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Abstract Inflammation is a defense mechanism that protects human body from harmful stimuli. However, uncontrolled

inflammation can lead to damage to tissues locally or systemically. Studies, including ours, have shown that traditional Chinese

medicines (TCM) exert significant anti-inflammatory effects through the inhibition of cAMP-PDEs activity. We aimed to provide an

overview of cAMP-mediated modulatory effects of cAMP-PDEs-selective TCM on key proteins of inflammatory signaling

pathways, mainly involving inhibition of NF-κB, MAPKs (p38, ERK, or JNK), TLR, MyD88, and STAT3, and activation of Nrf2,

HO-1, AMPK, and PPARγ. Among them, inhibition of NF-κB is the most important way to play anti-inflammatory roles for all

cAMP-PDEs-selective TCM.
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In general, inflammation progression contains
alteration, exudation, and proliferation phases[1-2].
Cyclic adenosine monophosphate (cAMP) has been
observed to involve in inflammatory response,
exudation, and fibrosis, and thus gained significant
attention recently. It is believed that an increase in
cAMP levels can inhibit and regulate
inflammation[3-4]. Homeostasis of intracellular cAMP
levels is mainly dependent upon the synthesis of
adenylate cyclase (AC) and the hydrolysis of cAMP-
phosphodiesterases (PDEs). Therefore, cAMP-PDEs
have been recognized as new targets for therapy of
inflammation[5]. The screening of anti-inflammatory
drugs, based on these targets, has become an
important way to develop new drugs.

Anti-inflammatory drugs are the second largest
class of drugs in clinical application after anti-
infective drugs. Traditional Chinese medicines (TCM)
are widely used in anti-inflammation besides steroidal
and non-steroidal anti-inflammatory drugs. The
development of new anti-inflammatory TCM, at the
cellular and molecular levels, is imperative for many
diseases. Our 20-year work demonstrates the anti-

inflammation of TCM-mediated effect through
inhibiting cAMP-PDEs activity. The other ways
involve inhibition of p-extracellular regulated protein
kinases (ERK) and p-p65 nuclear factor-kappaB (NF-
κB) of inflammatory signaling pathways downstream
of cAMP, which further inhibit the expression of
adhesion molecules and the release of
proinflammatory factors. The role of inflammatory
signaling pathways has been highlighted in the
pathogenesis of many diseases and signaling
molecules involved in these pathways are considered
valuable targets for new treatment approaches.

In this review, we elaborate on how cAMP-PDEs-
selective TCM can effectively inhibit various
inflammatory reactions or multiple signaling
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molecules involved in inflammation, mainly including
NF-κB, mitogen activated protein kinases (MAPKs),
Toll-likereceptors (TLRs), myeloiddifferentiationfactor88
(MyD88), signal transducer and activator of
transcription (STAT) 3, nuclear factor erythroid-2-
related factor 2 (Nrf2), heme oxygenase (HO) -1,
AMP-activated protein kinase (AMPK), peroxisome
proliferator-activated receptor (PPAR) γ,
phosphatidylinositol-3-kinase (PI3K), and protein
kinase B (PKB/Akt).

1 Anti-inflammatory effect of cAMP-
PDEs-selective TCM

According to the "Handbook for Quick Search of
Nature and Flavour Functions of Commonly Used
TCM"[6] and the principle of "strengthening body
resistance and eliminating evil" of Traditional Chinese
Medicine, 21 "anti-inflammatory" TCM and 54 "body
resistance strengthening and evil eliminating" TCM
(12 TCM are common to both groups) are selected,
and the inhibitory effect of the TCM extracts, on the
activity of cAMP-PDEs, is tested in neutrophils.
Results show that 19 TCM out of 21 (accounting for
90%) and 38 TCM out of 54 (accounting for 70%)
have an inhibitory effect on cAMP-PDEs activity[7-8],
suggesting that inhibiting the activity of cAMP-PDEs
is an important mechanism for most therapeutic roles
played by TCM. Among them, extracts of Radix
paeoniae alba (baishao), Perilla frutescens (zisuye),
Cyperus rotundus (xiangfu), Coptis chinensis
(huanglian), Astragalus membranaceus (huangqi),
Mentha haplocalyx (bohe), Rhizoma anemarrhenae
(zhimu), Isatidis folium (daqingye), Lonicera japonica
flos (jinyinhua), Cuscutae semen (tusizi), Epimedii
folium (yinyanghuo), Forsythia suspensa (lianqiao),
Schisandra chinensis (wuweizi), Foeniculum vulgare
mill (xiaohuixiang), Radix bupleuri (chaihu),
Pueraria lobata (gegen), Caulis sinomenii
(qingfengteng), Angelica sinensis (danggui), Mori
folium (sangye), and Ligusticum chuanxiong
(chuanxiong) inhibit cAMP-PDEs activity to a large
extent. The inhibitory effect of some TCM, such as
jinyinhua and lianqiao[9], yinyanghuo[10], wuweizi[11],
and Scutellaria baicalensis (huangqin) [12] on cAMP-
PDEs, is consistent with previous reports.

