miR-34a
promotes, whereas miR-182 inhibits, the fear memory
reconsolidation [51]. Further studies revealed that
miR-34a promotes fear memory reconsolidation
through the Notch signaling pathway, whereas
miR-182 regulates the transcription of actin
network-related genes to prevent the memory
reconsolidation[51].

In summary, these epigenetic mechanisms
underlying the memory formation and maintenance are
at the level of transcriptional regulation of various
target genes that are crucial for synaptic growth and
connections. More efforts will be needed to investigate
how the epigenetic mechanisms link the environmental
stimuli to acquired memory formation, and whether
the inheritance of epigenetic marks is responsible for
the transgenerational inheritance of acquired
behaviors.

2 Transgenerational epigenetic inheritance
of acquired behaviors through learning and
memory

The molecular and circuit bases of learning and
memory are becoming more and more explicit, and are
shedding light on the pathologies and treatments of
some of the psychiatric diseases [1-2]. However, as the
psychiatric diseases have been reported to have strong
heritable risks [3, 52-53], it is essential to understand the
heritable mechanisms of acquired behavioral traits.
The acquired physiological traits (non-behavioral
traits) have been recently reported to be transmitted
from the parents to the descendants through an
epigenetic mechanism in the germline[54-55], whereas the
acquired behavioral traits can be inherited to the
descendant generations through not only the way of
epigenetic transmission but also the way of social
transmission [56]. Social transmission requires the
interaction between the parent and the offspring and
does not involve the changes of genetic or epigenetic
information; whereas the epigenetic transmission
requires the epigenetic alterations in germline without
any interaction between the parent and the offspring[1, 56].
In the following sections, we summarize the recent
studies on the transgenerational inheritance of acquired
behaviors and discuss the possibilities of germline
mediated transgenerational inheritance (also referred
as transgenerational epigenetic inheritance) of
behavioral traits (Figure 1b).
2.1 Transgenerational inheritance of behavioral
traits in different memory conditioning

The first study on transgenerational inheritance of
learning and memory emerged as that the learning
ability of the rats can be detected in their offspring[57].
A following study showed that the parental rats with a
high frequency of licking and grooming behavior in the
Morris water maze produce the offspring with similar
high frequency of licking and grooming behavior,
indicating that the high cognitive behavior acquired in
the parental generation (F0) can be transmitted to the
descendant generation[2].

Recent mechanistic studies on the transmission of
behavioral traits have given us a clear definition of
transgenerational inheritance and its difference from
intergenerational inheritance [58-60] (Figure 1b). Both of
these two routes of inheritance require specific
epigenetic marks in the germ cells; and the essential
difference between them is whether the germ cells are
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directly exposed to the environmental stimuli that
cause the epigenetic modifications. The
intergenerational inheritance involves the epigenetic
modifications in the germ cells caused by the
environmental stimuli, whereas the transgenerational
inheritance involves epigenetic modifications from the
parental generation but not direct effects of the
environmental stimuli (Figure 1b). For example, when
the germ cells of the parent (F0) or the germ cells of
unborn offspring (F1) have already experienced directly
the environmental exposures, the behavioral traits
caused by these environmental exposures can be
transmitted from the parent (F0) to the descendant
generations (F1 and F2). In this case, the transmission of
acquired traits lasting for two generations belongs to
intergenerational inheritance, and the transmission
lasting for more than two generations (such as F3)
belongs to transgenerational inheritance.

In this context, one of the striking examples has
been recently reported in the vinclozilin-exposed rats[61].
The parental rats displayed anxiety-like behavior when
exposed to vinclozilin, an anti-androgen fungicide.
Notably, this anxiety-like behavior was also detected
in the F1 offspring and lasted until the F3 generation[61].
It is also interesting that the acquired anxiety-like
behavior in the descendants affected the mate
preference for the non-exposed rats. Further
investigations showed that the transcriptional profiles
were remarkably changed in the brain of F3 generation
rats [61]. Other examples in chickens and mice also
demonstrate that the learned behaviors and long-term
memory can be transmitted to the descendant
generations when their parent(s) experience the
enriched environment such as various toy objects for
playing, bigger population of animals for complex
social behaviors, various physical activities or repeated
training [52, 62]. However, it is still not clear currently
what kind of acquired behaviors will be
transgenerationally inheritable to the descendant
generations. More investigations are absolutely needed
to uncover the features of acquired behaviors that can
be transgenerationally inherited, and thus animal
models that can be easily manipulated should be
established for this specific purpose to investigate the
molecular mechanisms underlying the transgenerational
inheritance of acquired behavioral traits.
2.2 Germline transmission in transgenerational
inheritance of behavioral traits

