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Abstract Phosphorylation is the major post-translation modification to proteins, and it can be classified as kinase-specific and
non-kinase-specific. This paper focuses on the prediction methods of non-kinase-specificity and using Dou’s dataset of phosphorylation
sites as the template, this paper develops a position-based chi-square table feature, 字2-pos, and then integrates this feature with the
pseudo position-specific scoring matrix (PsePSSM). A Support Vector Machine (SVM) classifier with balanced positive and negative
samples was created, and the S, T, Y independent testing results for the Matthew correlation coefficient, the inferior surface integral of
the ROC curve and the precision were (0.59, 0.87, 79.74%), (0.55, 0.85, 77.68%) and (0.50, 0.81, 75.22%), respectively, which are
significantly superior to the results reported previously. The integration of the 字2-pos and the PsePSSM offers a promising method to
predict phosphorylation sites more accurately in proteins.
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Protein phosphorylation involves the transfer of
phosphate groups of ATP or GTP to specific sites on
proteins, namely serine, threonine and tyrosine
residues, by protein kinases. The process transforms
external stimuli into intracellular signals and
represents an important post-translation modification,
with >30% of proteins phosphorylated [1-2]. In addition,
dysfunctional protein phosphorylation is the hallmark
of a number of diseases, such as rheumatic arthritis [3],
Alzheimer's disease[4] and diabetes[5]. The identification
of phosphorylation sites in proteins depends mainly on
experimental high through-put methods [6]. However,
these experimental methods are time-consuming, and
thus the feasibility of using these tests to examine a
large number of protein sequences is very low. This
highlights the extreme importance of applying machine
learning ways to predict phosphorylation sites.

Currently, there are primarily two methods for
predicting protein phosphorylation: kinase-specificity
and non-kinase-specificity. On the one hand,
kinase-specificity methods [7-10] only use proteins and
kinases as inputs, and the resulting phosphorylation
sites identified are catalyzed by the kinases used as
input. On the other hand, non-kinase-specificity
methods [11-14] only use proteins as input and the output
provides all possible phosphorylation sites. With the
development of sequencing technologies, many
non-model organisms have been sequenced and most
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In the above table, f +
i, j represents the frequency at

the ith position of the positive samples of the jth kind
of residue, f -

i, j represents the frequency at the ith
position of the negative samples of the jth kind of

Sample
Amino acid residue

Total
1(A) 2(R) … j … 20(V)

True f +
i, 1 f +

i, 2 … f +
i, j … f +

i, 20 f +
i

False f -
i, 1 f -

i, 2 … f -
i, j … f -

i, 20 f -
i

Total fi, 1 fi, 2 … fi, j … fi, 20 N

员.2 Position鄄based chi鄄square table feature (字2鄄
pos)

Statistics of the frequencies at the ith (i = 1, 2,…,
41) position of the positive samples and the negative

samples of the twenty kinds of amino acid residues in
the training set is outlined in the following 2 伊 20 table
(Table 2).

kinases have been identified. Nonetheless, substrate
information required for developing kinase-specificity
algorithms is insufficient, and thus, this paper focuses
on the study of non-kinase-specificity prediction
methods.

Research on protein phosphorylation includes
examining the sequence encoding scheme covering the
amino acid frequency [11, 15], evolution information [12, 15],
predicted secondary structure [13], predicted disordered
zone [11, 13], physical and chemical properties [11], and the
K-nearest neighboring feature [11, 13]. The classifier
methods are primarily neural network [16-18] and
SVM [11-12, 19-22] based. In 2010, Swaminathan et al. [22]

reported precision of the non-kinase-specificity
methods up to 80% . In 2014, on the basis of eight
kinds of features including the Shannon entropy, Dou
et al.[13] adopted a SVM classifier and different window
lengths of S, T and Y , and the Area Under the Curve,
also briefed as AUC, values after ten intersections were
0.8405, 0.8183 and 0.7383, whereas the AUC values
obtained by independent tests were 0.7761, 0.6652 and
0.5958.