Studies have shown that the cAMP-PDEs-
selective TCM have a robust anti-inflammatory effect.
Researches including ours indicate that baishao

extract has inhibitory effects on xylene-induced ear
swelling in mice, carrageenan-induced foot swelling
in rats, complete Freund's adjuvant (CFA) -induced
arthritis in rats, carrageenan-induced pleural
inflammation in mice, or acetic acid-induced capillary
permeability in mice[13-16]. Gallic acid, an active
ingredient of baishao, can inhibit the activity of
cAMP-PDEs and the degree of swelling in rats with
CFA-induced arthritis[17]. Capsules of white paeony
are already on the market for the treatment of
rheumatoid arthritis (RA), and contain total
glucosides of paeony, as the main ingredient.
Research shows that the inhibitory effect of total
glucosides of paeony on inflammation in rats
suffering with RA may be related to the down-
regulation of the expression of p65 NF- κB and the
inhibition of the production of proinflammatory
cytokines, such as tumor necrosis factor (TNF)-α and
interleukin (IL)-1β [18].

Jinyinhua has an immunosuppressive effect and
controls inflammation by inhibiting proinflammatory
factors. Its extract reduces inflammatory factors in
subcutaneous inflammatory exudates from
carrageenan-induced foot swelling in rats and plays an
anti-inflammatory role similar to non-steroidal anti-
inflammatory drugs. The extract of Jinyinhua also
alleviates myocardial degeneration, necrosis or
inflammatory cell infiltration in mice with viral
myocarditis and inhibits the expression of caspase-3
and NF- κB[19]. Chlorogenic acid, an effective
component of jinyinhua, has an anti-inflammatory
effect in vitro, which is mediated by inhibiting the
activation of proinflammatory factors.

Lianqiao is widely used in TCM to treat
pneumonia, typhoid, dysentery, ulcers, or oedema.
The shell decoction, macroporous adsorbent resin or
polyphenols of lianqiao have anti-inflammatory and
antipyretic effects on xylene- or croton oil-induced ear
swelling in mice and endotoxin-induced fever in
rabbits, which are the main effective parts of
lianqiao[20]. Lianqiao extract and monomers such as
forsythiaside A, forsythiasin, and forsythiaside mainly
affect the synthesis of inflammatory mediators to play
an anti-inflammatory role[21]. Pretreatment with
lianqiao can reduce the expression of TLR4 and NF-
κB and the secretion of IL-6 and IL-10 in rat splenic
lymphocytes under the effects of an endotoxin. Thus,
lianqiao shows anti-inflammatory and
immunomodulatory effects[22].
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Chaihu has anti-inflammatory and analgesic
effects on ear swelling induced by xylene in mice and
pain induced by a hot plate[23]. Chaihu saponin has a
remarkable anti-inflammatory effect and it inhibits
many inflammatory processes, including
inflammatory exudation, increased capillary
permeability, inflammatory mediator release,
leukocyte migration, and so on. A combination of
Chaihu and Huangqin has a definite anti-fibrosis
effect in the liver, by inhibiting TLR4/NF- κB
signaling pathway and alleviating inflammation[24].

Danggui decoction inhibits the inflammatory
response of ear edema in mice induced by xylene,
painful writhing in mice induced by acetic acid,
abdominal inflammation in rats induced by
lipopolysaccharide (LPS), or the damage of rat
vascular smooth muscle cells (VSMCs) induced by
H2O2

[25-27]. The effective fraction (organic acids) of
danggui can down-regulate the expression of TLR4
induced by LPS, inhibit the activation of NF-κB, and
decrease the expression of lectin-like oxidized low
density lipoprotein receptor-1, vascular cell adhesion
molecule (VCAM) -1, monocyte chemotactic protein
(MCP) -1, and IL-6. Therefore, it can prevent
inflammation and lipid-mediated pathological
processes of atherosclerosis. Ferulic acid, the main
component of organic acids in danggui, plays a major
role in this process[28].

Gegen extract alleviates the swelling of joints in
rats with acute gouty arthritis, induced by
microcrystalline sodium urate. In addition, its extract
improves the inflammation of ulcerative colitis (UC)
in rats induced by 2,4,6-trinitrobenzene sulfonic acid
(TNBS) and ethanol, and its mechanism may be
related to down-regulating expression of p38 MAPK
and p65 NF- κB, and up-regulating expression of
PPARγ[29]. Total flavones of gegen have a significant
effect on chronic alcoholic hepatic injury in rats
induced by the Lieber-Decarli diet, which is known to
inhibit TLR4 and TLR2, thereby inhibiting Kupffer
cell activation[30].

2 Anti-inflammatory signaling pathways
of cAMP-PDEs-selective TCM ingredients

Nucleotide signaling molecules contribute
significantly to the regulation of cellular signal
pathways. In the immune system, cAMP is well
established as a potent regulator of innate and

adaptive immune cell function. Therapeutic strategies
to interrupt or enhance cAMP generation or its effects
have immunoregulatory potential in autoimmune and
inflammatory disorders[31]. Cyclic-AMP-PDEs are key
enzymes in the cAMP signaling cascade. Their
inhibition increases cAMP levels inside the immune
or inflammatory cells. Thus, pharmacological
modulation of the activity of cAMP-PDEs, by the
ingredients present in TCM, can play a profound role
in the function of the immune cells. Cyclic-AMP is an
important second messenger not only due to its
involvement in a vast number of physiological
processes but also because of its activation of protein
kinase A (PKA), exchange protein activated by cAMP
(EPAC), cAMP response element-binding (CREB), or
cAMP-gated channels, etc.

