PFBB 生物化学与生物物理进展 Progress in Biochemistry and Biophysics 2017, 44(1): 70~79

www.pibb.ac.cn

基于超滤膜辅助的糖蛋白全 O-连接糖链的富集 和 MALDI-TOF/TOF 质谱结构解析 *

武艳丽1)杨刚龙1)缪明永2)关锋1)**

(¹) 江南大学糖化学与生物技术教育部重点实验室,无锡 214122; ²⁾ 第二军医大学生物化学与分子生物学教研室,上海 200433)

摘要 哺乳动物中约有 50%以上的蛋白质都发生了糖基化修饰.连接在丝氨酸或苏氨酸上的 O-连接糖链是常见的蛋白质糖 基化修饰方式之一,其主要功能是维持与其连接的蛋白质部分的空间构象,保护其免受蛋白酶水解及覆盖某些抗原决定簇. 糖链结构的解析有助于更清楚地认识糖蛋白及其功能.本研究建立了一种基于超滤膜辅助(FASP)富集细胞、血清和尿液中糖 蛋白全 O-连接糖链的方法,根据糖蛋白与其糖链结构之间的分子质量差异,利用 10 KD 超滤膜富集蛋白质样品中由 β 消除 反应释放的全 O-连接糖链,将糖链甲基化修饰后再使用 MALDI-TOF/TOF-MS 进行解析,同时利用二级质谱进行结构确 认.通过上述方法可从标准糖蛋白 mucin、细胞、血清和尿液样本中分别鉴定到 83、29、33 和 85 种 O-连接糖链结构,利 用该方法可以从复杂样品中富集和解析糖蛋白全 O-连接糖链,实现快速、高效、高通量地解析糖蛋白 O-连接糖链的目的.

关键词 O- 连接糖链,糖组学,超滤膜辅助(FASP),MALDI-TOF/TOF-MS
 学科分类号 Q81
 DOI: 10.16476/j.pibb.2016.0312

蛋白质的糖基化是动物细胞中最常见的蛋白质 翻译后修饰之一回,目前已知哺乳动物蛋白质中约 有 50%以上的蛋白质发生了糖基化四. 蛋白质糖基 化修饰在各种生命现象中起着重要的作用,如参与 细胞黏附及信号转导,影响蛋白质的分泌和稳定 性,参与血浆中衰老蛋白的清除、免疫及炎症反 应、精卵识别以及影响蛋白质在细胞内的转运方向 等四. 糖基化修饰在疾病中, 特别是肿瘤的发生、 发展和转移过程中都有着重要意义,许多疾病诊断 标志物及治疗的靶标,如前列腺癌中的前列腺特异 性抗原 PSA^[3]、卵巢癌中的肿瘤抗原 CA 125^[4]、乳 腺癌中的 Her2/neu^[5]以及肝癌中的 AFP^[6]等都是糖 蛋白.蛋白质是否发生糖基化修饰、糖蛋白质的量 和(或)其糖基化程度的变化以及糖链结构的改变与 特定的生理或病理状态改变直接相关,糖蛋白上糖 链结构的解析可以帮助我们进一步了解糖链和糖蛋 白质的生物学功能.此外,比较不同病理状态和正 常状态下糖链的变化可以为疾病的早期诊断、治疗 及预后提供参考依据,达到尽早防治的目的.

蛋白质的糖基化修饰主要有 N- 糖基化和 O-

糖基化两种主要形式.一般所说的蛋白质 O- 糖基 化是指在蛋白质的 Ser/Thr 上通过 N-乙酰氨基半 乳糖转移酶的催化作用,加 N-acetylgalactosamine (GalNAc)起始的黏蛋白(mucin)型 O- 糖基化.另 外,还有 O-GlcNAc、O-mannose、O-fucose、Oglucose、O-xylose 等 O- 糖基化形式^[7].目前,我们 已经知道了 O- 连接糖链的 8 个核心结构^[8],而且 许多研究发现 O- 连接糖链的异常表达具有很重要 的生物学意义.例如,癌症细胞中 Core 2 O- 连接 糖链的上调能够使肿瘤细胞逃避免疫系统 NK 细胞 的杀伤,促进肿瘤细胞的增殖和转移^[9].在神经系 统中,O- 连接糖链的 core 1 结构(T 抗原)在发育的 神经元轴突表面有大量分布^[10],并且在果蝇的神经 系统发育过程中起重要的作用^[11].癌症细胞中

^{*}国家自然科学基金青年科学基金(81402115),国家高技术研究发展计划(863)(2014AA093513)和江苏省自然科学基金(BK20140172)资助项目.

^{**} 通讯联系人.

Tel: 0510-85918126, E-mail: fengguan@jiangnan.edu.cn 收稿日期: 2016-10-07, 接受日期: 2016-12-21

Core 3、Core 4 或 O-mannose 能够调节整合素蛋白的信号通路,抑制肿瘤的形成和转移^[12].

对于 N- 连接糖链的释放,可以使用 PNGase F 酶(N-糖肽酶F), 它可以切断 GlcNAc-Asn 连接的 酰胺键,活性高,适用于高甘露糖型、杂合型和复 杂型糖链等多种类型的 N- 连接糖链, 能对大多数 的 N- 连接糖链进行有效的释放. 但对于 O- 连接 糖链,首先,O-糖基化没有保守的特征修饰序列 用来预测糖基化位点,其次,已知 O-连接糖链有 8个核心结构,其结构变化较 N- 连接糖链更为复 杂,最后,尚未发现可以将 O- 连接糖链整体从肽 链上游离的通用内切酶,因此目前大多数研究人员 均采用化学手段使 O- 连接糖链从多肽上游离. 目 前常用的传统化学法是β消除法和肼解法. Royle 等^[13]利用温和型肼解法在中性粒细胞粒明胶酶 B 和 分泌型 IgA 中分别鉴定到 18 和 25 种特异的 O-连 接糖链. Huang 等^[14]利用改良过的β消除法在人乳 中分离的胆盐刺激脂酶中鉴定到 12 种特异的 O-连 接糖链. 肼解法, 可同时释放 N-连接糖链和 O-连 接糖链,通过控制肼解温度可以选择性地断裂 N-连接糖链和 O- 连接糖链, 目前该方法已经实现仪 器自动化. 但因该法反应条件剧烈, 肼解后需对糖 链进行乙酰化复原处理,而且蛋白部分已经破坏, 无法进行有关糖基化位点的研究[4].因此,肼解法 没有得到广泛应用. 而 β 消除反应^[15]采用 0.1 mol/L 的 NaOH 提供碱性环境将 O- 连接糖链从相应的糖 蛋白上解离下来,采用1 mol/L 的 NaBH₄(过量)作 为还原剂将糖链的半缩醛结构还原为在碱性条件下 比较稳定的糖醇以阻止其发生剥皮反应(peeling reaction),保护糖链的还原性末端.因此,大多数 已发表的文献中均采用 β 消除的方法进行 O- 连接 糖链的释放,而且随着研究的不断发展其方法也在 不断地改进和完善. Rasilo 等^[16]用硼烷氨络合物 (NH₃•BH₃)代替经典 β 消除法中的 NaOH 和 NaBH₄, 此方法优势在于 NH₃•BH₃ 的还原性比 NaBH₄ 强, 避免了传统 β 消除中用醋酸终止反应时过量 NaBH₄产生大量的盐,降低了因除盐带来的显著样 品损失[17]. Goetz 等[18]用 28%的氨水溶解的硼烷氨 络合物代替了 NaOH 和 NaBH₄,并对释放的糖链 进行了甲基化修饰,虽然大大地提高了糖链的收 率,但由于实验过程时间过长以及未能将糖链与肽 段进行分离,还是造成了糖链的大量损失.除了上 述两种经典的化学法外,最近发表的文献中也报道

了一些较新颖的方法.例如,Kudelka 等^{[19}在细胞 培养的过程中向培养基中添加可被细胞摄取的化学 前体物质 Ac₃GalNAc-α-Bn,这种化学前体物质进 入细胞后经细胞内酯酶的作用重新生成去乙酰化的 Bn-α-GalNAc,可被细胞内的糖基转移酶利用生成 O-连接糖链,然后释放到培养基中,通过对培养 基中 O-连接糖链量的鉴定即可得到细胞内 O-连 接糖链的量.Song 等^[20]利用 NaClO 对各种生物样 本进行控制处理,从而快速地进行 O-连接糖链的 释放,这种方法虽然大大减少了实验成本和时间, 但其所需样本量为g级,对于组织、尿液和血清等 临床样本的适用性相对较弱.

