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Abstract The replication and transcription machinery concurrently use the same DNA region as template so that the machineries
inevitably collide with each other in the manner of either head-on or co-directional. Both head-on and co-directional collisions lead
to a pause of replication fork, thereby DNA damage and genome instability. The head-on collision is more detrimental than the
co-directional in respect of genome integrity. Here we review the resolving mechanisms and evolutionary impact of the replication-
transcription collisions. The rate of nonsynonymous (amino-acid-changing) mutations on the lagging is higher relative to that on the
leading strand and the high frequency mutagenesis in genes on the lagging strand is dependent on transcriptions and gene sizes, thus
faster adaptive mutations occur on the lagging strand. Highly transcribing of head-on oriented genes increases the mutation rates

responding to stress during active replication. It is likely that the replication-transcription collision no matter in the head-on or

co-directional mode is a driving force for adaptive evolution.
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Chromosome replication occurs once and only
once per cell cycle to make sure that each daughter
cell receives one set of complete genetic
information, including a set of complex processes of
initiation, elongation and termination. Replication
initiates at the right time of cell cycle, through
interaction between the initiator protein and the origin
for replication, subsequently followed by the
recruitment of DNA helicase, primase and DNA
polymerasel?. Two replisomes formed at the same
origin move from the origin to the opposite directions
so that replication is bi-directional™. Elongation of
replication is highly sensitive to any disruptions,
which may lead to genome instability™!. During the
elongation of replication, parental DNA duplex is
separated by DNA helicase in front of moving
replisome, and each single-stranded DNA serves as a

template for synthesis of a new DNA chain.

replication-transcription collisions, resolving mechanisms, collision-based mutations, evolutionary implication

Transcription is also a highly regulated process, which
is facilitated by transcription machinery (RNA
polymerase, RNAP). Unrepaired errors in DNA can
be fixed by transcription-coupled repair system during
transcription™®. DNA replication and transcription
have to be organically combined with each other!'”! to
fulfill their mission to maintain the heredity and lifel'!l,

Replication and transcription concurrently use
the same DNA region as a template, then replisome
and RNAP collide with each other inevitably, in
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manner of either head-on when they move in opposite
same DNA template or
co-directional when they move in the same direction
but at different speeds. Both head-on and
co-directional collisions lead to a pause of replication

directions along the

fork and subsequent DNA damage and genome
instability!'?l. The head-on collision causes more
serious DNA damage relative to the co-directional
collision does. These DNA damages leave the genome
susceptible to mutations!!>13], Replication-
transcription collisions cause replication fork arrests,
DNA damages,
rearrangements!'®'®),  The regulatory mechanisms
which deal with the DNA damages caused by
replication-transcription
revealed20. Tt has been found that auxiliary
helicases Rep, UvrD and DinG in E. coli and Rrm3 in
yeast, Mfd,
transcription factor DksA and GreA/B are involved in
between

mutagenesis and chromosome

collisions have  been

transcription-repair  coupling factor

preventing or resolving the collisions

replication and transcription!-22],

1 Patterns of the replication—transcription
collisions

Either in prokaryotes DNA
replication and transcription are crucial cellular

or eukaryotes,

processes. Although there is a separation between

replication and transcription of many genes
temporally and spatially, in some cases these two
processes inevitably occur simultaneously in the same
DNA region,

collisions!®-?4, there are two kinds of collisions

leading to transcription-replication
between replication and transcription!”. One is the
head-on collision which occurs when replisome and
RNAP move toward each other in the opposite
directions along the same template. The other is the
co-directional collision that happens when the fast-
moving replisome tracks after the slowly-proceeding
RNAP®I (Figure la). In E. coli, a replisome moves
about 1 000 bp long per second on average®®! while a
RNAP processes about only 50 nucleotides per second
on average!?”, suggesting that the rate of replication is
approximately  20-fold faster than that of
transcription!?®,