In addition, studies have shown that cAMP is
involved in the regulation of several important
inflammatory signaling pathways, such as the
MAPKs, NF- κB/IκB, PI3K/Akt, and janus kinase
(JAK)/STAT pathways[32-39]. However, the specific
signaling pathway that is used by cAMP is based on
the stimulating factors and specificity of the cells.
Luteolin and gallic acid, found in zisuye and baishao,
respectively, are reported to have anti-inflammatory
properties and are efficient inhibitors of cAMP-
PDEs[17,40], and we decided to study their anti-
inflammatory signal mechanism further. Moreover,
we studied 14 representative ingredients from TCM,
which can inhibit the activity of cAMP-PDEs[41-52],
and analyzed the roles they play in anti-inflammatory
signaling pathways.
2.1 Luteolin

Luteolin can alleviate inflammation in a variety
of ways, which include inhibiting key inflammatory
signaling pathways such as NF-κB and MAPKs (p38,
ERK, and JNK), finally inhibiting the expression of
proinflammatory cytokines and inflammatory
mediators. Our studies show that the anti-
inflammatory mechanisms of luteolin involve: a.
Inhibiting the activity of cAMP-PDEs in
microvascular endothelial cells (MECs), blocking
N-formylmethionyl-leucyl-phenyl-alanine (fMLP) -
induced p65 NF-κB phosphorylation, and decreasing
the expression of VCAM-1 (in vitro) on MECs and
soluble intercellular cell adhesion molecule (sICAM)-
1 (in vivo) in the serum[53]; b. Inhibiting cAMP-PDE4
activity of neutrophils, increasing cAMP levels and
suppressing fMLP-induced ERK phosphorylation[54],
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blocking lymphocyte function associated antigen-1
expression on neutrophils, and eventually suppressing
the adhesion of neutrophils and MECs to each
other[40]. Luteolin reduces fAβ1-40-induced
inflammatory response and cytokine production.
Luteolin protects the blood-brain barrier against fAβ1-
40-induced injury by inhibiting p38 MAPK
activation, downregulating phosphorylated IκB kinase
levels, inhibiting IκBα degradation, blocking p65
NF-κB nuclear translocation, and inhibiting the
release of inflammatory cytokines[55]. IL-1β -induced
JNK and p38 activation in SW982 cells is inhibited by
luteolin. Moreover, IL-1β -induced activator protein
(AP)-1 and NF-κB activation is inhibited by luteolin.
Thus, luteolin reduces the production of MMPs and
cytokines by inhibiting MAPKs (JNK and p38) and
transcription factors (AP-1 and NF-κB)[56].
2.2 Gallic acid

Studies show that the NF- κB pathway plays a
leading role in the anti-inflammatory signaling
pathway induced by gallic acid (GA). GA efficiently
suppresses the NF- κB signaling pathway in TNBS-
induced UC in mice[57]. Toona sinensis (leaf extracts,
TS) and its compound GA inhibit LPS-induced NF-
κB in the abdominal region of transgenic mice. Thus,
the anti-inflammatory potential of TS and GA is
mediated by the downregulation of the NF- κB
pathway[58]. GA inhibits MyD88 expression and
downregulates NF- κB signaling in mice with IL-33-
induced asthma, which shows GA can reduce the
severity of asthma via downregulation of the MyD88/
NF- κB signaling pathway[59]. GA reduces the
activation and nuclear accumulation of p-STAT3,
prevents the degradation of IκB and inhibits the
nuclear translocation of p65 NF- κB, in the colonic
mucosa of an experimental murine model of UC,
which suggests that GA exerts anti-inflammatory
effects mediated through the suppression of p65 NF-
κB and IL-6/p-STAT3 activation[60]. Terminalia
bellirica (Gaertn.) Roxb. extract (TBE) and its
compound GA attenuate LPS-induced activation of
MAPK and NF- κB in RAW 264 macrophages.
Furthermore, TBE and GA increase Nrf2, Akt, and
AMPK levels. Therefore, TBE and GA exert
protective effects against inflammation by suppressing
MAPK/NF- κB pathway and by activating the Akt/
AMPK/Nrf2 pathway[61].

