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Abstract Objective Renal cell carcinoma is a malignant tumor originating from the renal tubular epithelial system. In the field

of miRNA biomarkers for renal cancer, many previous researches had ignored the large gap in the amounts of samples between

different subtypes of renal cancer, this may lead to differences in the diagnostic ability of selected miRNA biomarkers among

patients with different subtypes of renal cancer, and may cause missed diagnosis and misdiagnosis. Therefore, we considered two

subtypes of kidney cancer common markers for the study. Methods Statistics and two machine learning methods were performed

to screen the expression profile data of clear renal cell carcinoma (ccRCC, KIRC) and papillary renal cell carcinoma (pRCC, KIRP)

respectively and the results were intersected to obtain common miRNA markers for both types of kidney cancer. Then, ROC curve

was used to verify the diagnostic ability of these biomarkers, machine learning methods using external data set (KICH) were also

conformed to these biomarkers, the two methods further proved that these miRNA biomarkers’ diagnostic ability and avoided over-

fitting. The rationality of these biomarkers was also verified by existing experimental literature. The molecular mechanisms of

miRNA markers were investigated using bioinformatics methods. Results A total of 6 common miRNA markers for both types of

kidney cancer were obtained (miR-21, mir-210, mir-185, mir-188, mir-362, mir-199a-2), 4 of them have been reported to be

associated with renal cancer. Mir-188 and mir-199a-2 have not been reported to be associated with renal cancer, and maybe novel

miRNA biomarkers of renal cancer. Then, we performed bioinformatic analysis on these 6 miRNA biomarkers, the results showed

that the newly discovered biomarkers (mir-188 and mir-199a-2), were involved in the regulation of two renal cancer related pathway,

MAPK signaling pathway and TGF-β signaling pathway. The differential expression of miRNA and its target genes in the pathway

was verified, which further proved the reliability of miRNA as a marker and its regulatory effect on target genes. Also a possible

mechanism of how 9 target genes of mir-185 (all belonging to the UGT1A gene family) participate in renal cancer was found, and

there was no related literature. Conclusion The present study identifies possible new common miRNA markers for both types of

kidney cancer and discovers a mechanism of kidney carcinogenesis that has not been seen in kidney cancer-related fields.
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Renal cell carcinoma (RCC) is a malignant
tumor originating from the renal tubular epithelial
system, it is one of the most common urinary system
tumors in adults[1]. According to WHO, RCC is
divided into 14 subtypes by their histopathological
features, the most conventional type is clear-cell RCC
(ccRCC), it accounts for approximately 75% of the
incidence of RCC, the second conventional type is
papillary RCC (pRCC), it accounts for approximately
10% of the incidence of RCC, the rest of the types,
e. g. chromophobe RCC and oncocytoma RCC,
accounts for the rest 15% of the incidence of RCC[2].
The prognosis of RCC is related to the stage of this
disease, the overall 5-year survival rate of the RCC

patients is 74%, the survival rate for late stage RCC
patients are 53%, and the survival rate for metastatic
RCC patients is only 8%[3]. Like most cancers, RCC
usually does not show significant clinical symptoms
in its early stages, many patients are detected by an
incident on their radiographic examination, at the time
these patients may be in the late stage of RCC[4]. This
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is partial because of the low sensitivity and specificity
of traditional diagnostic methods[5]. Therefore, a novel
diagnostic method that can easily detect RCC is
urgently needed.

MicroRNA (miRNA) is a kind of small non-
coding RNA, current studies demonstrated that
miRNAs can affect gene expression at the post-
transcription level[6]. Recent studies have suggested
that miRNA is an ideal tumor diagnostic marker
because it has some excellent characteristics such as
stable presence in body fluids, blood and human
tissues, and is not easy to be degraded[7]. Also, studies
have shown that miRNAs are related to the
development[8] and prognosis[9] of RCC. The study of
Chan et al. [8] shows that down-regulation of miR-381
promotes the growth of cells and restrains the ccRCC
cell apoptosis, and the inhibition of miR-381
promotes chemo-resistance. Mytsyk et al.[9] found that
miR-15a is significantly up-regulated in tumor tissues
and is strongly associated with poor histologic
prognostic features of ccRCC, they concluded that the
tissue expression of miR-15a can be used as a
potential prognostic biomarker for RCC. These
studies indicate that miRNAs may involve in multiple
biological processes related to RCC and have great
research value.