In the head-on collision, the RNAP is dislodged
from the template to allow the replisome continuel??l.
After passage of the replisome, the dislodged RNAP
can be reloaded on the template to restart
transcription. Such dislodgement and recruitment of
the RNAP are time-consuming. By contrast, in both
fast growing E. coli and bacteriophage T4, resolving
of the co-directional collision needs only half time of
that of head-on collision (1.7 s). In slow growth
condition, the effect is not necessarily notable®!. It is
also found that the progression of head-on oriented
replisome is severely inhibited by RNAP, but the
co-directional oriented replisome is not significantly
affected by transcription collision!'®), Tt is likely that
the co-directional replisome directly contacts with
RNAP in a limited range, for head-on collision, the
area of direct physical interaction is larger®®l. And in
human cells, DNA damage and checkpoint activation
increase in head-on collisions?*!. Therefore, head-on
collision is more harmful for genome stability than
co-directional events both in prokaryotes and
cukaryotes!!” 281, It has been also suggested that
replisome might be stalled for the collisions in both
head-on and co-directional manner3%-3!l, Recently, it is
found that Yral-bound RNA-DNA hybrids is a cause
of transcription-replication collisions in a mode of
orientation-independent and subsequent instability of
telomerel32,

Chromosome replication in eukaryotes initiates
simultaneously at multiple replication origins (Figure
1b) while it occurs at a single site in prokaryotes,
increasing the complexity of replication-transcription
collisions™. Two replisomes originated neighbouring
origins move toward each other and collide inevitably.
In turn, multiple moving replisomes in opposite
direction promote the probability of replication-
transcription collisions since the main obstacle to the
replisome progress is transcription (Figure 1b) B+35,
Also inefficient transcription termination, the R loop
made in transcription and chromatin organized are
obstacles to the replisome progress®. Similar to
proteins found in prokaryotes, a pile of proteins in
eukaryotes are involved in removing transcription
barriers and nascent RNA, which are essential for
replication process(33l.
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Fig. 1 Patterns of the replication—transcription collisions™”’

Chromosome replication initiates at single origin in prokaryotes (a) while these occur at multiple origins in eukaryotes (b). In both prokaryotes and

eukaryotes, head-on collision occurs when replisome and RNAP move toward each other in opposite directions along the same template.

Co-directional collision happens when the fast-moving replisome tracks after the slowly-proceeding RNAP. Arrows indicate direction of moving

replisomes and RNAP, origin for replication (blue) and RNAP (red) are as shown.

2 Resolving mechanisms for the

replication—transcription collisions

Three mechanisms have been proposed to
resolve the collisions between replisomes and
RNAPs. First, a RNAP and its nascent transcript are
dislodged from the DNA template to allow passage of
the replisome encountered®®3%); second, a replisome
passes the transcribing RNAP without displacing it
from the template®”; third, if all else fails, replisome
can be rebuilt!®*”). The blocked fork processing simply
facilitate replication reinitiation upstream of the
block, providing a second chance for a replisome to
proceed successfully through the block™?,

In the
proteotoxic

situations of nutrient deprivation,

stress and the presence of natural
antibiotics, the translation can be inhibited, leading to
an increased possibility of the transcription elongation
complex (ECs) backtracking and subsequent DNA
double-strand breaks (DSBs) ['7l. During RNAP
backtracking the 3'-OH terminus of RNA detaches
from the catalytic site and is extruded into the
secondary channel of the RNAP which is the
substrate-binding pore, resulting in transient or
permanent EC inactivation. Bacteria employ various
strategies to avoid replisome collisions with
backtracked RNAP. One is continuous translation that
prevents RNAP backtracking; or if translation is

disrupted, the transcription elongation factors would

either prevent backtracking or reactivate backtracked
ECs to suppress DSBs!'7l; alternatively, termination
factors could remove arrested ECs to maintain
genomic stability!’”. The Rho factor suppresses
backtracking by terminating transcription which
uncouples from translation-*. When Rho is not
sufficient, the backup termination factor Mfd disrupts
ECs arrested by

transcript cleavage factors (GreA and GreB)-mediated

several mechanisms*-+],  The
system as an additional backup pathway suppresses
DSBs by restarting backtracked ECs™*Y. Thus, the
elongation factors GreA can prevent DNA damage by
suppressing RNAP backtracking!'”!. Furthermore, the
Gre factors are more helpful for transcriptional
fidelity than Under the
condition of amino acid starvation, over-expression of
GreA compensates for the lack of DksA in promoting
the process of replicating!l. The transcription factor
DksA functions differently in resolution of the
replication-transcription being
independent on its transcription initiation activity but