2.3 Ginsenoside Rg1
Ginsenoside Rg1 (G-Rg1), one of the most

notable active components of Panax ginseng
(renshen), has been widely reported to exert anti-
inflammatory effects. The anti-inflammatory signaling
pathways of G-Rg1 are complex. G-Rg1 inhibits LPS-
induced microglial activation and production of TNF-
α, IL-1β and nitric oxide (NO). In addition, G-Rg1
treatment inhibits the LPS-induced phosphorylation of
IκB, ERK1/2, JNK and p38 MAPK in the lesioned
side of substantial nigra[62]. G-Rg1 alleviates palmitic
acid-induced hepatic steatosis and inflammation and
activates the AMPK pathway in HepG2 cells, which is
correlated with the inactivation of the NF-κB pathway
and translocation of p65 from the cytoplasm to the
nucleus[63]. G-Rg1 treatment reduces the symptoms of
cardiac hypertrophy and hypertension, decreases
oxidative stress, inflammatory response, NF- κB
expression, and NACHT, LRR and PYD domains-
containing protein (NLRP) 3 inflammasome
activation in streptozotocin (STZ) -induced diabetic
rats. In addition, G-Rg1 treatment increases the
expression of AMPK, Nrf2 and HO-1 in cardiac
tissues[64-65]. G-Rg1 protects HK-2 cells from LPS-
induced inflammation and apoptosis. Furthermore, the
down-regulations of p-PI3K and p-AKT and the up-
regulations of phosphatase and tensin homolog
deleted on chromosome ten (PTEN), p-IκBα, p-p65,
and Bcl-3 induced by LPS, are recovered after G-Rg1
treatment[66]. G-Rg1 treatment suppresses apoptosis
rate of LPS-induced A549 cells and reduces the
severity of hepatic steatosis in rats that have been fed
a diet of high-fat and high-sugar, to induce insulin
resistance. Moreover, G-Rg1 suppresses the
expression of IL-1β, IL-6, TNF- α, NF- κB and
G6Pase; however, p-Akt is seen to be up-regulated[67].
G-Rg1 treatment suppresses apoptosis rate of LPS-
induced A549 cells and relieves mouse lung tissue
damage. In both A549 cells and mouse lung tissues,
studies show that G-Rg1 perfusion suppresses the
secretion of inflammatory cytokines and relieves cells
from endoplasmic reticulum stress(ERS), as seen by
the decreased expression of marker proteins, by
upregulating sirtuin 1 (SIRT1). PPARγ activation by
its agonist rosiglitazone attenuates neurological
deficits, apoptosis and inflammation in the
hippocampus of cerebral ischemia-reperfusion (I/R)
rats. G-Rg1 shows a similar effect to rosiglitazone in
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activating PPARγ/HO-1, in protecting against
apoptosis and inflammation[68].
2.4 Puerarin

Puerarin is the most abundant isoflavone-C-
glucoside extracted from gegen and possesses many
biological activities[69]. Puerarin can not only directly
regulate the expression of inflammatory factors, but
also block the activation of NF-κB signaling pathways
induced by inflammatory factors, thus indirectly
regulating the secretion of inflammatory factors and
alleviating inflammation. The activation of NF- κB
and TNF-α pathway in peripheral blood mononuclear
cells may play an important role in the pathogenesis
of asthma. Genistein and puerarin can inhibit the NF-
κB and TNF- α pathway in patients with asthma[70].
Puerarin inhibits the expression of TNF- α, ICAM-1,
VCAM-1, and E-selectin proteins and mRNAs in
human umbilical vein endothelial cells (HUVECs).
The inhibition is attributed to suppress NF- κB
activation at the transcriptional level[71]. Puerarin can
reduce ICAM-1 expression and decrease nuclear
translocation of p65 NF- κB to suppress the
inflammatory reaction in ischemic brain tissue of
rats[72]. Treatment with puerarin decreases clinical
scoring of collagen antibody-induced arthritis and
suppresses oxidative stress and inflammatory
response in mice. Puerarin also inhibits mRNA
expression of matrix metallpproteinase-9 and protein
expression of TLR4 following collagen antibody-
induced arthritis in mice. Furthermore, up-regulation
of p-JAK2 and p-STAT3 protein expression is
suppressed by puerarin. The results indicate the effect
of puerarin in attenuating inflammation and oxidation
in mice with collagen antibody-induced arthritis via
TLR4/NF-κB or JAK/STAT signaling[73].
2.5 Quercetin

Quercetin possesses anti-inflammatory and anti-
carcinogenic properties and protects against oxidative
stress and inflammation-related metabolic
complications of psoriasis, RA, cardiovascular
disease, and so on. Quercetin plays an anti-
inflammatory role mainly through TLR/MyD88/
MAPKs/NF- κB or PI3K/Akt pathways. Quercetin is
able to down-regulate the inflammatory response of
bone marrow-derived macrophages in vitro and
inhibits cytokine and inducible nitric oxide synthase
(iNOS) expression through inhibition of the NF- κB
pathway, without modification of JNK activity[74].

Quercetin ameliorates all markers of inflammation
and oxidative stress measured in a rat model of
adjuvant arthritis. In addition, quercetin increases the
expression of HO-1 and decreases NF-қB activity in
the joints and lungs of arthritic rats[75]. Quercetin can
ameliorate the deteriorating histopathology and
proinflammatory factors in skin tissue in imiquimod
(IMQ) -induced mice, and the mechanism may be
associated with the down-regulation of NF-κB, IKKα,
NIK and RelB expression and up-regulation of TNF
receptor-associated factor (TRAF) 3, which plays a
critical role in the non-canonical NF- κB pathway[76].
Intense exercise-induced ERS and inflammation are
attenuated by quercetin in BALB/C mice. PI3K/Akt
activation and JNK, activating transcription factor 6
(ATF6), and NF- κB suppression are involved in the
protective role of quercetin[77]. Quercetin intervention
attenuates pancreatic and ileal damage in acute
necrotizing pancreatitis (ANP) in rats and ameliorates
intestinal barrier disruption and inflammation.
Meantime, quercetin suppresses intestinal TLR4/
MyD88/p38 MAPK pathway and ERS activation[78].
Quercetin decreases atherosclerotic inflammation via
three signaling pathways: a. Inhibiting the expression
of VCAM-1 and ICAM-1 enhanced by oxidized low
density lipoprotein (oxLDL) in HUVECs by
downregulating the expression of MCP-1, TLR2, and
TLR4 and the nuclear translocation of p65 NF-κB[79];
b. Suppressing the activities of TLRs, p38, ERK1/2,
and JNK in oxLDL-stimulated human peripheral
blood mononuclear cells (hPBMCs) using specific
inhibitors and subsequently inhibiting NF- κB
activation and TNF- α release[80]; and c. Reducing
reactive oxygen species (ROS) levels, caspase-3
activation, and inflammatory cytokines release by
promoting PI3K/Akt and Bcl-2 expression and
reducing caspase-3 and NF- κB activation, in high
fructose-induced atherosclerosis[81]. Quercetin can
also protect the liver from damage via three pathways:
a. Protecting human hepatoma cells (HepG2) against
activation of the NF-κB pathway induced by TNF-α,
which is mediated partly by ERK, JNK, and ROS[82];
b. Decreasing proinflammatory markers, TLR2/4
activation, and MAPK phosphorylation, which in turn
inactivates NF-κB and the inflammatory cytokines in
CCl4-induced mice[83]; and c. Inducing Nrf2 nuclear
translocation and HO-1 activity in nickel-induced
mice and inhibiting p38 and STAT1 activation, which
in turn inactivate NF-κB in the liver[84].
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2.6 Osthole
Osthole is a compound that is extracted from