This paper presents the results of a position-based

chi-square table (字2-pos) using the dataset created by
Dou et al. [13] while considering its integration with the
pseudo amino acid sequence evolution information
expressed by PsePSSM, and then a SVM classifier is
used to obtain ideal independent predicted results on
Dou’s dataset. In order to ensure efficient prediction
of the positive and negative samples, the MCC
parameter is treated as the primary measure standard.
The following sections report our results in detail.

1 Data and methods
1.1 Datasets

Table 1 shows the number of sample sequences
used from the animal protein sequences reported by
Dou et al.[13] through taking S/T/Y as the center residue
and forty one residues as the window length. For
positive samples, our method randomly selects 70% of
the sequences for training and the other 30% for
independent testing. For negative samples, the training
set and the testing set were randomly selected from
sequences where the positive samples and the negative
samples account for 50%, respectively.

Table 1 Numbers of known phosphorylation sites for P.ELM datasets (window size is 41)
Residue Sequences Positive Negative Training Test

S 6 635 18 902 18 902 26 462 11 342

T 3 227 5 183 5 183 7 256 3 110

Y 1 392 1 925 1 925 2 696 1 154

Table 2 Frequency distribution of amino acid residues between positives and negatives for the ith position
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As a result, for each sequence in the training set
and the testing set, if the jth amino acid appears at the

ith position, then the value 驻字i, j can be assigned.
员.3 PsePSSM

The sequence evolution information is expressed
by the Position-Specific Scoring Matrix (PSSM) and
obtained through three iterative searches using the
Swiss-Prot database executed locally by PSI-BLAST[23]

with the E-value set to 0.001. As an extension of
BLAST, the PSI-BLAST program allows an iterative
search and is good at finding distant relationships
between different sequences [23]. The normalized PSSM
for a sequence of a length L is:

PPSSM=Pi寅j(i =1 ,2,…, L; j=1, 2,…, 20) (2)
In the above expression, Pi 寅j represents the

normalized score when the ith residue mutates into the
jth kind of natural amino acid.

Shen et al [24] proposed the use of the pseudo
amino acid sequence evolution information expressed
by the PsePSSM to solve the problem of inconsistent
sample characterization dimensions resulting from
unequal sequences.

Pm
psePSSM = Gm

1 , Gm
2 , …, Gm

j , …, Gm
20蓘 蓡

Gm
j = 1

L-m

L-m

i = 1
移 Pi寅j -P(i+m)寅j蓘 蓡 2

扇

墒

设设设设设设缮设设设设设设

(i=1, 2 ,…, L; j=1, 2,…, 20; m=0, 1,…, 姿) (3)

In expression (3), G m
j represents the correlation

factor when the jth kind of amino acid is at a spacing
of m. Thus, each sequence can obtain the PsePSSM
feature of 20 伊 (姿 + 1) dimensions.
1.4 Classifier and model

This paper uses Libsvm 3.1[25] as the classifier and
fixes the radial basis kernel as the kernel function. The
parameters c and g are automatically obtained through
the 5-fold cross-test search on the training set executed
by the grid.py. Considering the SVM’s immunity to
the feature dimensions and common feature selection
methods, such as the MRMR, recursive feature
extraction (RFE) have negligvble or even adverse
effects on this dataset, so this paper does not carry out
the feature selection.

Indexes such as sensitivity (Sn), specificity (Sp),
accuracy (Ac) and the Matthew correlation coefficient
(MCC) are used to evaluate the performance of this
model:

Sn= TP
TP+FN 伊100% (4)

Sp= TN
TN+FP 伊100% (5)

Ac= TP+TN
TP+TN+FP+FN 伊100% (6)

MCC= (TP伊TN)-(FN伊FP)
(TP+FN)伊(TN+FP)伊(TP+FP)伊(TN+FN)姨 (7)

Amino acid residue
Protein(P)

Position(-20) … Position(i) Position(+20)

1(A) 驻字-20, 1 … 驻字i, 1 驻字20, 1

… … … … …

j 驻字-20, j … 驻字i, j 驻字20, j

20(V) 驻字-20, 20 … 驻字i, 20 驻字20, 20

residue, and f i, j represents the frequency at the ith
position of both samples of the jth kind of residue. The
chi-square value is calculated by the following
expression:

字2= N
2

f +
i 伊 f -

i

20

i = 1
移 f +2

i, j

fi, j

- f +2
i
N蓘 蓡 (1)