鉴于本实验室所发明的一种利用超滤膜辅助 (FASP)富集细胞和血清中糖蛋白全 N- 连接糖链的 方法[21],根据糖蛋白与其糖链结构之间的分子质量 差异,利用 10 KD 超滤膜通过离心使蛋白样品中 经 PNGase F 酶切释放的全 N- 连接糖链与肽段快 速分离,从而减少糖链的损失.综上所述,本文建 立了一种基于超滤膜富集细胞、血清和尿液中糖蛋 白全 O- 连接糖链的方法,并利用质谱技术对糖链 结构进行分析. 根据糖蛋白及其糖链结构之间的分 子质量差异,通过 10 KD 超滤膜富集细胞、血清 和尿液糖蛋白上经 β 消除反应释放的全 O- 连接糖 链,使用 MALDI-TOF/TOF-MS 解析糖链结构,并 且利用二级质谱进行了结构确认. 该方法可以被用 于从大量生物样本中富集糖蛋白全 O- 连接糖链, 可以达到快速、高通量地解析糖蛋白 O- 连接糖链 的目的.

1 材料与方法

1.1 细胞培养

人源乳腺非浸润性肿瘤细胞 MCF-7 购买于 ATCC,培养基为含有 10% 胎牛血清(Gibco BRL, USA)和 1%双抗(Gibco BRL)的 MEM(Gibco BRL) 完全培养基,于 37℃ CO₂浓度 5%的细胞培养箱中 培养.

1.2 蛋白质的提取

1.2.1 尿液蛋白的提取

收集第1次晨尿中段尿50 ml, 5000g4℃离 心30 min,去除细胞碎片,加入3倍体积-20℃预 冷丙酮,4℃放置12 h,14000g4℃离心30 min, 去除上清,保留沉淀.碳酸氢铵复溶蛋白沉淀, 10000g4℃离心10 min去除沉淀,保留上清,用 BCA 蛋 白 质 浓 度 测 定 试 剂 盒 (Beyotime Biotechnology, China)测定蛋白质浓度后-80℃保存备用.

1.2.2 细胞蛋白质的提取

当细胞密度达到 90%时提取细胞全蛋白:用 1×PBS 多次冲洗细胞,加入适量含 1% PMSF和 0.1% 抑肽酶的组织蛋白抽提试剂(Thermo Scientific, USA);将样品置于冰浴中,超声3 min 左右,超声功率为 400 W,超声3 s,停9 s,超声 至样品澄清、透明,14 000 g 离心 15 min,除去沉 淀取上清并测定蛋白质浓度,-80℃保存备用.

1.2.3 血清蛋白的提取

采集患者或者志愿者静脉全血于收集管中,于 室温静置 30 min 待血液凝集后,2000 g 冷冻离心 15 min,使其分层.将收集管小心地从离心机中取 出,防止打乱分层效果,尽快吸取上层的液体部 分,-80℃保存备用.

1.3 O-连接糖链的解离

分别将 500 µg 标准糖蛋白 mucin、2 mg细胞 蛋白、血清蛋白和尿液蛋白溶液加入 10 KD 超 滤膜中 14 000 g 离心 15 min, 弃去流出液; 加入 300 µl 8 mol/L尿素溶液,充分混匀,14 000 g 离心 15 min, 弃去流出液; 再加入 200 µl 8 mol/L 尿素 溶液,充分混匀,14000g离心15min,弃去流出 液;加入400 µl 8 mol/L尿素和 50 mmol/L 碳酸氢 铵的混合液,同时加入8µl 10 mmol/LDTT,充分 混匀,于 56℃ 孵育 45 min, 孵育完成后, 14 000 g 离心 15 min, 弃去流出液. 加入 400 µl尿素和碳酸 氢铵的混合液,加入16 µl 20 mmol/L IAM,充分 混匀(避光操作), 暗处静置 45 min. 14 000 g 离心 15 min, 弃去流出液. 加入 200 µl NH₄OH 至超滤 管,14 000 g 离心 15 min,重复 2 次.加入 300 µl 28%的 NH₄OH 溶解的硼烷氨络合物,混匀,37℃ 反应 24 h, 14 000 g 离心 15 min, 用新的收集管收 集流出液,待温度降至室温后加入1 mol/L的 HCl 中和硼烷氨络合物和氨水(冰浴中). 冷冻干燥, 加 入300 µl甲醇,清洗,再冻干,重复3次,去掉残 留的硼酸残基.

1.4 糖链的除盐

用 80%乙腈(ACN) 2 ml 清洗 carbon SPE 柱 (Grace Davison Discovery Sciences, USA) 1 次, 再用 2 ml 超纯水清洗柱子 1 次.将冻干的样品用 500 μl 超纯水溶解并上样至 carbon SPE 柱(重复 3 次上样).加入2ml超纯水清洗柱子,重复3次. 再用1ml0.1%TFA/80%ACN洗脱产物,收集洗脱液,冷冻干燥.

1.5 糖链的泛甲基化修饰

取大约 0.5 g NaOH,研磨成粗粉,快速转移 至玻璃研磨器中并加入 1 ml DMSO,进行研磨, 大约 10~15 min,成均一糊状即可.向样品中加入 150 µl DMSO 超声 15 min 之后加入 200 µl 糊状 NaOH 和 50 µl 碘甲烷(注意避光操作),振荡 20 min. 加入 1 ml 氯仿和 2 ml 超纯水进行抽提,振荡 10 min, 2 000 g 离心 3 min,去除上层水相,再加 入 2 ml 超纯水进行重复振荡(重复 4 次),除去水相 后将氯仿层用氮气吹干.

1.6 MALDL-TOF/TOF-MS 解析糖链

应用 Bruker Daltonics 公司的 UltrafleXtreme MALDI-TOF/TOF 质谱仪解析上述样品中 O- 连接 糖链,将冻干的 O-连接糖链用 30 µl 50%的甲醇 水溶液溶解,取2 ul N-糖溶液点样于 MTP Anchorchip 384 点的靶板上,真空抽干.再加1 µl 20 g•L-1 的 DHB 溶液至样品点上,真空抽干.以 反射阳离子模式鉴定 O- 连接糖链, 一级质谱方法 参数如下.离子源1:7.5 kV;离子源2:6.75 kV; 反射电压 1: 29.5 kV;反射电压 2: 13.95 kV. 激 发光源为 N₂ 激光(337 nm),分子质量检测范围为 500~3 500. 每张谱图扫描 500 次并多点采集谱 图,最后将所有谱图叠加为各样品全 O- 连接糖链 谱图. 从一级谱图中挑选质谱峰进行二级质谱的解 析,二级质谱方法参数如下.离子源1:25 kV; 离子源 2: 22.4 kV;反射电压 1: 26.45 kV;反射 电压 2: 13.35 kV; LIFT1: 19 kV; LIFT2: 3.7 kV. 质谱数据由 Glycoworkbench 软件分析. 用 flexAnalysis 软件开打 O- 连接糖链原始数据,设置 信噪比(signal-to-noise, S/N)>4, 在 3 次生物学重 复中至少鉴定到2次的O-连接糖链做后续分析. 将鉴定 O- 连接糖链的 m/z 及强度导出为 txt 格式, 导入 Glycoworkbench 中,设置参数如下:选择 GlycomeDB 数据库,离子选择[M+Na]⁺和[M+H]⁺, 前体离子容忍度为2,碎片离子容忍度为0.5.