fruits of Cnidium monnieri (shechuangzi), which has
multiple bioactive functions, including antioxidant,
anti-inflammatory, anticancer, antiplatelet, and
estrogenic effects and confers resistance to pain.
NFκB pathway plays a key role in the anti-
inflammatory process of osthole. Osthole can improve
neurological function and increase the number of
neurons at the site of injury. Additionally, osthole
treatment reduces microglia activation and glial scar
formation, lowers the level of the proinflammatory
cytokines, and blocks the activation of NF- κB in a
mouse model of cortical stab wound injury in the
brain. Treatment of osthole can suppress cellular
apoptosis and release of inflammatory factors by
blocking injury-induced IκB- α phosphorylation and
NF-κB translocation and upregulating IκB-α, in SH-
SY5Y cells[85]. Treatment with osthole inhibits IL-1β-
stimulated proliferation and migration, inhibits the
expression of matrix metalloproteinases, blocks the
generation of IL-6 and TNF- α, and inhibits NF- κB
and MAPK pathways, in IL-1β -stimulated SW982
cells[86]. Treatment with osthole inhibits chronic
kidney failure (CRF) induced TNF-α, IL-8, and IL-6
expression and suppresses NF-κB protein expression
in rats. Osthole treatment also attenuates the protein
expression of transforming growth factor (TGF) - β1,
reduces MCP-1 activity, and increases the PI3K/Akt
ratio in CRF rats[87]. The secretion of TNF- α, IL-6,
and IL-1β by LPSstimulated BV2 cells is reduced by
osthole treatment. Moreover, osthole treatment
inhibits LPS-induced activation of the NF- κB
signaling pathway and upregulates the expression of
Nrf2 and HO-1[88].
2.7 Genistein

Genistein is extracted from soybean and has anti-
inflammatory, anti-oxidative, and anti-cancer effects.
Genistein mediates complex anti-inflammatory
pathways. Genistein inhibits high glucose (HG) -
induced adhesion of monocytes to human aortic
endothelial cells (HAEC) and suppresses endothelial
production of MCP-1 and IL-8. Inhibition of AC or
PKA significantly attenuates the antiadhesion effect of
genistein. Consistently, genistein improves HG-
impaired intracellular cAMP production and PKA
activity in HAEC[89]. Similarily, genistein protects
against TNF-α -induced vascular endothelial

inflammation via the PKA signaling pathway[90].
Genistein can improve IMQ-induced pathological
scores of cutaneous skin lesions in mice. Furthermore,
genistein inhibits phosphorylated STAT3 expression
in IMQ mice dorsal skin and in TNF- α -induced
HaCaT cells. Genistein also inhibits TNF- α induced
nuclear translocation of NF- κB and the
phosphorylation of I-κBα[91]. Genistein can counteract
oxLDL-induced expressions of adhesion molecules
and chemokines in HUVECs. Furthemore, genistein
reduces miR-155, elevates SOCS1, and inhibits the
NF-κB signaling pathway[92]. Genistein decreases the
secretion of IL-1β, IL-6, and IL-8 from TNF- α -
stimulated MH7A cells. Genistein also prevents TNF-
α -induced NF- κB translocation and phosphorylation
of IκB kinase-α/β and IκBα and suppresses TNF-α -
induced AMPK inhibition. The production of IL-1β,
IL-6, and IL-8 induced by TNF-α is decreased by the
PI3K inhibitor, suggesting that the inhibition of Akt
activation might inhibit IL-1β, IL-6, and IL-8
production induced by TNF- α. These findings
indicate that genistein suppresses TNF- α -induced
inflammation by inhibiting the ROS/Akt/NF- κB
pathway and promoting AMPK activation in MH7A
cells[93]. Genistein inhibits IL-1β -induced expression
of catabolic factors NOS2, COX-2, and matrix
metalloproteinases (MMPs) and stimulates HO-1
expression, which has been associated with Nrf2
pathway activation in human chondrocytes. In a rat
model, genistein is also shown to attenuate the
progression of traumatic osteoarthritis[94]. Genistein
attenuates ovalbumin (OVA) -induced airway
inflammation and modulates the Th1/Th2 reaction by
inhibiting GATA-binding protein (GATA)-3 and STAT-
6 production while increasing T-bet production[95].
One of the earliest neuropathological changes in
Alzheimer's disease is the accumulation of astrocytes
at sites of A-beta deposition. A beta induces
inflammatory mediators and these effects are
prevented when cells are pretreated with estradiol or
genistein. The A beta-stimulated expression of
proinflammatory genes is antagonized by the action of
the PPARγ[96].
2.8 Paeoniflorin