An essential question about the inheritance of

acquired behavioral traits is how the acquired
behaviors that are controlled in the brain are
transmitted to the descendant generations after
undergoing fertilization and embryonic development.
It is interpretable for intergenerational inheritance as
the germline cells of the offspring have experienced
the environmental stimuli [1, 60], however, it is not the
case for transgenerational inheritance. The
transgenerational passage of acquired behavioral traits
requires the inheritance of epigenetic marks, thus it is
the central question for transgenerational inheritance
that how the acquired epigenetic marks in the brain
involved in the acquired traits, e.g. learning and
memory, are transmitted to the offspring. The
relationship between the acquired memory in the brain
and epigenetic modifications in the germline remains
to be uncovered to delineate the mechanistic
framework of transgenerational inheritance of learning
and memory.

Recent studies on transgenerational epigenetic
inheritance of acquired behaviors revealed that
transmission of the parental behavioral traits to the
descendant is mediated by the changes of epigenetic
marks such as DNA methylation, histone
posttranscriptional modifications and noncoding
RNAs [1, 2, 60]. One of such examples is that the mice
experienced low or high maternal care affect the care
manner of their offspring [63]. DNA methylation in the
genomic regions of the glucocorticoid receptor and the
estrogen receptor genes was found to be required for
the behavioral inheritance in mice [64-65]. Another study
reported that the mice subjected to maternal separation
and maternal unpredictable stress displayed behavioral
and physiological alterations, involving the changes of
miRNA and piRNA in the sperm[66]. Interestingly, these
behavioral and physiological alterations were also
observed in the offspring of the parental mice
experienced such stresses[66].

Together, current findings support the concept
that the inheritance of epigenetic marks in the germline
is essential for the transgenerational inheritance of
acquired behaviors. However, it remains largely
unknown what are the mechanistic events linking the
behavioral inheritance of learning and memory in the
brain to epigenetic inheritance in the germline. More
animal models and behavioral paradigms that are
stable and easily manipulated await being developed to
assess this question.
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Fig. 1 The molecular basis, neural circuit and transgenerational inheritance of learning and memory
(a) Molecular and neural circuit underlying memory. Memory formation and reconsolidation are linked with the synaptic growth and connections,

which are regulated by alterations of epigenetic marks, such as DNA methylation, histone posttranslational modifications (HPTM) and noncoding

RNAs. (b) Transgenerational inheritance of acquired behaviors underlying memory. The intergenerational inheritance requires the epigenetic alterations

in the germ cells caused by direct effects of the environmental stimulus (ES), whereas the transgenerational inheritance requires epigenetic alterations

from the parental generation but not direct effects of the environmental stimulus.

3 Potential Drosophila paradigms for
studying transgenerational epigenetic
inheritance of learning and memory

The molecular and neural circuit mechanisms of
learning and memory have been better accepted from
the studies using vertebrate behavioral paradigms.
However, recent observations that some of the
psychiatric diseases such as depression, anxiety and
addiction display strong heritable risks to the
descendant generations raise the question that defects
of learning and memory occur likely not only in one
generation but through multiple generations. The
molecular basis of behaviors inheritance underlying
the memory is largely unknown as there are currently
lacking sufficient animal models and feasible
behavioral paradigms for this purpose. The current

animal models for transgenerational inheritance study
mainly rely on the C. elegens models for physiological
traits (e.g. ageing)[55, 67] and rodent models for maternal
behavioral traits [66]. The investigations using these
animal models are far from being sufficient for the
understanding of transgenerational inheritance of
behavioral traits that are based on learning and
memory. Drosophila is an excellent genetic animal
model for studying the mechanistic regulation of
development and metabolism [68]. Recent studies on
Drosophila learning and memory have promoted our
understanding of the neurobiology underlying
behaviors [9, 11, 69]. Here, we focus on assessing the
transgenerational inheritance of learning and memory
in Drosophila (Figure 2) and propose potential
strategies to study the transgenerational inheritance of
learning and memory in flies (Figure 3).
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3.1 Possibility of transgenerational inheritance of
learning and memory in Drosophila