2 结果与分析

2.1 基于超滤膜辅助的全 O-连接糖链富集方法解 析标准糖蛋白 mucin 中 O-连接糖链

本研究对于生物体系中的 O- 糖基化进行分

析. 首先, 是从生物体系中分离或富集得到 O-糖 基化的糖链;其次,是将 O- 连接糖链与蛋白分离、 除盐并进行衍生化处理;最后,进行质谱和串级质 谱分析,得到定性的结构信息.在没有专一性切割 酶的条件下很难保证糖链的释放效率,而且目前所 用的所有化学方法都不可避免地产生一些不良的副 产物和反应.实验时间过长和糖链与肽段不能及时 分离都会造成糖链的损失.为了减少糖链的损失, 本文借助超滤膜截留大分子物质,而使小分子糖链 通过的性质,将β消除释放O-连接糖链的反应在 滤膜上进行,然后通过简单的离心对 O- 糖链进行 分离和富集.此外,选择合适大小的超滤膜才能达 到预期的分离效果,目前已知哺乳动物细胞表达的 蛋白质的平均分子质量大于 10 KD, 而已知分子质 量最大的 O- 连接糖链也远远小于 10 KD^[2],因此 10 KD 的超滤膜可以很好地分离蛋白质与糖链.本 研究选择改良后的β消除的方法释放糖蛋白质上 的 O- 连接糖链^[23],该方法用 28% NH4OH 溶解的 硼烷氨络合物代替 NaOH,使释放的糖链马上发生 还原反应变为糖醇,从而阻止剥皮反应的进行.之 后将释放的糖链进行甲基化修饰,不仅可以对糖链 的唾液酸进行保护,而且能提高糖链的离子化效 率,从而提高样品检测的灵敏度.

本研究首先对标准糖蛋白 mucin 中的 O- 连接 糖链进行了鉴定分析,并对不同的除盐方法进行了 对照实验.通过对比发现,利用 carbon SPE 柱和 sepharose 4B 均可对 O- 连接糖链进行除盐处理, 分别鉴定到 83 和 63 种特异的 O- 连接糖链(附录表 S1),其中 45 种 O- 连接糖链运用两种方法均能鉴 定到,因 carbon SPE 柱除盐所得到的 O- 连接糖 链包含了 sepharose 4B 除盐方法的大部分结果,因 此本文选择了利用 carbon SPE 柱除盐的方法.从 图 1 中也可以看出用 carbon SPE 比 sepharose 4B 可 以在 mucin 中鉴定到更多的 O- 连接糖链.并最终

Fig. 1 MALDI-TOF-MS spectra of total O-linked glycans from the glycoprotein mucin:
(a) Carbon SPE and (b) Sepharose 4B were used in purification procedure
□: GlcNAc; ○: Galactose; □: GalNAc; ◆: Neu5AC; ▲: Fucose.

确定了基于超滤膜辅助的全 O- 连接糖链富集新方 法的实验流程图(图 2). 如图 1a 所示,运用本文所 述方法在标准糖蛋白 mucin 中所检测到的主要离子 峰 m/z 936.488、966.499 和 1488.766 均为甲基化 修饰后带唾液酸的 core 3 结构,其具体结构分别 为 (NeuAc)₁ (GlcNAc)₁ (GalNAc-OH)₁、 (NeuGc)₁ (GalNAc)₁ (GalNAc-OH)₁ 和 (Fuc)₂ (NeuAc)₁ (Gal)₂ (GalNAc-OH), 其他被鉴定到的主要离子峰 m/z953.504 和 1198.603 为甲基化修饰后带岩藻糖的 core 3 和 core 4 结构. 另外, 根据之前文献中的报 道本文所鉴定到的离子峰 m/z 669.3804、699.3910、 936.4887 和 966.4993 是标准糖蛋白 mucin 中的 4 个主要特征 O- 连接糖链. 与已发表的文章在标准 糖蛋白 mucin 中所鉴定到的 O- 连接糖链数目相比, 本文所述方法鉴定到的 O- 连接糖链在数量和覆盖 率方面均有较大的优势.例如,Zauner 等^[24]利用 DMA 将 O- 连接糖链从标准糖蛋白上释放出来, 然后利用 PMP 对 O- 连接糖链进行衍生化修饰从而

阻止 Peeling 反应的发生,运用此方法在标准糖蛋 白 mucin 中总共鉴定到 7 种特异的 O- 连接糖链. Yamada 等[23]利用 NH₄OH 进行糖链的释放,然后用 芴甲氧羰酰氯对其释放的 O- 连接糖链修饰之后进 行质谱分析,在标准糖蛋白 mucin 中共鉴定到 10 种特异的 O- 连接糖链. 范万翠[25]利用氨水非还原 性解离 O-连接糖链,并同时进行 PMP 衍生化新标 记的方法对标准糖蛋白 mucin 中 O- 连接糖链进行 解离与分析, 共鉴定到 47 种特异的 O- 连接糖链, 其中 44 种特异的 O- 连接糖链运用本文所述的实 验方法均能鉴定到.此方法标准糖蛋白的上样量为 5 mg, 而本文所述方法上样量仅为 500 µg, 由于 上样量的差异和实验方法的不同可能导致鉴定结果 存在差异,但本文所用实验方法鉴定到更多的 O-连接糖链. 故本文建立的基于超滤膜辅助解析全 O-连接糖链的方法更能快速、高通量地解析糖蛋 白质的 O- 连接糖链.

Fig. 2 Flow diagram for isolation and enrichment of total O-linked glycans from the glycoprotein

2.2 基于超滤膜辅助的全 O-连接糖链富集方法在 解析复杂生物样品中的应用

2.2.1 基于超滤膜辅助的全 O- 连接糖链富集方法 解析细胞中的糖蛋白 O- 连接糖链

肿瘤的发生、发展以及迁移与糖链的表达密切 相关,肿瘤细胞糖基化修饰的改变能够影响细胞的 周期和细胞的增殖能力,促进肿瘤的恶化.对细胞 中的 O-糖链进行鉴定与分析,有利于阐明细胞蛋 白质糖基化改变与癌症的关系.本研究选取乳腺癌 细胞 MCF-7 作为实验对象,对其糖蛋白质 O-连接 糖链进行解析,一级质谱图如图 3a 所示,共鉴定 到 29 种特异的 O-连接糖链(附录表 S2).运用本文 所述方法在乳腺癌细胞 MCF-7 中所鉴定到的主要 离子峰为无唾液酸带岩藻糖结构的 core 1、core 2 和 Core 3 型 O-连接糖链(*m*/*z* 1086.566, 1584.847, 1821.945, 1996.034 等 13 种糖链). 另外,其他被 鉴定到的离子峰多数为无唾液酸也无岩藻糖结构的 core 1、core 2 和 core 3 型 O-连接糖链(*m*/*z* 512.306,716.604,779.414,955.467 等 8 种 糖 链).对比之前文献报道,本文所讲述的方法具有 很大的优势.例如,Miura 等^[26]用氨基甲酸铵替代 NH₄OH 和碳酸铵来释放 O- 连接糖链,在乳腺癌细 胞 MCF-7 中仅鉴定到 4 种特异的 O- 连接糖链,与

之前文献报道的方法相比,本文所用的方法可在细胞中鉴定更多糖蛋白质 O-连接糖链,存在一定的优势,因此可以简单、快速、全面地从细胞中鉴定 O-连接糖链.