Paeoniflorin, a bioactive compound from
baishao, is known for its antioxidative,
antiinflammatory, antiallergic, and antiapoptotic
activity. It protects against vascular inflammation.
Moreover, the NF-κB pathway plays a leading role in
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the pharmacological action of paeoniflorin.
Pretreatment with paeoniflorin attenuates phorbol-12-
myristate 13-acetate plus calcium ionophore
(PMACI) -induced production of TNF- α, IL-1β,
histamine release, and caspase-1 activation in HMC-1
cells. Furthermore, paeoniflorin is showed to prevent
activation of NF- κB and MAPK signaling pathways
in activated HMC-1 cells[97]. Paeoniflorin
pretreatment inhibits Aβ1-42-induced production of
TNF- α, IL-1β, and IL-6 in rodent microglia.
Moreover, the nuclear translocation of p65 NF-κB and
phosphorylation of IκBα, in Aβ1-42-stimulated
microglial cells, are suppressed by paeoniflorin
administration[98]. Paeoniflorin promotes cell survival
rate and decreases over-production of inflammatory
cytokines, ERS markers, and the ultrastructural
abnormalities in LPS-stimulated HUVECs. Specific
inhibitors or activators are used to confirm the role of
the IRE1α/NF- κB pathway in paeoniflorin-mediated
protection against LPS-induced HUVEC injury[99]. In
vitro treatment of paeoniflorin inhibits LPS-induced
expression of COX-2, iNOS, TNF- α, IL-6, and
MMP-9. In addition, paeoniflorin suppresses NF- κB
signaling via activating the Nrf2/HO-1 signaling
pathway in LPS-stimulated Caco-2 cells[100].
Paeoniflorin decreases the levels of uric acid and
creatinine in the urine, serum and kidney levels of
cytokine, and attenuates the histological changes seen
in kidney tissues, caused in cyclophosphamide-
induced mice. Moreover, paeoniflorin increases
AMPK levels and inhibits NF-κB signaling pathway
and apoptosis, in cyclophosphamide-stimulated
kidney tissues[101].
2.9 Catechin

Catechin is one of the main polyphenol
compounds found in green tea and possesses a range
of health benefits in periodontitis, allergic disease,
coronary heart disease, gout, and adipose
inflammation. Thymic stromal lymphopoietin (TSLP),
found in epithelial cells, plays a significant role in the
development of allergic disease and the production of
TSLP is related to activation of the NF-κB signaling
pathway. As an upstream regulator of TSLP, the NF-
κB signaling pathway is suppressed after catechin
treatment, which is demonstrated by a decrease in p-
p65 NF-κB and p65 NF-κB levels, reduction of IκBα
degradation, and p65 NF-κB nuclear translocation[102].
Catechin can attenuate the production of IL-1β by
inhibiting pro-IL-1β expression via the

downregulation of TLC, p38 MAPK, and NF- κB
signaling in THP-1-derived macrophages, infected
with P. gingivalis in a mouse model[103]. In 3T3-L1
adipocytes, catechin, and quercetin attenuate TNF-α -
induced elevated protein carbonyls, increase
proinflammatory cytokine expression, and decrease
adiponectin. The protective effects of catechin and
quercetin on adipose inflammation are in part
associated with their capacity to decrease the
activation of JNK and p38, or prevent the
downregulation of PPARγ[104].
2.10 Ferulic acid

Ferulic acid (FA) is an important therapeutic
agent that is extracted from TCM such as chuanxiong
and danggui. FA displays a wide range of therapeutic
effects and can be used for the prevention and
treatment of endometritis, depression, and acute
respiratory distress syndrome. MAPK and NF- κB
pathways play an important role in the anti-
inflammatory effect of FA. FA pretreatment alleviates
LPS-induced pulmonary histological changes,
improves LPS-induced inflammation, reduces
oxidative stress, and inactivates multiple MAPK
signaling pathways in the lungs[105]. Bovine
endometrial epithelial cells were pretreated with FA
followed by LPS treatment. The results show that
mRNA expression of LPS-induced proinflammatory
cytokines is decreased with FA pretreatment.
Moreover, FA inhibits the degradation of IκB and
phosphorylation of p65 NF-κB and suppresses the
phosphorylation of MAPKs, including p38 and JNK.
FA inhibits H2O2-induced injury and increases cell
viability in rat VSMCs. The level of ROS generation
is reduced by pretreatment with FA by inhibition of
nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase expression and down-regulation of
MAPK and Akt pathways. H2O2 stimulates the
production of IL-6, IL-1β, TNF-α, and NO, which can
be reduced by pretreatment with FA through the
inhibition of p-NF-κB and iNOS expression[106].
Chronic unpredictable mild stress (CUMS) shows
decreased sucrose preference and increased
immobility time in mice. It also causes up-regulation
of IL-1β, IL-6, and TNF- α and activation of
microglia, NF- κB signaling, and NLRP3
inflammasome in the prefrontal cortex of mice. The
activation of inflammatory response, induced by
CUMS, is reversed by FA[107].
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2.11 Emodin
Emodin, an anthraquinone derivative from Radix