However, because of the high incidence of
ccRCC, the other subtypes of RCC such as pRCC do
not have as many related studies as ccRCC. Also, in
the data sets of The Cancer Genome Atlas (TCGA),
ccRCC has more samples than other RCC subtypes
(Table 1), thus the biomarker identified by mixed data
sets of different subtypes of RCC[10] may have gaps in
the diagnostic ability for different subtypes of RCC.
Also, the common mechanism of occurrence and
development among different subtypes of RCC is
currently unknown, finding reasonable common
biomarkers and biological pathways between them
could provide support for future research, for
example, common treatment and drugs for different
subtypes of RCC.

Considering these problems, the main idea of this
study is to take the intersection of the results of
ccRCC data set and pRCC data set in every step, and
eventually find useful common diagnostic biomarkers
for ccRCC and pRCC. Firstly, statistical methods
were used to identify common significant
differentially expressed (SDE) miRNAs from two
TCGA data sets. Secondly, machine learning methods
were used to further select important SDE miRNAs.
Thirdly, three verification methods were used to
verify the diagnostic ability and biological reliability
of these miRNAs. Lastly, bioinformatic analysis, e.g.
biological pathway enrichment analysis and gene
ontology enrichment analysis, were performed on
candidate miRNA biomarkers and their target genes.

1 Materials and methods

1.1 Downloading and pre-processing of miRNA
expression data

The miRNA expression data of human ccRCC
and pRCC were downloaded from the official website
of TCGA. These two types of RCC were also marked
as KIRC and KIRP in the data sets of TCGA, to avoid
ambiguity and ensure the consistency of the names in
data processing, we will use this version of name as
the name of data sets in the sections below.

After the data sets were downloaded, miRNAs
which have more than 20% missing values were
removed. Then, the mean-value method was used to
fill in the remaining missing values. Lastly, the z-
score method was used to replace abnormal values
and normalize the data sets, the formula of z-score is
as below (μ represents mean value, σ represents
standard deviation).

z = x - μσ
1.2 Identification of common significant
differentially expressed miRNAs

Firstly, the P-value of the miRNAs was
calculated using the Kolmogorov-Smirnov test (K-S
test)[11]. K-S test was a non-parametric test, it can test
if there was a significantly different distribution of
two sample sets, in this study, it was used to test
whether miRNAs were significantly differentially
expressed between tumor samples and normal
samples.

Secondly, the volcano plots method was used to
visually show the expression pattern of the miRNAs.

Table 1 The amounts of samples of three subtypes of
RCC in TCGA database

Subtype

ccRCC

pRCC

chRCC

Sample

616

326

91
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The first parameter of the volcano plots was the P-
values calculated by the K-S test and the second
parameter was the expression quantity fold-change
(FC) between tumor samples and normal samples.
The criteria of SDE miRNA was P-value < 0.05 and
FC > 2 or < 0.5.

Thirdly, in order to find out the common SDE
miRNAs between ccRCC and pRCC, the SDE
miRNAs screened out from KIRC and KIRP were
intersected.
1.3 Screening important SDE miRNAs using
machine learning methods

To screen out miRNAs with more credible
potential diagnostic ability, two machine learning
methods were used in order to further select miRNAs
with higher importance than others. These two
methods are both based on random forest algorithm,
but the parameters they use to screen features are
different, so they can measure the importance of
miRNAs in different aspects.

The first method is called “mean decrease
impurity”, the score of each miRNA is positive
correlated with the decreases it does to the weighted
impurity in a tree model. The miRNA with higher
score in this method indicates that it can separate two
types of samples more effectively.

The second method is called “mean decrease
accuracy”, the idea of this method is to disrupt the
order of the values of each miRNA and then calculate
the impact on the accuracy of the model. Obviously,
for the more important miRNAs, this impact should
be bigger than those less important miRNAs. The
miRNA with higher score in this method indicates that
it can separate two types of samples more accurately.