2.2.2 基于超滤膜辅助的全 O- 连接糖链富集方法 解析血清中糖蛋白 O- 连接糖链

目前,在临床上对恶性肿瘤的体外诊断中,血

清学检查已非常普遍,但是血清中已发现并使用的 大多数肿瘤标志物特异性较差,可以作为辅助诊 断,对疗效判断和随访具有一定价值.如消化系统 肿瘤中 CA 19-9、肿瘤相关性抗原(CEA、CA 15-3、 CA 72-4)等的检测四. 已有研究表明, 在肿瘤血清 中的异常糖基化修饰可为肿瘤的诊断和预后等提供 基础[28-31]. 本研究采集人的正常血清作为实验对 象,运用本文所讲述的方法,对其糖蛋白质 O-连 接糖链进行解析,一级质谱图如图 3b 所示,共鉴 定到 33 种特异的 O- 连接糖链(附录表 S2). 在血清 中鉴定到的主要离子峰为无唾液酸带岩藻糖的 core 1、core 2 和 core 3 型 O- 糖链(*m*/*z* 727.422, 912.477, 931.522, 1829.97489 等 13 种糖链). 其他被鉴定 到的主要离子峰为带唾液酸和岩藻糖的 core 1 和 core 2 型 O- 连接糖链(m/z 1670.884, 1857.969, 2009.030, 2049.073, 2417.229, 2814.463). 与己 发表的文章在血清中所鉴定到的糖链相比,本文所 述实验方法在糖链数量和覆盖率方面均有较大的优 势. 例如, Miura 等^[26]用氨基甲酸铵替代 NH₄OH 和碳酸铵来释放 O- 连接糖链, 避免氢氧根离子的 产生从而防止糖链发生剥皮反应,通过此方法在血 清中仅鉴定到 2 种特异的 O- 连接糖链, 分别为 图 3b 中的 2 个峰 m/z 895.462 和 1256.635 其具体 结构(Neu5Ac)₁(Gal)₁(GalNAc-OH)₁、(Neu5Ac)₂(Gal)₁ (GalNAc-OH)1. Yamada 等^[32]利用与 MALDI-TOF 联用的自动装置在血清中鉴定到 3 种特异的 O- 连 接糖链,运用本文所讲述的方法均能鉴定到,分别 为图 3b m/z 873.507、895.462 和 1256.635, 其具体 结构为(Neu5Ac)₁(Gal)₁(GalNAc-OH)₁、(Neu5Ac)₁ (Gal)₁(GalNAc-OH)₁, (Neu5Ac)₂(Gal)₁(GalNAc-OH)₁. 与前期研究相比,本研究建立的方法可以高通量地 从血清样本中提取 O- 连接糖链为肿瘤的诊断和预 后手段提供了一定理论基础.

2.2.3 基于超滤膜辅助的全 O- 连接糖链富集方法 解析尿液中糖蛋白 O- 连接糖链

尿液作为血液经肾脏过滤后的排泄物,在临床 检测中具有很重要的作用.其最显著的特点就是尿 液的采集是完全无创的,并可以连续收集的体液. 尿液作为重要的生物标志物来源,近年来也受到了 人们越来越多的关注.运用本文所讲述的方法,从 健康人的尿液里共鉴定到 85 种特异的 O- 连接糖链 (附录表 S2).相比细胞和血清在尿液中鉴定到的主 要离子峰为带唾液酸无岩藻糖的 core 1、core 2 和 core 3 型 O- 连接糖链(*m*/*z* 873.480, 895.462, 936.488, 1118.606 等 16 种糖链).上文提到的 Miura 等^[26]的方法可以从尿液中鉴定到 8 种特异的 O-连接糖链.分别为图 3c 中看到的 *m/z* 534.288、 895.462、983.514、1140.588、1256.635、1344.688、 1589.814 和 1705.862, 其具体结构为(Gal)₁ (GalNAc-OH)₁、(Neu5Ac)₁ (Gal)₁ (GalNAc-OH)₁、 (GlcNAc)₁ (Gal)₂ (GalNAc-OH)₁、 (Neu5Ac)₁ (Gal)₁ (GalNAc)₁(GalNAc-OH)₁、 (Neu5Ac)₂(Gal)₁(GalNAc-OH)₁、 (Neu5Ac)₁(GlcNAc)₁(Gal)₂ (GlcNAc)₁ (GalNAc-OH)₁、 (Neu5Ac)₂ (Gal)₂ (GlcNAc)₁ (GalNAc-OH)₁、 (Neu5Ac)₂ (Gal)₂ (GlcNAc)₁ (GalNAc-OH)₁、 (Neu5Ac)₂ (Gal)₂ (GlcNAc)₁ (GalNAc-OH)₁、 (Neu5Ac)₂ (Gal)₂ (GlcNAc)₁ (GalNAc-OH)₁、 与之相 比,本文建立的方法更能快速、高通量的在尿液中 鉴定 O- 连接糖链.

2.3 O-糖链结构分析

将一级质谱中所检测到的离子峰进行 MS,级 质谱裂解,通过特定糖苷键的断裂信息结合 Glycoworkbench 软件进行糖链结构序列的推测. 图 4 所示为其中 3 个离子峰的二级质谱图. 一级质 谱检测到的 m/z 895.462、1242.620、1256.635 的离 子峰,经过计算,确定是 m/z 697.227、988.322 和 988.322 被还原后经泛甲基化修饰后出现的峰,为 了进一步分析 O- 连接糖链 m/z 895.462、1242.620 和 1256.635 的序列结构,对 m/z 895.462、 1242.620 和 1256.635 的离子峰进行了 MS, 级质谱 裂解.大部分的高峰度碎片离子峰均来自由糖苷键 断裂产生的 B 离子和 Y 离子,例如,来自 m/z 895.462 的 Y_{1α} (520.272)、 X_{1β}Y_{1α} (374.178) 和 B_{1α} (398.178), 来自 1242.620 的 B₂₈X₂₈ (343.136)、 X_{2β}Y_{1α}(374.178)和 Y_{2β}X_{2α}(864.431). 另外,一些穿 环断裂产生的低峰度的碎片离子峰也出现在二级质 谱图中,例如,来自 m/z 895.462 的 X₁₈Y₁₀(374.178) 和 $X_{l\alpha}$ (620.288), 来自 m/z 1256.635 的 $X_{l\beta}Y_{l\alpha}$ (374.178)和 Z₁₈X₁₀(601.294).

3 结 论

综上所述,本文建立了一种基于超滤膜辅助富 集和质谱分析 O-连接糖链的方法,可以简单、快 速、高通量地对标准糖蛋白、细胞、血清和尿液中 糖蛋白质全 O-连接糖链进行鉴定与分析.

附件 表 S1, S2 见本文网络版附录(http://www. pibb.ac.cn)

Fig. 4 Tandem mass spectrometry analyzing the O-linked glycan precursor ion from MS spectra The three major O-glycan peaks (a) m/z 895.462, (b) m/z 1256.635, (c) m/z 1242.620 subjected to MS/MS analysis were indicated. \blacksquare : GlcNAc; \bigcirc : Galactose; \square : GalNAc; \diamondsuit : Neu5AC; \blacktriangle : Fucose.