Recent studies on learning and memory in flies
mainly focus on uncovering the genes and neural
circuits. As the physiological traits of flies can be
transmitted to the descendant generations [70-73], it is
tempting to ask whether the behavioral traits of
parental flies can also be transmitted to their offspring.
There are no reports thus far to investigate
transgenerational inheritance of acquired behaviors
based on learning and memory in flies. However, it is
possible that the flies can not only learn the
memory-based behaviors but also transgenerationally

transmit the acquired behaviors to the descendant
generations.

One evidence to support this hypothesis is that the
epigenetic mechanisms have been recently reported to
be required for the memory formation in flies[74]. The
Drosophila euchromatin histone methyltransferase
(EHMT) mutant flies displayed decreased
non-associative learning and impaired courtship
memory [74], implying that histone modifications play
important roles in learning and memory in flies.
Another study on histone acetylation reported that
Tip60 (tat-interacting protein 60), a histone
acetyltransferase, is located in the axonal lobe of

Fig. 2 Strategies for finding out the behaviors that might be transgenerationally inherited in flies
(a) Behavioral paradigms that have been established and used such as olfactory learning, visual pattern learning and place learning paradigms will be

tested. (b) The flies fed with Wurzburg food (W food) or Beijing food (B food) will be used for classical conditioning with environmental stimulus

(ES). (c) The performance index (PI) of the acquired behaviors will be recorded for at least five generations after food change (from W food to B food

or from B food to W food). The acquired behaviors showing gradual changes along with food changes will be used for the further study of

transgenerational inheritance.
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mushroom body and required for the courtship
learning and intermediate-recall memory [75]. A more
recent study showed that the heterochromatin structure
regulated by CDK12 (cyclin-dependent kinase 12) is
crucial for the courtship learning and memory in
flies [76]. These pieces of observations are far from
building the circuit mechanisms underlying learning
and memory in flies, but it gives rise to the conception
that the alterations of epigenetic marks are involved in
fly learning and memory, which implies that it is
possible for the flies to transmit learning and memory
epigenetically to the descendent generations.

Another evidence to support the hypothesis is
from a study on visual pattern learning and memory in
flies twenty years ago [77]. In this study, Guo and
colleagues reported that the environmental conditions
such as diet have remarkable effects on the visual
flight orientation during classical conditioning [77].
Interestingly, according to the authors’observation the
flies fed with Wurzburg food (hereafter referred as W
food, with more molasses in the recipe) and Beijing
food (hereafter referred as B food, with more sugar in
the recipe) show different performance index (PI) of
the visual pattern learning in the flight simulator. The
flies fed with W food display high PI in the visual
pattern learning, whereas the flies fed with B food
show low PI. This result indicates that the flies fed
with W food is smarter than the flies fed with B food
in the visual pattern learning. The most enlightening
findings in this study are the following observation that
when the flies originally fed with W food were then
kept in the B food, they show gradually decreased PI
lasting for at least five generations. Reversely, the B
food-fed flies show gradually increased PI when
changed to the W food. The most interesting finding
was the gradual changes of visual pattern learning
ability among the descendant generations, implying a
gradual change of the molecular and circuit
mechanisms based on the learning ability and memory
processes. The gradual changes give us another hint
that the learning ability of the parent flies transmit to
the descendant generations and the memory gradually
disappears when the environmental stimuli disappear
(such as the W to B food change or B to W food
change). More importantly, the molecular and
circuitry mechanisms required for the learning ability
can be possibly transmitted to the offspring, which is
also the memory basis of the offspring.

3.2 Potential strategies for studying the
transgenerational inheritance of learning and
memory in Drosophila

Based on the findings that the learning ability of
flies changes according to exogenous stimuli, e.g.
varying between W food and B food conditions, here
we propose several potential strategies to study the
transgenerational inheritance of learning and memory
in flies, including the strategies for determining which
of the behavioral traits are transgenerationally
inheritable (Figure 2) and the strategies for studying
how it is regulated (Figure 3).