recombinant repairl®],

collisions(!7- 461,

dependent on its transcription elongation activity. The
structure of DksA is well conserved, containing a
coiled-coil motif and two invariant Asp residues in the
C terminus. By protruding the coiled-coil motif into
the RNAP secondary channel to coordinate a ppGpp
bound Mg?*" ion with the Asp residues, DksA
stabilizes the ppGpp-RNAP complex. One or two of
these two conserved Asp residues are indispensable
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for the effect of DksA on transcription initiation since
mutation of aspartic acid residues to asparagines does
not affect the role of DksA on preventing replication
arrest upon starvation. This may suggest that DksA
might  facilitate  replication by  preventing
transcriptional pausing but not affecting transcription
initiation™®). Finally, it is proposed that DksA ensures
replication completion by dislodging RNAPs during
the head-on collisions*®! by interacting with RNAP in
the secondary channel. /n vitro experiments show that
Mfd dislocates RNAPs from the template to allow
replisome continue when collisions occur in the
head-on model®®. GreA and GreB prevent transcriptional
pausing via reactivating backtracking ECs through its
transcript cleavage reaction in the RNAP catalytic site to
generate a new 3'-OH terminus*74%),

In vitro, replisomes generated by bacteriophage
T4 replication proteins pass a molecule of the E. coli
RNAP moving in the same direction®]. Thus, a model
is proposed to explain how a replisome passes the
replication-transcription collision without dislodging
the transcribing RNAP and the nascent transcript from
the template!®”. The model suggests that the RNAP
ternary transcription complex has at least two DNA-
interacting domains, each of which detaches from the
DNA template individually without causing collapse
of the complex®!. When a replisome encounters the
RNAP ternary complex from behind, the proximal
DNA binding domain of the RNAP complex detaches
from the template, allowing the replisome partially
invade into the complex. As the replisome continues
into the RNAP complex, the proximal DNA binding
site re-attaches on the template while the distal
binding site detaches from the template, retaining the
nascent RNA in the RNAP complex. With the passage
of replisome, the nascent-RNA aided reassembly of
the RNAP ternary complex occurs®. It is obvious
that the mechanism is an important way for resolving
the replication-transcription
co-directional mode.

collisions in the

blocked
function for

In Dbacteria, replisome losses its
a while®-%,  Loss of

replicative function of the

replicative
replisome leads to
recruitment of restarting proteins PriA or PriC in E.
coli®Y, the Pri protein recognizes stalling replication
fork and reassembles replisome outside of oriCP2,
Indeed, cells lacking PriA are very sick in rich
media™®>* and a mutation in RNAP that reduces
suppress  the

backtracking can sickness(!” 3],

Therefore, it is clear that replisome collapses due to
replication-transcription collision drastically requires
replisome reloading®®® even in the presence of the
other mechanisms that may resolve the collisions
although the detailed mechanisms are not known.
Replication-transcription collisions have been
described in many organisms from bacteria to human
cellsB®3l. Long-term stagnation of replication activates
the cell cycle checkpoints as a DNA damage response
and may eventually lead to the formation of double-
strand breaksP’l. Such DNA damages caused by
stalling replicons in vivo is mostly because of
RNAPBSL In principle, stalled RNAP might be
removed from chromatin to avoid DNA damages!>!.
The removal of RNAPII after replication stress in
budding yeast involves replication checkpoints,
chromatin remodeling complex INOSOC and PAF
Indeed, the

cofactors

transcription complex!®?,
progress
remodeling agents and histone chaperones in vitro®!
and RNAP

replication-transcription collisions!®?l. In Drosophila

replisome

requires such as chromatin

removal results in prevention of
and human cells, depletion of histone H1 causes
replication stress and DNA damages resulted from
replication-transcription collisions!®l. Senataxin may
be recruited as a DNA-RNA helicase to resolve
replication-transcription collisions, or it may promote
the release of RNAPII at the collision sites to resolve
the collisions®®. Experimentally, T7 helicase strongly
interacts with non-replicating T7 DNA polymerase
(DNAP) at the replisome. This DNAP and helicase
stalled transcriptional
elongation complex, and then use RNA transcripts as
primers to initiate replication(®*,