参考文献

- Ohtsubo K, Marth J D. Glycosylation in cellular mechanisms of health and disease. Cell, 2006, 126(5): 855–867
- [2] Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochimica et Biophysica Acta-General Subjects, 1999, 1473(1): 4–8
- [3] Catalona W J, Smith D S. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. New England

Journal of Medicine, 1991, 324(17): 1156-1161

- [4] Zhang Z, Bast R C, Yu Y H, et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Research, 2004, 64(16): 5882–5890
- [5] Clark G M, Mcguire W L. Follow-up-study of Her2/neu amplification in primary breast-cancer. Cancer Research, 1991, 51(3): 944–948
- [6] Sato Y, Nakata K, Kato Y, et al. Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. New England Journal of Medicine, 1993, 328(25): 1802–1806

- [7] 王 胜, 邹 霞, 张 延. 基于质谱的蛋白质 O- 糖基化分析. 化
 学进展, 2010, 22(12): 2428-2435
 Wang S, Zou X, Zhang Y. Prog Chem, 2010, 22(12): 2428-2435
- [8] Jensen P H, Kolarich D, Packer N H. Mucin-type O-glycosylation-putting the pieces together. The FEBS Journal, 2010, 277(1): 81–94
- [9] Okamoto T, Yoneyama M S, Hatakeyama S, et al. Core2 O-glycan-expressing prostate cancer cells are resistant to NK cell immunity. Molecular Medicine Reports 2013, 7(2): 359–364
- [10] Wu A M, Song S C, Chang S C, *et al.* Further characterization of the binding properties of a GalNAc specific lectin from Codium fragile subspecies tomentosoides. Glycobiology, 1997, 7(8): 1061– 1066
- [11] Lin Y R, Reddy B V, Irvine K D. Requirement for a corel galactosyltransferase in the drosophila nervous system. Developmental Dynamics: an official publication of the American Association of Anatomists, 2008, 237(12): 3703–3714
- [12] Iwai T, Kudo T, Kawamoto R, *et al.* Core3 synthase is downregulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells. Proc Natl Acad Sci USA, 2005, **102**(12): 4572–4577
- [13] Royle L, Mattu T S, Hart E, *et al.* An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Analytical Biochemistry, 2002, **304**(1): 70–90
- [14] Huang Y, Konse T, Mechref Y, *et al.* Matrix-assisted laser desorption/ionization mass spectrometry compatible β-elimination of O-linked oligosaccharides. Rapid Communications in Mass Spectrometry, 2002, **16**(12): 1199–1204
- [15] Yamada K, Hyodo S, Matsuno Y K, *et al.* Rapid and sensitive analysis of mucin-type glycans using an in-line flow glycan-releasing apparatus. Analytical Biochemistry, 2007, 371(1): 52–61.
- [16] Rasilo M L, Renkonen O. Mild alkaline borohydride treatment liberates N-acetylglucosamine-linked oligosaccharide chains of glycoproteins. FEBS Letters, 1981, 135(1): 38–42
- [17] Hokke C H, Damm J B, Penninkhof B, *et al.* Structure of the O-linked carbohydrate chains of porcine zona pellucida glycoproteins. European Journal of Biochemistry, 1994, **221** (1): 491–512
- [18] Goetz J A, Novotny M V, Mechref Y. Enzymatic chemical release of O-glycans allowing MS analysis at high sensitivity. Analytical Chemistry, 2009, 81(23): 9546–9552
- [19] Kudelka M R, Antonopoulos A, Wang Y, et al. Cellular O-glycome reporter/amplification to explore O-glycans of living cells. Nature Methods, 2016, 13(1): 81–86

[20] Song X, Ju H, Lasanajak Y, et al. Oxidative release of natural glycans for functional glycomics. Nature Methods, 2016, 13 (6): 528–534

Prog. Biochem. Biophys.

- [21] Yang G L, Ma T R, Li Z. Enrichment and characterization of total N-linked glycans from glycoproteins by ultrafiltration units and mass spectrometry. Progress in Biochemistry and Biophysics, 2014, 41(4): 403–408
- [22] Wisniewski J R, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis. Nature Methods, 2009, 6(5): 359–362
- [23] Yamada K, Hirabayashi J, Kakehi K. Analysis of O-glycans as 9-fluorenylmethyl derivatives and its application to the studies on glycan array. Analytical Chemistry, 2013, 85(6): 3325–3333
- [24] Zauner G, Koeleman C A M, Deelder A M, et al. Mass spectrometric O-glycan analysis after combined O-glycan release by beta-elimination and 1-phenyl-3-methyl-5-pyrazolone labeling. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012, 1820(9): 1420–1428
- [25] 范万翠. O- 糖链的非还原性解离及同时 PMP 衍生化的方法研究 [D], 西安: 西北大学, 2010
 Fan W C. A Non-reductive O-linked Glycan Release and Simultaneously Derivatization with PMP Coupled with ESI-MS Analysis[D]. Xi'an: Northwest University, 2010
- [26] Miura Y, Kato K, Takegawa Y, *et al.* Glycoblotting-assisted O-glycomics : ammonium carbamate allows for highly efficient O-glycan release from glycoproteins. Analytical Chemistry, 2010, 82(24): 10021–11029
- [27] Sun Z, Zhang N. Clinical evaluation of CEA, CA19-9, CA72-4 and CA125 in gastric cancer patients with neoadjuvant chemotherapy. World Journal of Surgical Oncology, 2014, **12**(1): 397–409
- [28] Yabu M, Korekane H, Miyamoto Y. Precise structural analysis of O-linked oligosaccharides in human serum. Glycobiology, 2014, 24(6): 542–553
- [29] Storr S J, Royle L, Chapman C J, et al. The O-linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient's serum. Glycobiology, 2008, 18(6): 456–462
- [30] Ozcan S, Barkauskas D A, Renee Ruhaak L, et al. Serum glycan signatures of gastric cancer. Cancer Prevention Research, 2014, 7(2): 226–235
- [31] Iwatsuka K, Watanabe S, Kinoshita M, et al. Free glycans derived from glycoproteins present in human sera. Journal of Chromatography B, 2013, 928(1): 16–21
- [32] Yamada K, Hyodo S, Kinoshita M, et al. Hyphenated technique for releasing and MALDI MS analysis of O-glycans in mucin-type glycoprotein samples. Analytical Chemistry, 2010, 82 (17): 7436– 7443

Enrichment and Characterization of Total O-linked Glycans From Glycoproteins by Ultrafiltration Units and Mass Spectrometry^{*}

WU Yan-Li¹, YANG Gang-Long¹, MIAO Ming-Yong², GUAN Feng^{1)**}

(¹) Key Laboratory of Carbohydrate Chemistry & Biotechnology Ministry of Education, Jiangnan University, Wuxi 214122, China; ²) Department of Biochemistry, Second Military Medical University, Shanghai 200433, China)

Abstract Approximately more than half of mammalian proteins are glycosylated. O-linked glycan, attached to protein *via* serine or threonine residue, is one of common post-translation modifications on proteins. Its main functions include maintaining the conformation of the protein connected, protecting it from proteolysis, and covering some antigenic determinant. Analysis of O-linked glycan structure of glycoproteins can contribute to a clearer understanding of glycoproteins and their functions. This study describes a new strategy, involving enrichment and separation of total O-glycan from the glycoproteins based on a filter assisted sample preparation method (O-glycan-FASP), which was developed using ultrafiltration units according to the molecular mass differences among the glycans and proteins. The glycans were characterized and confirmed by MALDI-TOF/TOF-MS. A total of 105, 29, 33 and 85 distinctive O-glycan were characterized from bovine submaxillary mucin (BSM), human cell, serum and urine respectively.