The common SDE miRNAs selected in the
previous part were evaluated using the two methods
for KIRC and KIRP data sets separately, the
intersection of top 15 miRNAs of each method were
selected as the important SDE miRNAs in each data
set. Then, the intersection of the important miRNAs
of both KIRC and KIRP data sets were selected as
common important SDE miRNAs. These common
important SDE miRNAs were defined as candidate
miRNA biomarkers in this study.

This part of the study was performed using
Python.
1.4 Validation of candidate miRNA biomarkers

Three different methods were used to verify the

rationality and reliability of the candidate miRNA
biomarkers, including receiver operating
characteristic (ROC) curve method, machine learning
model predictive method and literature verification
method.
1.4.1 ROC curve method

The ROC curves of candidate miRNA
biomarkers were plotted in the KIRC and KIRP
dataset respectively in order to preliminarily verify
their clinical diagnostic ability. The area under curve
(AUC) value is positively related to the diagnostic
ability of the miRNA, the miRNA with AUC value
higher than 0.8 were considered as high diagnostic
ability biomarkers.
1.4.2 Machine learning model predictive method

The candidate miRNA biomarkers were used as
features for random forest model, and the model was
trained in the KIRC and KIRP data sets respectively.

Meanwhile, in order to evaluate the
generalizability of candidate miRNA biomarkers in
the diagnosis of renal cancer and avoid possible over-
fitting, the expression profile data of chRCC, namely
KICH data set (Table 1), was downloaded and used
for third-party independent verification in this study.
The process of download and preprocessing of KICH
data set was the same as other two data sets. The
diagnostic ability of these candidate miRNA
biomarkers as combination markers was evaluated by
the prediction accuracy of the model.
1.4.3 Literature verification method

Candidate miRNA biomarkers were used as key
words in the search process of the Web of Science in
order to find out the research literature in renal cancer
related field, for the miRNA biomarkers with no
current related literature in renal cancer field, they
were further searched in the field of cancer. These
results were obtained in December 2020.
1.5 Bioinformatic analysis
1.5.1 Target gene prediction of common important

SDE miRNAs

In order to further study the relationship between
these common important SDE miRNAs and kidney
cancer, two databases, the Target-Scan database[12-16]

and the miRDB database[17-18], were used to predict
the target genes of these miRNAs. To make the results
more credible, only those target genes which were
predicted by both databases were accepted.
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1.5.2 Pathway enrichment analysis and gene

ontology enrichment analysis

This part of the study was performed using
DAVID and its online analysis tools, the purpose was
to find the target genes’ related pathways. First, a
tissue enrichment analysis was performed in order to
screen out the target genes which were located in
kidney tissues. Second, pathway enrichment analysis
and gene ontology analysis were performed using
these kidney-enriched target genes, the results of this
analysis were used for the rationality analysis of
selected miRNAs and further explain the mechanism
of how miRNAs participate in ccRCC and pRCC.
1.6 Expression profile validation of miRNAs and
its target genes

MiRNA can control the expression of
downstream gene targets. In order to further verify the
reliability of selected miRNAs and the target genes of
2 novel miRNA biomarkers, the expression profiles
were downloaded from the TCGA database and used
to check the gaps of expression levels of miRNAs and
genes between RCC and normal tissues.
1.7 External verification

External datasets GSE16441 from GEO was used
to validate the reliability of the 2 novel miRNA
markers. Microarray dataset GSE16441 (platform is
GPL8659) contains 17 RCC tumors (do not
distinguish between subtypes) and 17 corresponding
non-tumor samples. And external datasets GSE15641
from the GEO database was used to validate the
reliability of the 5 target genes. GPL96 [HG-U133A]
Affymetrix Human Genome U133A Array was used
to extract the gene transcriptional expression profile
information of the GSE15641 dataset. The GSE15641
dataset contains 23 normal tissue samples, 32 ccRCC
tissue samples, 11 pRCC tissue samples, 6
chromophobe RCC tissue samples (chrRCC), 12
oncocytoma tissue samples (OC), and 8 transitional
cell carcinoma tissue samples (TCC). We selected all
normal tissue samples, ccRCC tissue samples and
pRCC tissue samples from the GSE15641 to verify
the reliability of the 5 target genes.