When DNA replication is disrupted, cells trigger
a replication activate ATR
checkpoint kinase and subsequently stall progress of
the cell cyclel®! to solve the problems in replication.
High frequency of R-loop formation during
transcription also activate ATR kinases for survival,
depending on MUSSI The ATR
activation protects the genome integrity by inhibiting

can indeed remove the

stress  responsel®,

endonuclease.

transcription-replication collisions, promoting
replisome recovery and enforcing G2/M cell cycle
arrestl®’l. ATM and ATR are the two central kinases in
the DNA damage response pathway and also help
limit R-loop accumulation!®®]. The cellular response
for transcription-replication collision depends on the

basal activity of ATR kinase without inducing
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excessive ATR activation. And the specific abrogation
of the transcription-replication collision response
causes DNA damage in mitosis and subsequently
promote chromosomal instability and cell death(®.
The ATR homolog in yeast, Mecl, uncouples the
from the pore by
phosphorylating the nucleoporin MIpl to neutralize
the formation of topological tension!™. The effector
Mrcl, a downstream component of the Mecl/ATR
pathway, is phosphorylated by Hogl. This
phosphorylation delays onset of the origins, thereby

transcribed  gene nuclear

preventing transcription-replication collision response
and transcription-related recombination’!l. Mecl also
responds to replication pressure by phosphorylating
Maf1[72],

3  Transcription—coupled DNA damage
repair

DNA template damage resulting from exogenous

(a)

D

Lesion

ADP ATP

ADP ATP

UvrC
DNA polymerase
DNA ligase

DNA repaired

Fig.2 Models for the transcription—coupled repair pathway

(e.g. UV and gamma irradiation) and endogenous (e.g.
active oxidized substances produced by respiration)
stress which blocks the elongation of RNAPU. A
more detailed pathway in which the UvrD protein
pulls RNAP backwards in replication-transcription
collision to facilitate DNA repair is verified”¥. UvrD
is a helicase required for nucleotide excision repairl”),
binding RNAP in vitro and in vivo to promote RNAP
backtracking at the DNA site damaged. Tt is
proposed that UvrD and NusA cooperatively pull the
RNAP stalled with the energy from ATP hydrolysis to
expose the DNA lesion where UvrABC recruit, and
repair the damage with assistance of Pol I and
ligasel™ (Figure 2a). It is therefore suggested that
RNAP is a global genome surveillance vehicle to
screen the damages along chromosomes during
transcription.

(b)

RNAP

Lesion

XPF-ERCCI1
DNA polymerase
* DNA ligase
DNA repaired

[48,55,74]

Mfd-independent!’, transcription-coupled repairs in E. coli (a), and human (b) TCR repairl****are as shown. Proteins involved and recruitment order

of the proteins in the process are as indicated.
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Alternatively, after head-on collision between the
replisome and stalled RNAP, Mfd dissociates RNAP
from the template, thus promotes replisome restart in
vitroP¥l. In an updated model for transcription coupled
repair (TCR), RNAP stalls at damage sites of
template, and the stalled complex recruits Mfd
rapidly, then the loaded Mfd releases the nascent
transcript and dissociates RNAP from the template
due to its translocase action. Further, Mfd recruits
UvrA,B, to the damage sites by interacting with UvrA
while RNAP is restrained in the Mfd - DNA complex.
The recruitment is coupled with loading of UvrB onto
the transcription-blocking damage and releasing of
RNAP, Mfd and UvrA. Then, UvrC binds to the UvrB-
DNA complex and makes dual incisions, which is
followed by displacement of the oligomer excised and
UvrB and UvrC from the site repairing by the UvrD
helicase!’*7"l. And transcription-coupled nucleotide
excision repair (TC-NER)
increased mutagenesis of lagging strand genes due to

is proposed for the

the interplay between replication and transcription on
lagging-strand genes. This process, at least partially,
increases the lagging-strand gene mutations!’®!,