Key words O-glycan, glycomics, ultrafiltration unit, MALDI-TOF/TOF-MS **DOI**: 10.16476/j.pibb.2016.0312

^{*}This work was supported by grants from The National Natural Science Foundation for Young Scientists of China (81402115), Hi-Tech Research and Development Program of China (2014AA093513) and The Natural Science Foundation of Jiangsu Province, China (BK20140172). **Corresponding author.

Tel: 86-510-85918126, E-mail: fengguan@jiangnan.edu.cn

Received: October 7, 2016 Accepted: December 21, 2016

附 录

No.	Calculated <i>m/z</i>	Experimental <i>m</i> / <i>z</i>	Charges	Glycan structure	Way ¹⁾	Туре
1	534.2885	534.259	[M+Na] ⁺	●-□ -∮	S, C	Core 1
2	553.3331	553.940	$[M+H]^+$	■-□ -♦	С	Core 3
3	575.3150	575.921	[M+Na] ⁺	■ - <mark>-</mark> -9	S, C	Core 3
4	669.3804	667.405	$[M+H]^+$	♦ 	S, C	Core 1
5	686.3957	687.033	$[M+H]^+$	↓ •	S, C	Core 1
6	699.3910	699.421	$[M+H]^+$	◇-	S, C	Core 1
7	708.3777	708.373	[M+Na] ⁺	↓ →	S, C	Core 1
8	716.6043	717.938	$[M+H]^+$	- 9	S, C	Core 1
9	727.4223	726.438	$[M+H]^+$	- -9	С	Core 6
10	738.3883	738.428	[M+Na] ⁺		С	Core 1
11	749.4042	750.992	[M+Na] ⁺	↓	С	Core 6
12	779.4148	779.418	[M+Na] ⁺		С	Core 1, 2
13	820.4140	820.462	[M+Na] ⁺		С	Core 4, 5
14	890.4955	889.484	$[M+H]^+$	• • • • • • • • • • • • • • • • • • •	С	Core 1
15	895.4621	895.464	[M+Na] ⁺	◆■ - [•] •	S, C	Core 1
16	912.4775	912.497	[M+Na] ⁺	→	S	Core 1

Table S1 Proposed structures and their molecular ions in MALDI spectra of O-glycans from mucin in two different ways

_

_

No.	Calculated <i>m/z</i>	Experimental <i>m/z</i>	Charges	Glycan structure	Way ¹⁾	Туре
17	914.5068	914.546	$[M+H]^+$		S, C	Core 3, 5
18	920.5061	920.540	$[M+H]^+$	••• •••	S	Core 1
19	931.5221	930.547	$[M+H]^+$		С	Core 1, 2
20	936.4887	936.501	[M+Na] ⁺	• -•	S, C	Core 3
21	942.4880	941.638	[M+Na] ⁺		S	Core 1
22	953.5040	953.520	[M+Na] ⁺	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	S, C	Core 1, 2
23	966.4993	966.588	[M+Na] ⁺		S, C	Core 3, 5
24	972.5486	971.651	$[M+H]^+$	□ □ - ♦	S	Core 3
25	983.5146	983.521	[M+Na] ⁺		С	Core 1, 2
26	1024.5411	1024.578	[M+Na] ⁺	■ ○ ■ ○ ■ □ ○	С	Core 1, 2
27	1086.5667	1086.582	[M+Na] ⁺		S, C	Core 1
28	1094.5953	1094.971	[M+H] ⁺	•••	С	Core 1
29	1116.5772	1115.859	[M+Na] ⁺		S, C	Core 1
30	1118.6065	1116.628	[M+H] ⁺	◆ ○ [■]	S, C	Core 1, 2, 3
31	1127.5932	1126.585	[M+Na] ⁺		S, C	Core 2, 3
32	1128.6409	1128.634	[M+Na] ⁺	∎●∎⊒→ ●■●■□→	С	Core 1, 2, 3

No.	Calculated <i>m/z</i>	Experimental <i>m/z</i>	Charges	Glycan structure	Way ¹⁾	Туре
33	1135.6218	1134.650	[M+H] ⁺		С	Core 1, 2
34	1140.5885	1140.599	[M+Na]+		S, C	Core 1,2
35	1146.5878	1144.673	[M+Na] ⁺	→	S,C	Core 1
36	1157.6038	1157.614	[M+Na] ⁺		S, C	Core 1, 2
37	1176.6484	1175.7620	$[M+H]^+$		S	Core 2,3, 4
38	1187.6144	1187.630	[M+Na]+	 -∮	С	Core 1
39	1198.6303	1200.621	[M+Na] ⁺		S, C	Core 2, 3
40	1228.6409	1228.621	[M+Na]+	╺╴┓ ┓ ┓ ┓ ┓ ┓ ┓ ┓ ┓ ┓ ┓ ┓ ┓ ┓ ┓	С	Core 1, 2, 4
41	1269.6675	1269.696	[M+Na] ⁺		С	Core 2
42	1273.6511	1275.640	[M+Na] ⁺	•	S, C	Core 1
43	1288.7121	1288.734	$[M+H]^{+}$	□-■ □-∮	S	Core 4
44	1292.6957	1290.700	$[M+H]^+$	◆ ● ■ □ - ∮	S, C	Core 3
45	1314.6777	1315.677	[M+Na] ⁺		S, C	Core 1, 3
46	1322.7063	1320.845	[M+H] ⁺	◆ ○ ■○ ◆ ● ● ● ● ■ ● ● ■ ● ● ■ ● ●	S, C	Core 1, 2
47	1331.6930	1331.707	[M+Na]+		S, C	Core 1, 2
48	1339.7216	1338.750	[M+H]+		С	Core 1, 2

_

No.	Calculated <i>m/z</i>	Experimental <i>m/z</i>	Charges	Glycan structure	Way ¹⁾	Туре
49	1344.6882	1344.705	[M+Na] ⁺	◆● ■ ●●■●■●	S, C	Core 1, 2
50	1350.7376	1349.763	[M+Na] ⁺		S	Core 2, 3
51	1361.7036	1360.699	[M+Na] ⁺	⋎ ⋳ ⋼⋼	S, C	Core 1, 2
52	1364.6668	1363.8650	[M+Na] ⁺		S, C	Core 1, 3, 4
53	1372.7195	1372.767	[M+Na] ⁺		С	Core 2, 4
54	1385.7148	1385.731	[M+Na] ⁺	♦ ○ <mark>■</mark> — ↓	С	Core 3
55	1402.7301	1402.777	[M+Na] ⁺	●■ <mark>●</mark> ■→ ●■●■■→	S, C	Core 1, 2, 3
56	1416.7094	1415.705	[M+Na]+	↓ ↓	С	Core 2
57	1425.7584	1427.709	[M+H]+	→	С	Core 1
58	1442.7737	1443.804	[M+H] ⁺		S, C	Core 1, 2, 4
59	1447.7403	1449.732	[M+Na]+	→ →	С	Core 1
60	1451.7853	1449.796	$[M+H]^+$		С	Core 2, 3
61	1479.7802	1477.812	[M+H] ⁺		С	Core 1, 2, 3
62	1488.7669	1487.761	[M+Na] ⁺		S, C	Core 3
63	1494.7662	1493.925	[M+Na]+	•••••	S	Core 1