rhizoma Rhei (dahuang), has been reported to possess
anti-tumor, anti-inflammatory, and anti-diabetic
activity. NF-κB and MAPKs pathways play an
important role in the anti-inflammatory effect of
emodin. Due to the interventionary effect of emodin
lipid nano-microbubbles, the protein expressions of p-
p38, p-ERK, and p-JNK and levels of inflammatory
cytokines, like TNF-α, IL-1β, and IL-6, are decreased
in mechanical stretch induced AT-II cells[108].
Treatment with emodin can improve corneal structure
and reduce corneal injury by reducing the corneal
inflammatory response, induced by LPS. Emodin can
inhibit the decreasing level of IкBα expression and
mRNA expression of TNF-α and ICAM-1, in corneal
tissues[109]. Emodin inhibits LPS-induced TLR2, NF-
κB, TNF- α, IL-1β and IL-6 mRNA and protein
expression in cultured NRK-52E cells. Emodin
attenuates inflammation by inhibiting TLR2-mediated
NF-κB signaling pathway[110]. Emodin can ameliorate
LPS-induced acute lung injury (ALI)/acute respiratory
distress syndrome (ARDS) in mice. LPS-induced up-
regulation of ICAM-1, MCP-1, and TNF- α, LPS-
induced down-regulation of PPARγ, and LPS-
enhanced p65 NF- κB activation and DNA binding
activity, are substantially suppressed by emodin in
RAW264.7 cells[111]. Emodin treatment of cough
variant asthma (CVA), in mice, increases the levels of
immunoglobulin E (IgE) and IgG1/IgG2a, inhibits the
infiltration of inflammatory cells, and reduces the
levels of inflammatory cytokines in bronchoalveolar
lavage fluid (BALF) and serum. Furthermore, the
expressions of Notch 1, 2, 3, and DLL4, in lung
tissue, are inhibited by emodin treatment. The results
show that emodin alleviates inflammation in CVA
mice by the suppression of the Notch pathway[112].
2.12 Chlorogenic acid

Chlorogenic acid (CA) is one of the most
abundant polyphenols in jinyinhua, and has known
immunoprotective, antioxidant, and anti-inflammatory
properties. The NF- κB pathway plays a key role in
mediating the anti-inflammatory effect of CA. CA
suppresses IL-1β -induced mRNA expression of
VCAM-1, ICAM-1, and endothelial cell selectin. In
addition, CA attenuates or blocks IL-1β -induced
nuclear translocation of p50 and p65 NF-κB. CA also
reduces the adhesion of human monocyte cells to IL-

1β -treated HUVECs[113]. CA can inhibit ICAM-1,
VCAM-1, and MCP-1 expression in HUVECs,
induced by AGEs-BSA, and decreases the expression
of related kinases in the ROS/p38 MAPK/NF-κB
pathway, thereby inhibiting advanced glycation end
products of bovine serum albumin (AGEs-BSA) -
induced inflammation in HUVECs[114]. Treatment of
CA attenuates CCl4-induced liver damage and
symptoms of liver fibrosis. CA also reduces the
expression levels of TLR4, MyD88, iNOS, and COX-
2. Furthermore, CA suppresses CCl4-induced NF- κB
activation. CA can efficiently inhibit CCl4-induced
liver fibrosis in rats through TLR4/MyD88/NF- κB
signaling pathway[115] and attenuate diabetic renal
damage. Pre-treatment with CA increases the nuclear
translocation of Nrf2 and the expression of HO-1 and
reduces the phosphorylation of IĸB and the
subsequent nuclear translocation of NF-κB[116].
2.13 Ligustrazine

Ligustrazine, isolated from chuanxiong, has been
proven to have significant anti-inflammatory and anti-
oxidative stress effects and has been widely used for
asthma treatment. Ligustrazine suppresses airway and
lung inflammation in the OVA-induced mouse asthma
model. Ligustrazine also induces inhibition of
inflammatory cells and reduces IL-4, IL-5, IL-17A,
chemokine C-C motif ligand (CCL) 3, CCL19, and
CCL21 level in the BALF of mice with asthma.
Furthermore, ligustrazine induces down-regulation of
CCL19 receptor chemokine C-C receptor (CCR) 7,
STAT3, and p38 MAPK protein expression.
Collectively, ligustrazine is effective in attenuation of
allergic airway inflammatory changes probably via
the STAT3 and p38 MAPK pathways[117]. Treatment
with ligustrazine can decrease hind-paw volume
change and alleviate the histopathological changes in
sections of rat paws, in FCA-induced arthritis.
Ligustrazine also reduces the serum levels of
proinflammatory cytokines. Moreover, ligustrazine
inhibits the SIRT1/NF- κB pathway and activates the
Nrf2/HO-1 pathway[118]. Ligustrazine relieves the
inflammatory changes of airway, reduces the
infiltration of inflammatory cells in tracheal wall, and
decreases the thickening of airway wall in OVA +
aluminum hydroxide-induced asthma model of mice.
Ligustrazine also reduces serum IgE, IL-5, GATA-3,
and TGF- β1 levels. Furthermore, ligustrazine
decreases the expressions of TGF- β1 and Smad2 in
lung tissues of mice, but it increases the expression of
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Smad7. Thus, ligustrazine can improve airway
remodeling in asthma by regulating the TGF-β/Smad
signaling pathway[119].
2.14 Astilbin