In human cells, transcription coupled repair
(TCR) removes DNA damages as that in E. coli at
actively transcribing genes, but the number of proteins
involved and their interactions are  more
complicated™. Transcription stalling at the DNA
lesions not only leads to gene damage but also to
Highly
specialized TCR pathway repairs the lesion blocked
transcription, thereby restoring transcription and gene
expression®’. When RNAP is stalling at the DNA
lesion, CSB is recruited first through interacting with
RNAPIIo for further recruitment of TCR component.
Such recruitment of CSB leads to its own
conformational change to CSA
recruitment through CIM (the newly discovered CSA
interaction motif). Then the XPC and DDB2 damage
recognition proteins are recruited to confirm the
lesion DNA. Further, UVSSA loads to the RNAPIIo
complex at the lesion site by targeting CSA and
subsequently TFIIH
recruitment. In the way of CSB and CSA stimulation,
UVSSA is the key factor for recruiting TFIIH
complex. The TFIIH loaded replaces RNAPIIo and
CSB/CSA/UVSSA  complex, then with the
cooperation of XPF-ERCCI heterodimer, DNA
polymerase and DNA ligase, repairs the lesion(®?

overall shutdown of transcription®.

stimulate  the

regulates  the complex

(Figure 2b).

4 The replication—transcription collision—
based mutations

Mutations cause genetic diseases and also drive
evolution by changing gene coding sequences or non-
coding elements that regulate gene expression. There
are many mechanisms leading to mutagenesis: DNA
replication errors, error-prone repair, transcription-
related mutagenesis, replication stall-mediated
template switching!®!. When transcription is active,
the gene orientation can be switched between the two
collision types. And the gene orientation can increase
or decrease the mutation rate in a gene-specific
manner®!, This mechanism is driven by the inevitable
collision between DNA replication and transcription
machinery. Transcription-replication collisions have
different consequences for the genes encoded on the
leading and lagging strands of the replisome®l. The
mutation rate on the lagging strand is higher. The
differences in the mutagenesis rates of head-on
(lagging strand) genes and co-directional (leading
strand) genes are transcription-dependent, indicating
that the collision between replication and transcription
is the driving force of mutations, and these collisions
will greatly increase possibility of the adaptive
structural variation of the encoded protein!” 3. The
increase in rate of positive mutagenesis depends on
the R loop, which plays a key role in replication-
transcription collisions®®. The increased mutation rate
of head-on genes may provide an adaptive advantage,
but not all genetic changes induced by collisions are
adaptive®. In head-on genes, different sequence
contexts are suggested to be related with a higher rate
of spontaneous mutations, thereby promoting their
accelerated evolution®”). However, the head-on genes
accelerate evolution independently of sequence
context®], Tt would be noted that mutations caused by
the collisions can change gene expression patterns®,

Occurrence of mutations is probabilistic,
associating with a variety of physicochemical
parameters, the latter depends on environment and the
cell physiology™®®!l. The cell-dependent physiological
and environment-dependent physical and chemical
parameters affect the frequency, nature, and location
of mutations®, increasing the probability of genetic
adaptability®*-o1l,
promotes evolution in an environment-dependent

Indeed, physiological adaptation
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manner. Also increase in the global mutation rate
during stress promotes the chance of adaptive
with the

mutations, thus the cell can deal

environmental changes!®*.

5 The replication—transcription collisions
is a driving force for adaptive evolution

In replication-transcription collisions, co-directed
collisions occur in highly transcribed regions or
RNAP backtracking sites, causing replication to stall
and eventually lead to replication to restart™ and the
head-on collisions cause more serious consequences
such as replisome disintegration and DNA breaks[>®!,
The orientation of genes determines the severity of
replication-transcription collisions?3l. Unequal
mutagenesis on lagging strand and leading strand(®>-4
results in differences in evolution rates of genes on the
lagging and the leading strands®. Interestingly, over
a half of genes (mainly tRNA genes, protein coding
genes) aligned co-directionally with replication in
many bacteria®l. In Bacillus subtilis, transcription of
75% genes is co-directional oriented with replication
on leading strand and such a co-directional orientation
for highly expressed genes might confer an advantage
by reducing blockage of replisome progression®’-%!
(Figure 3a). The co-directional orientation bias has
also been shown to be prominent for highly
transcribed genes in most bacteria and eukaryotes(®l.