No.	Calculated <i>m/z</i>	Experimental <i>m/z</i>	Charges	Glycan structure	Way ¹⁾	Туре
64	1505.7822	1504.784	[M+Na]+		S, C	Core 2
65	1513.8103	1512.831	[M+H]+		С	Core 2
66	1518.7775	1518.796	[M+Na] ⁺		S, C	Core 1, 2
67	1535.7928	1535.820	[M+Na] ⁺	●●	S, C	Core 2
68	1548.7880	1548.845	[M+Na] ⁺	●●■ ●●	S, C	Core 2
69	1559.8040	1559.858	[M+Na] ⁺		С	Coree 2, 3, 4
70	1565.8033	1563.847	[M+Na] ⁺	●●	S	Core 1
71	1576.8193	1576.873	[M+Na] ⁺		S, C	Core 2, 4
72	1584.8479	1584.970	[M+H]+		S, C	Core 1, 2
73	1589.8146	1589.844	[M+Na] ⁺		С	Core 1, 2, 3
74	1595.8639	1595.833	[M+H] ⁺	→	S	Core 2
75	1606.8299	1606.797	[M+Na]+		С	Core 1, 2
76	1617.8095	1617.833	[M+Na] ⁺		S, C	Core 1, 2
77	1647.8564	1647.919	[M+Na] ⁺		С	Core 2, 3
78	1683.8800	1682.949	[M+H] ⁺		S	Core 2

Calculated Experimental $Way^{1)}$ No. Charges Glycan structure Туре m/zm/z[M+Na]+ 79 1692.8667 1694.836 С Core 1, 2 80 1696.9116 1694.916 $[M+H]^+$ С Core 2, 3 **>---**-81 1709.8220 1708.923 [M+Na]+ С Core 2 **∲** 82 1722.8772 1721.873 С Core 1, 2 [M+Na]+ ⊫⊸ ∎∔ ∳∳ 1750.9085 83 1750.966 [M+Na]⁺ S, C Core 2, 4 84 1752.8878 1751.019 [M+Na]+ S Core 2 📕 🔿 🔲 – 🤅 85 1780.9191 1780.939 [M+Na]⁺ С Core 1, 2 **----**→ 86 1793.9143 1793.977 [M+Na]⁺ S, C Core 1, 2, 5 1821.9456 87 1822.006 [M+Na]⁺ S, C Core 2, 4 1829.9743 1829.052 88 $[M+H]^+$ S Core 2, 3 С 89 1834.9409 1835.884 [M+Na]+ Core 2 ◆**○**▲ 1857.9692 1857.966 Core 1, 2 90 $[M+H]^+$ S, C 91 1871.0008 1872.078 $[M+H]^+$ S Core 3 92 1901.0114 1901.076 $[M+H]^+$ S Core 1, 2, 3 **--**-9 **○-∎-⊡**-∳ 93 1903.0158 1901.076 $[M+H]^+$ S Core 3

Contin 续表t S ITable S1

No.	Calculated <i>m/z</i>	Experimental <i>m/z</i>	Charges	Glycan structure	Way ¹⁾	Туре
94	1937.9930	1939.936	[M+Na]+		С	Core 4
95	1968.0036	1968.025	[M+Na]+		С	Core 1, 2
96	1979.9795	1979.940	[M+H]+		С	Core 1
97	1996.0349	1996.163	[M+Na]+		S, C	Core 2, 4
98	1998.0141	1996.163	[M+Na]+	●●●■ ●●	S, C	Core 5
99	2049.0737	2047.246	[M+H]+		S, C	Core 1
100	2075.1006	2074.252	[M+H]+	┍ ┍ ┍ ┍ ┍ ┍	S	Core 1, 2, 3
101	2481.2845	2480.487	[M+H]+		S	Core 2

Contii 續表t 8 ITable S1

¹⁾ C=Carbon SPE; S=Sepharose 4B

No.	Calculated <i>m/z</i>	Experimental <i>m/z</i>	Charges	Glycan structure	Material ¹⁾	Туре
1	512.3065	513.430	[M+H] ⁺	●-□ ∮	С	Core 1
2	534.2885	534.259	[M+Na] ⁺	○-□ ∮	S	Core 1
3	553.3331	553.940	[M+H] ⁺	■-	S	Core 3
4	575.3150	575.921	[M+Na] ⁺	■-- -9	S, U	Core 3
5	716.6043	717.938	[M+H] ⁺		C, U	Core 1
6	727.4223	726.438	[M+H] ⁺	→ → →	S, U	Core 6
7	738.3883	738.428	[M+Na] ⁺	oralise of the second	S, U	Core 1
8	757.4329	755.891	[M+H] ⁺	<mark>-</mark> →	S	Core 1, 2
9	779.4148	779.418	[M+Na] ⁺	<mark>_</mark> ⊐∲ ∎ -∮	C, U	Core 1, 2
10	873.4802	873.491	[M+H] ⁺	♦---- ∮	S, U	Core 1
11	895.4621	895.464	[M+Na] ⁺	◆ ●	S, U	Core 1
12	912.4775	911.448	[M+Na] ⁺	●	C, S, U	Core 1
13	931.5221	930.547	[M+H] ⁺		S, U	Core 1, 2
14	936.4887	936.501	[M+Na] ⁺	▲ □-∮	U	Core 3
15	953.5040	953.520	[M+Na] ⁺		U	Core 1, 2
16	955.4673	955.600	[M+Na]+		С	Core 1
17	983.5146	983.521	[M+Na] ⁺		C, U	Core 1, 2

Table S2 Proposed structures and their molecular ions in MALDI spectra of O-glycans from cell, serum and urine

No.	Calculated <i>m/z</i>	Experimental m/z	Charges	Glycan structure	Material ¹⁾	Туре
18	1065.5677	1065.477	[M+Na] ⁺	♀♀□ −∲	U	Core 1
19	1069.5514	1069.555	[M+Na] ⁺	◆ • • • •	U	Core 1
20	1086.5667	1086.582	[M+Na] ⁺		C, U	Core 1
21	1105.6113	1104.644	$[M+H]^+$		U	Core 2, 3
22	1118.6065	1116.628	[M+H] ⁺	● ■ ● ■ ●	U	Core 1, 2, 3
23	1124.6059	1126.585	$[M+H]^+$		U	Core 1
24	1127.5932	1126.585	[M+Na]+		C , U	Core 2, 3
25	1130.5565	1131.630	[M+Na] ⁺	♦●●■─	С	Core 1
26	1135.6218	1134.650	$[M+H]^+$		U	Core 1, 2
27	1140.5885	1140.599	[M+Na] ⁺		U	Core 1,2
28	1157.6038	1157.614	[M+Na] ⁺		C , U	Core 1, 2
29	1187.614	1186.612	[M+Na] ⁺	●■ ●●	U	Core 1, 2
30	1198.630	1200.621	[M+Na] ⁺	₽₽₽	U	Core 2, 3
31	1128.6409	1128.634	[M+Na] ⁺	°°°° • °°°°	C , U	Core 1, 2, 3
32	1242.6202	1242.639	[M+Na] ⁺	↓	U	Core 2
33	1247.6855	1248.715	[M+H] ⁺		U	Core 2
34	1256.6358	1256.646	[M+Na] ⁺	◆ →	S, U	Core 1