If a new training sample is added and the ith
position of it is the jth kind of amino acid: (i) assuming

the new sample is a positive one then substitute f +
i, j for

f +
i, j +1, and calculate a chi-square value 字 +

i, j according
to the expression (1); and (ii) assuming the new sample

is a negative one then substitute f -
i, j for f -

i, j +1, and

calculate a chi-square value 字 -
i, j according to the

expression (1). Thus, the score for the chi-square table

with the jth kind of residue at the ith position is 驻字i, j =
字 +

i, j - 字 -
i, j . Taking the window length of 41 as the

example, the following 20伊41 chi-square table(Table 3)
can be obtained.

Table 3 Chi鄄square difference values for 20 amino acid residues and 41 positions
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2.3 Comparison with the PhosphoSVM method
The PhosphoSVM method [13] extracts eight kinds

of features from the datasets with balanced positive
samples and negative samples, and executes ten
crossings through the SVM. Our method extracted the
position-based chi-square table features (字2-pos) and

the pseudo amino acid evolution information from the
same datasets, and uses the SVM for the independent
tests. The comparison between PhosphoSVM [13] and
the results of our method are presented in Table 6,
showing that the method proposed herein is
significantly superior.

Site Encoding schemes AUC MCC Ac Sn Sp
S 字2-pos 0.83 0.51 75.52 75.43 75.61

PsePSSM 0.86 0.56 77.92 78.34 77.58

字2-pos + PsePSSM 0.87 0.59 79.74 78.57 80.90

T 字2-pos 0.81 0.45 72.69 72.72 72.67

PsePSSM 0.85 0.55 77.68 76.66 78.71

字2-pos + PsePSSM 0.86 0.56 78.00 76.32 79.68

再 字2-pos 0.73 0.35 67.59 67.59 67.59

PsePSSM 0.76 0.41 70.45 63.77 77.12

字2-pos + PsePSSM 0.81 0.50 75.22 77.64 72.79

Site ll rl 姿 Feature number

S 19 19 13 280

T 15 15 19 400

Y 15 13 19 400

In the above expressions, the TP (true positive),
the TN (true negative), the FN (false negative) and the
FP (false positive) represent true judgments over the
positive samples, true judgments over the negative
samples, false judgments over the positive samples and
false judgments over the negative samples,
respectively.

The receive operating characteristic (ROC) curve
is also extensively used to measure the performance of
the prediction models [26-27], which takes 1 -Sp as the
x-coordinate and Sn as the y-coordinate to show the
curves mapped under all possible thresholds. The area
under the ROC curve (AUC) ranges from 0 to 1, with
an AUC value closer to 1 when the prediction
performance is better.

2 Results
2.1 Optimization of the PsePSSM parameters

The PsePSSM has three parameters that are
determined: the left length (ll), the right length (rl) and
the maximum spacing 姿. This paper executes
optimizations in the left window (ll) by taking five
residues for the shortest ll, nineteen residues for the
longest ll, two residues for the step, and the number of
levels is set to eight. The above settings are also
applied to the right window. For 姿, the minimum, the

maximum and the step are taken as five residues,
nineteen residues and two residues, respectively, with
the number of levels set to eight. The whole
combination needs to execute 152 processes. For each
process, the PsePSSM characterization, the five-fold
crossing of the training set and the testing precision are
collectively used as the measuring criteria for the
optimization of each sequence. The optimized results
are shown in Table 4.

2.2 Feature integration
The performances for the independent separate

integration prediction and the independent two-feature
integration prediction based on the 字2-pos and the
PsePSSM are shown in Table 5. The results obtained
by the two-feature integration prediction are the
optimum for the three sites.