However, a large number of co-directional genes
can be inverted to head-on genes during evolution,
indicating that evolutionary pressure will prevent
complete co-directional genes and will drive the
maintenance of the head-on genes, increase the
frequency of head-on replication-transcription
collisions®]. These results show that spontaneous
gene inversion can increase bacterial evolutionary
ability through head-on replication-transcription
collisions!?* %1, Interestingly, rate of synonymous (or
silent) mutations on the lagging strand is 2% higher
than that on the leading strand while the rate of
nonsynonymous (amino-acid-changing) mutations on
the lagging stand is 42% higher relative to that of the
genes on the leading strand®. Convergent mutations
are in 24% of core genes on the lagging strand
compared to only 11% of the genes on the leading
strand, and the increased rates of mutagenesis in the

lagging strand genes (head-on oriented genes) is in

both
nonsynonymous and convergent mutations in the

manner of transcription-dependent. Clearly,
head-on oriented genes are high, suggesting that faster
adaptive mutations occurs in the head-on oriented
genes® (Figure 3b). Furthermore, genes on the
lagging strand are shorter on average while those on
the leading strand are 48% larger; especially, only
24% of genes coding for proteins with more than 200
amino acids are on the lagging strand whereas 48% of
genes coding proteins exceeded 200 amino acids are
on the leading strand®). The data suggest that
selection for genes on the lagging strand to be shorter
is likely to decrease the possibility of head-on
collision. Indeed, the higher nonsynonymous mutation
rates occur in longer genes on the lagging strand(®*
And an increased rate of spontaneous mutations in the
head-on oriented genes is believed to drive an
accelerated rate of evolution®),

Two models have been proposed to explain the
reasons behind the head-on orientation of genes. One
model explains that the head-on orientation of genes
is harmful
mutagenesisi?®! while the other suggests that the

for genome stability by increasing
head-on orientation is the reason of increased rate of
gene transcript truncations®’l. In B. subtilis, E. coli
and Saccharomyces cerevisiae, it is found that
genomic instability is likely resulted from the head-on
collisions!> 190-101 " Fyrther, the strong co-orientation
bias of transcription is due to selective pressure for
processive, efficient, and accurate replication!'®?],
During normal growth, head-on oriented genes are
transcribed to some degree and can be highly induced
responding  to exposurel!9-1931 - Actively
transcribing of the head-on oriented genes under
stress during
replication and increases the mutation rate of head-on
oriented genes, providing the chances for cells to
survive in a changing environment. This also creates
possibility of acquiring lethal
subsequent cell death. It seems that transcription
orientation of genes is a gene-specific manner to

stress

causes severe collisions active

mutations®! and

increase or decrease mutation rates®. Evidence
discussed above, therefore, allow us to assume that
the replication-transcription collisions no matter in the
head-on or co-directional mode might be a driving

force for adaptive evolution.
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Fig.3 A model for adaptive evolution through the
replication—transcription collisions

(a) Most genes in bacteria are encoded on the leading strand of
replication to avoid the potentially harmful head-on collisions that
occur between the replication and transcription machineries when
genes are encoded on the lagging strand. (b) Lagging strand genes are
transcribed in the head-on orientation with respect to DNA replication,
leading to stalled replication which shape genomes and influence
evolution. The head-on encounters between replication and
transcription increase convergent mutagenesis in lagging strand genes,
indicating faster adaptive evolution in many genes in the head-on
orientation. Ovals indicate direction of moving replisome (dark gray)

and RNAPs (blue and red) with arrows.

6 Prospective

It is most likely that all organisms have a large
number of genes on the lagging strand. The fact
indicates that replication-transcription collisions in
head-on mode is unavoidable, and this is a universal
strategy to link gene expression and evolution rate
under selection. It is necessary to measure the number
of genes on the lagging strand in a number of
organisms, as well as rates of mutagenesis and
evolutionary impact. Hopefully we can develop some
easier and economical methods to show the biological
insight into adaptation of organisms by the replication-
transcription collisions.
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