To study transgenerational inheritance of learning
and memory in flies, we first should know what kind
of acquired behaviors may be possibly transmitted to
the descendant flies. To this end, different behavioral
paradigms[78-79](such as olfactory learning, visual pattern
learning and place learning paradigms, Figure 2a) can
be used to test flies fed on either the W food or the B
food (Figure 2b). The visual pattern learning ability is
the only example reported to be dependent on diet
change, it is important to determine whether there are
other learning abilities that show common properties
with visual pattern learning ability in response to diet
change. As only a single fly can be used in the flight
simulator for detection of visual pattern learning, it
might be problematic when addressing the question of
transgenerational inheritance where one would need
more flies to produce offspring. When testing the flies
in different behavioral paradigms, the PI of the
acquired behaviors will be determined after food
change (Figure 2c), from W food to B food or from B
food to W food). The acquired behaviors showing
gradual changes along with food changes will be used
for further investigations.

Following the optimization of behavioral
paradigms (Figure 2), strategies for further study of the
transgenerational inheritance in Drosophila are
proposed in Figure 3. The flies fed with the W food
are referred as born smart (BS) flies as they display
high PI of behavioral learning (Figure 3a); whereas the
flies fed with the B food are referred as learned smart
(LS) flies as they display low PI of behavioral learning
but can eventually get to the high PI after enriched
environmental stimuli (ES) such as repeat training
schedules(Figure 3d). Based on the BS flies(Figure 3a),
the paradigm conditioning/training will be carried out
after the food change (from W food to B food)
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combined with ES or without ES (Figure 3b). The
offspring of the trained flies will then be collected for
further paradigm training, and the same training should
last for at least three generations. The PI of acquired
behaviors of each generation will be determined for
further analysis (Figure 3c). The acquired behaviors of
parental BS flies that are transmittable to the
descendant flies fed on the W food and without
training (referred as N(W)) will be the traits for further
investigations of the transgenerational inheritance. A
comparison of the gene expression profiles, epigenetic
marks and neural anatomies between the flies fed on
the W food and with training (T(W)) and the flies fed
on the W food and without training (N(W)) will give

us the mechanistic information of transgenerational
inheritance of learning and memory. For the LS flies
(Figure 3d), the enriched ES (such as repeat training
schedules) similar to that in the mammalian models[52]

will be needed for enhanced training of the flies. The
flies with enriched ES that show similar PI with the BS
flies (referred as LS flies) will be used for further
analyses (Figure 3e). The acquired behaviors of the
parental LS flies that can be transmitted to the
descendant flies fed with B food and without training
(referred as N (B)) will be the traits for further
investigations of transgenerational inheritance
(Figure 3f).

In summary, we suggest Drosophila as an animal

Fig. 3 Strategies for studying the transgenerational inheritance of learning and memory
using the born smart (BS) flies and learned smart (LS) flies

(a) The flies fed with W food that display high performance index (PI) in the behavioral paradigms, are referred as born smart (BS) flies. (b) Strategies
for studying transgenerational inheritance using BS flies. The BS flies will be trained with or without environmental stimulus (ES and No ES) in W food
or B food. The enriched ES represents for enriched environmental stimulus. The offspring of the training flies will then collected for further paradigm
training, and this training should last for at least three generations. T(W): Train the W food-fed flies with environmental stimulus (ES); N(W): Do not
train the W food-fed flies with ES; T(B): Train the B food-fed flies with ES; N(B): Do not train the B food-fed flies with ES). (c)The performance index
(PI) of acquired behaviors of each generation will be recorded for further analysis. (d) The flies fed with B food that display low PI in the behavioral
paradigms, are referred as learned smart (LS) flies. (e) Strategies for studying transgenerational inheritance using LS flies. The enriched ES represents
for enriched environmental stimulus and will be used to train the flies. The offspring of the training flies will then collected for further paradigm
training, and this training should last for at least three generations. T(B): Train the B food-fed flies with environmental stimulus (ES); N(B): Do not train
the B food-fed flies with ES; E(B): Train the B food-fed flies with enriched ES. (f)The performance index (PI) of acquired behaviors of each generation
will be recorded for further analysis.
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model to study the epigenetic mechanisms of
transgenerational inheritance of learning and memory.
The strategies we proposed here are just general
principles, and specific modifications are absolutely
needed for each specific experiment when performing
paradigms.
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