Table 4 Optimum parameters computed by the 5鄄fold
crossing of the number of PsePSSM features

Table 5 Prediction accuracy of phosphorylation sites based on different encoding schemes
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Site Method AUC MCC A悦悦 Sn Sp
S This paper 0.87 0.59 79.74 78.57 80.90

PhosphoSVM 0.84 0.30 69.24 44.43 94.04

T This paper 0.86 0.56 78.00 76.32 79.68

PhosphoSVM 0.82 0.25 66.15 37.31 94.99

再 This paper 0.81 0.50 75.22 77.64 72.79

PhosphoSVM 0.74 0.21 64.63 41.92 87.34

Table 6 Comparison of predictive accuracy for three sites with other method

3 Discussion
3.1 Merits of the 字2鄄pos feature

Common position-based sequence characterizations
include the 0/1 code for the residue and the code for
the physicochemical property of the amino acid. If the
0/1 code for residues is adopted, then the expression of
each position needs twenty dimensions of 0/1 features;
the obtained feature matrix is very sparse and does not
reflect the degree of difference among residues in a
physicochemical property. For example, there are three
kinds of residues, S, N and W , at a site. Assuming the
dependent variables, phosphorylation or non-
phosphorylation, are mainly related to the hydrophobic
nature of the residue at the site, their hydrophobic
indexes are 0.05, 0.06 and 2.65, respectively. The S-N
hydrophobic nature gap is extremely small, whereas
the N-W hydrophobic nature gap is larger; however,
both the S-N distance and the N-W distance are equal
to 1 when the 0/1 code is adopted. The AAindex
database(see http://www.genome.jp/aaindex/) includes
531 kinds of physicochemical properties from the
twenty kinds of natural amino acids. When the code
for physicochemical properties of amino acids is used,
then the expression of each position requires 531 kinds
of physicochemical properties, because it is unknown
which physicochemical properties are related to the
dependent variables. Consequently, the existence of a
large number of irrelevant features and redundant
features among them increases the difficulty of feature
selection.

When there is high similarity between the positive
sample sequences and the negative sample sequences,
such as two segments from the protein A0AVK6 with
the true phosphorylation site at position 357, the use of
the component-based or the association-based methods
will yield feature vectors that are very similar and the
classifiers will fail to distinguish the two sequences

efficiently. In contrast, much larger differences among
the feature vectors extracted by the position-based
methods like 字2-pos are determined, and this ensures
that the classifiers can efficiently distinguish the two
sequences. Positive sample P1: (342) AFKWTGPEIS-
PNTSGSSPVIHFTPSDLEVRR(372); Negative sample
N1: (343)FKWTGPEISPNTSGSSPVIHFTPSDLEVR-
RS (373).

The data-driven 字2-pos method is able to reflect
the scoring differences of different residues at the same
position or the same residue at different positions, and
differentiate highly similar positive sample sequences
and negative sample sequences efficiently. In addition,
this method also has a number of valuable merits, such
as less feature dimensions, low redundancy and a
non-sparse feature matrix. Thus, its application
prospect in molecular sequence characterization is
expected to be very extensive.
3.2 Necessity of combining the improved PSSM
and the 字2鄄pos

The position-based PSSM method is able to
differentiate between highly similar positive sample
sequences and negative sample sequences efficiently
but is not very robustness when there are insertions
and deletions in the amino acid sequence. In contrast,
the PsePSSM method solves the unequal sequence
problem and makes the sequence evolution
information features more robust. The position-based
字2-pos method can differentiate between highly similar
positive sample sequences and negative sample
sequences, whereas the PsePSSM method can reflect
the sequence evolution information or even distant
relationships, and the PsePSSM method is
fault-tolerant. These two kinds of features can
characterize a sequence from different aspects and
complement each other. Both are necessary, and the
prediction performance obtained by integrating 字2-pos
and PsePSSM is optimum (Table 5).
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融合位置特征与序列进化信息的磷酸化位点预测 *
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摘要 磷酸化是蛋白质翻译后的主要修饰，可分为激酶特异性和非激酶特异性两种类型．以非激酶特异性磷酸化位点 Dou
数据集为基础，本文发展了一种基于位置的卡方差表特征 字2-pos，融合伪氨基酸序列进化信息 PsePSSM表征序列，构建正负
样本均衡的支持向量机分类器，S, T, Y 独立测试 Matthew相关系数、ROC曲线下面积分及准确率分别达到了(0.59、0.87、
79.74%)，(0.55、0.85、77.68%)和(0.50、0.81、75.22%)，明显优于文献报道结果． 字2-pos、PsePSSM两种特征的融合在蛋白
质磷酸化位点预测中有广泛应用前景．
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