No.	Calculated <i>m/z</i>	Experimental m/z	Charges	Glycan structure	Material ¹⁾	Туре
35	1273.6511	1272.639	[M+Na] ⁺	◆■→	U	Core 1
36	1292.6957	1290.700	$[M+H]^+$	◆ ● ● ● ● ● ● ● ●	C, U	Core 3
37	1309.7111	1308.740	[M+H] ⁺		U	Core 1, 2
38	1314.6777	1315.677	[M+Na]+		U	Core 1, 3
39	1322.7063	1322.760	[M+H] ⁺	◆●■ ●■●■●■◆	U	Core 1, 2
40	1331.6930	1331.707	[M+Na] ⁺		U	Core 1, 2
41	1344.6882	1344.705	[M+Na] ⁺	◆●■ ●■● ●■●■●	S, U	Core 1, 2
42	1350.7376	1349.763	[M+Na]+		U	Core 2, 3
43	1353.7009	1352.872	[M+H]+	♦ ● ₹ ⁻⁴	С	Core 2
44	1361.7036	1360.699	[M+Na]+		U	Core 1, 2
45	1380.7482	1380.889	[M+H]+		С	Core 1, 2, 3
46	1385.7148	1385.731	[M+Na] ⁺	◆● ●	U	Core 3
47	1425.7584	1426.650	[M+H] ⁺		U	Core 1
48	1473.7672	1472.755	[M+Na] ⁺	╺╺╺╺╺ ╺ ╺	U	Core 1, 2, 3

No.	Calculated <i>m/z</i>	Experimental m/z	Charges	Glycan structure	Material ¹⁾	Туре
49	1488.7669	1487.761	[M+Na] ⁺		U	Core 3
50	1501.7621	1501.776	[M+Na] ⁺		U	Core 1, 2, 3
51	1505.7822	1504.784	[M+Na]+		U	Core 2
52	1518.7775	1518.796	[M+Na] ⁺		U	Core 1, 2
53	1526.8601	1525.913	[M+H]+		C	Core 1, 2
54	1535.7928	1535.820	[M+Na] ⁺		U	Core 2
55	1567.8326	1567.882	[M+H] ⁺	┖ ◆┺╼╼ ◆┺╼	U	Core 1, 3
56	1584.8479	1584.976	[M+H]+		C	Core 1, 2
57	1589.8146	1589.844	[M+Na] ⁺		U	Core 1, 2, 3
58	1595.8275	1595.799	[M+H] ⁺		U	Core 1
59	1595.8639	1595.833	[M+H] ⁺	→	U	Core 2
60	1606.8299	1606.850	[M+Na] ⁺		U	Core 2
61	1614.8585	1615.008	[M+H]+	●●●■ ●●■●■●■●	С	Core 1, 5
62	1617.8095	1617.833	[M+Na] ⁺		U	Core 1, 2

1•

No.	Calculated <i>m/z</i>	Experimental m/z	Charges	Glycan structure	Material ¹⁾	Туре
63	1670.8847	1668.958	[M+H] ⁺		S	Core 1, 2
64	1675.8513	1676.860	[M+Na] ⁺		U	Core 3
65	1677.8670	1676.860	[M+Na] ⁺	° <mark>≫∎⊕⊟</mark> ∻ <mark>°</mark> ≫∎⊒∻ ●	U	Core 1, 2, 3
66	1683.8800	1682.949	[M+H] ⁺		S, U	Core 2
67	1687.9000	1689.856	$[M+H]^+$		U	Core 2
68	1692.8667	1691.875	[M+Na] ⁺		U	Core 1, 2
69	1705.8619	1705.882	[M+Na] ⁺	♦ ● ■ ♦ ●	S , U	Core 2
70	1720.8980	1721.873	[M+Na] ⁺		U	Core 1
71	1722.8772	1721.873	[M+Na] ⁺		U	Core 1, 2
72	1728.9266	1729.816	[M+H] ⁺		С	Core 2, 3
73	1730.9058	1729.816	[M+H] ⁺	●●●■ ●●	С	Core 2
74	1763.9038	1764.920	[M+Na]+		U	Core 2, 3
75	1777.9317	1776.635	[M+H] ⁺		С	Core 2
76	1780.9191	1780.939	[M+Na] ⁺		U	Core 1, 2

No.	Calculated m/z	Experimental <i>m/z</i>	Charges	Glycan structure	Material ¹⁾	Туре
77	1788.9477	1790.942	[M+H] ⁺	•••••••	С	Core 1
78	1799.9137	1799.000	[M+Na] ⁺		S	Core 2
79	1799.9637	1799.000	[M+H] ⁺		S	Core 2, 4
80	1818.9583	1819.121	[M+H]+		С	Core 1
81	1821.9456	1821.118	[M+Na]+		С	Core 2, 4
82	1829.9743	1829.052	$[M+H]^+$		S	Core 2, 3
83	1857.9692	1857.966	$[M+H]^+$		S, U	Core 1, 2
84	1871.0008	1872.078	$[M+H]^+$		S	Core 3
85	1879.9511	1879.971	[M+Na]+		U	Core 1, 2
86	1881.9668	1879.971	[M+Na] ⁺	┍╴ ╺╴ ╺╴	U	Core 1, 2
87	1901.0114	1901.076	[M+H] ⁺	╺ ╺ ╺ ╸ ╸ ╸ ╸ ╸ ╸ ╸ ╸	S	Core 1, 2, 3
88	1903.0158	1901.076	[M+H] ⁺		S	Core 3
89	1929.0063	1928.074	[M+H] ⁺		U	Core 1, 3
90	1950.9882	1951.008	[M+Na]+		U	Core 1, 3, 4

No.	Calculated <i>m/z</i>	Experimental m/z	Charges	Glycan structure	Material ¹⁾	Туре
91	1955.0083	1955.013	[M+Na]+		U	Core 1, 2
92	1957.0012	1955.013	[M+H] ⁺		U	Core 1
93	1968.0036	1968.025	[M+Na]+		U	Core 1, 2
94	1996.0349	1995.045	[M+Na]+		С	Core 2, 4
95	2001.9614	2003.112	$[M+H]^+$		S	Core 1
96	2004.0635	2003.086	[M+H] ⁺		S, U	Core 2, 4
97	2009.0301	2009.109	[M+Na]+		C, S, U	Core 2
98	2034.0740	2033.151	[M+H] ⁺		S	Core 2
99	2039.0407	2039.246	[M+Na]+		С	Core 2
100	2045.0900	2045.150	[M+H] ⁺		S	Core 2
101	2049.0737	2050.124	[M+H] ⁺		S, U	Core 1
102	2133.1061	2132.180	[M+H] ⁺		U	Core 2
103	2208.1632	2207.185	[M+H] ⁺		S, U	Core 1, 2
104	2243.1404	2243.370	[M+Na]+		С	Core 2

Prog. Biochem. Biophys.

No.	Calculated <i>m/z</i>	Experimental m/z	Charges	Glycan structure	Material ¹⁾	Туре
105	2245.1449	2243.370	[M+Na]+		С	Core 1
106	2249.1898	2249.228	$[M+H]^+$		U	Core 2
107	2307.1953	2306.271	[M+H] ⁺		U	Core 2
108	2349.2045	2347.286	[M+H] ⁺		U	Core 3
109	2370.2038	2368.286	[M+Na]+		U	Core 3
110	2417.2296	2417.303	[M+Na]+	◆ • • • • • • • • • • • • • • • • • • •	C, S, U	Core 2
111	2453.2896	2452.335	$[M+H]^+$		S, U	Core 1, 2
112	2481.2845	2493.362	$[M+H]^+$		U	Core 2
113	2494.2797	2493.362	$[M+H]^+$		U	Core 2
114	2765.7081	2764.847	[M+Na]+		U	Core 2
115	2799.4636	2799.500	$[M+H]^+$		U	Core 2
116	2801.4180	2799.560	[M+Na]+		S	Core 2
117	2814.4632	2813.512	$[M+H]^+$		S, U	Core 2

¹⁾ C=Cell; S=Serum; U=Urine