Astilbin is a flavonoid compound derived from
the rhizome of Smilax china L. (baqia) and has been
used to treat inflammatory kidney injury because of
its anti-inflammatory activity. Astilbin can inhibit HG-
induced cell proliferation and the expression and
secretion of inflammatory cytokines. The HG-
mediated induction of the inflammatory response and
extracellular matrix (ECM) accumulation is inhibited
by astilbin treatment. The TLR4/MyD88/NF-κB
pathway is activated by HG and the inhibitor of TLR4
exhibits the same effect as astilbin, in reversing the
effects of HG[120]. Kidney function parameters are
restored in astilbin-treated hyperuricemic rats.
Astilbin prevents renal damage induced by the
expression of thioredoxin-interacting protein (TXNIP)
and its related inflammation signaling pathway, like
NLRP3/NF-κB. Moreover, astilbin inhibits activation
of the JAK2/STAT3 cascade and over-expression of
SOCS3 in the kidney of potassium oxonate-induced
mice[121]. Astilbin can inhibit cisplatin-induced cellular
apoptosis and recover cell growth. Astilbin decreases
ROS accumulation and alleviates ROS-induced
activation of p53, MAPKs, and Akt signaling
cascades. Astilbin effectively enhances Nrf2

activation and transcription of its target antioxidant
genes, to reduce ROS accumulation in cisplatin-
induced HEK-293 cells. Furthermore, astilbin
suppresses TNF-α expression, NF-κB activation, and
iNOS and COX-2 expression[122].

3 Conclusion

Cyclic-AMP-PDEs-selective TCM screened in
our laboratory have definite anti-inflammatory effects.
In summary, our results establish that, as shown in
Table 1 and Figure 1, the anti-inflammatory signals of
cAMP-PDEs-selective TCM mediated by cAMP
mainly involve inhibiting the activity or protein
expression of NF- κB, MAPKs (p38, ERK, or JNK),
TLR, MyD88, and STAT3 and promoting the activity
or protein expression of Nrf2, HO-1, AMPK, and
PPARγ. Among them, inhibition of NF-κB is the most
important way to play anti-inflammatory roles for all
cAMP-PDEs-selective TCM. In addition, the
regulatory signaling mechanisms of anti-inflammatory
drugs seem to be complex or have multiple-targets.
Gallic acid, G-Rg1, quercetin, or catechin play an anti-
inflammatory role by promoting the activity or
expression of Akt, while genistein, ferulic acid, or
astilbin exert the same effect by inhibiting the activity
or expression of Akt. This complex adjustment of
TCM also exists in individual reports of PI3K in this
review.

Table 1 Regulation of cAMP-PDEs-selective TCM on key proteins of inflammatory signaling pathways

TCM

Luteolin

Gallic acid

Ginsenoside Rg1

Puerarin

Quercetin

Osthole

Genistein

Paeoniflorin

Catechin

Ferulic acid

Emodin

Chlorogenic acid

Ligustrazine

Astilbin

NF-κB

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓

MAPKs

↓
↓
↓

↓
↓

↓
↓
↓
↓
↓
↓
↓

TLR

↓
↓

↓
↓

↓

MyD88

↓

↓

↓

↓

STAT3

↓

↓

↓

↓
↓

JAK

↓

↓

Akt

↑
↑

↑
↑
↓

↓

↓

PI3K

↑

↑
↑
↓

Nrf2

↑
↑

↑
↑
↑
↑

↑
↑

HO-1

↑

↑
↑
↑
↑

↑

AMPK

↑
↑

↑
↑

PPARγ

↑

↑

↑

↑

“↓”，inhibition；“↑”，activation.
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Notably, cAMP-PDEs are not the only targets of
anti-inflammatory drugs. There are other targets, such
as phospholipase A2, COX, or lipoxygenase, in
immune or inflammatory cells. For example, genistein
and catechin are both selective inhibitors of cAMP-
PDEs that have anti-inflammatory effect mediated via
cAMP and phospholipase A2 inhibitor, which play the
same role mediated by arachidonic acid. Therefore,
drugs can inhibit inflammation through a variety of
signaling pathways. Which anti-inflammatory
pathway of drug the body or cell specifically activate,
is related to its state and key stimulating factor. In
short, the anti-inflammatory effect or anti-
inflammatory signaling mechanism of TCM is at least
partially related to cAMP, mediated by their inhibition
of cAMP-PDEs.
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摘要 炎症是保护人体免受有害刺激的一种防御机制 . 然而，失控的炎症可导致局部或系统性组织损伤 . 研究表明，中药可

以通过抑制 cAMP-磷酸二酯酶（PDEs）活性发挥抗炎作用 . 本文综述了 cAMP-PDEs选择性中药介导的 cAMP对多种炎症信

号通路中关键蛋白的调节作用，主要包括对NF-κB、MAPKs（p38、ERK或 JNK）、TLR、MyD88和STAT3的抑制作用以及

对 Nrf2、HO-1、AMPK 和 PPARγ的激活作用 . 其中，对 NF-κB 的抑制作用是 cAMP-PDEs 选择性中药最重要的信号转导

通路 .
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