2 Results

2.1 Data processing
The original data sets were downloaded from the

TCGA official website. There were 615 samples and
1 881 miRNAs in the data set of KIRC, and 325

samples and 1 881 miRNAs in the data set of KIRP.
After removing miRNAs that have more than 20%
missing values, there were 344 miRNAs left in the
data set of KIRC and 388 miRNAs left in the data set
of KIRP (Figure 1).

2.2 Screening important SDE miRNAs
The volcano plots method showed 70 up-

regulated and 38 down-regulated SDE miRNAs in
KIRC data set (Table S1a, Figure 2a), 50 up-regulated
and 74 down-regulated SDE miRNAs in KIRP data
set (Table S1b, Figure 2b).

The intersection of the above two volcano plots
results were 42 common SDE miRNAs (Figure 3,
Table S1c).
2.3 Identification of common important SDE
miRNAs

Two machine learning methods, mean decrease
impurity and mean decrease accuracy, identified 14
important SDE miRNAs in the KIRC dataset (Table
S2a) and 13 important SDE miRNAs in the KIRP data
set (Table S2b). The common important SDE
miRNAs were the intersection of important SDE
miRNAs for KIRC and KIRP (Figure 4), the 6
common important SDE miRNAs, yellow dots with
outlined red or green circle, including 3 up-regulated
miRNA (mir-185, mir-21 and mir-210) and 3 down-
regulated miRNA (mir-188, mir-199a-2 and mir-362).
These 6 miRNAs were defined as candidate miRNA
biomarkers for ccRCC and pRCC in this study.
2.4 Verification of common important SDE
miRNAs
2.4.1 The result of ROC curve method

As can be seen from Figure 5, the AUC values of

Fig. 1 The amounts of samples and miRNAs in two data
sets
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the 6 candidate miRNA biomarkers were all greater
than 0.8 in both KIRC and KIRP data set, indicating

Fig. 2 The volcano plots for KIRC and KIRP data sets
The red dots represent up-regulated SDE miRNAs, the blue dots represent down-regulated SDE miRNAs,while the gray dots represent those miRNAs

which are not significant differentially expressed.

Fig. 4 The intersection of important SDE miRNAs for
KIRC and KIRP

The triangles represent important SDE miRNAs selected by both

methods in KIRC, the squares represent important SDE miRNAs

selected by both methods in KIRP, the hexagons represent the

unimportant SDE miRNAs, the circles represent the common

important SDE miRNAs of both data sets.

Fig. 5 ROC curve of candidate miRNAs for KIRC and
KIRP dataset

Fig. 3 The intersection of the above two volcano plots
results

The red dots represent up-regulated miRNAs and the green squares

represent down-regulated miRNAs. Dots or squares with black borders

represent the intersection of the two data sets.
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that each individual candidate miRNA biomarker has
a good diagnostic ability and has the potential to
become a diagnostic biomarker of two subtypes of
renal cancer.
2.4.2 The result of machine learning model

predictive method

The accuracy score for KIRC, KIRP and KICH
data sets were 0.978, 0.979 and 0.964, respectively.
The AUC score for KIRC, KIRP and KICH data sets
were 0.998, 0.999 and 0.989, respectively (Table 2).
The results showed that these 6 candidate miRNA
biomarkers have strong diagnostic ability as a
combination feature, both in terms of accuracy score
and AUC score. Moreover, in the data set of the
independent third subtype of RCC, KICH, they also
showed good performance, which indicates that these
miRNA biomarkers have strong diagnostic ability for
other subtypes of RCC besides the subtypes KIRC
and KIRP.

2.4.3 The result of literature verification method

The result showed that in the kidney cancer-
related field, there was 32 literature related to mir-21,
5 literature related to mir-185, 19 literature related to
mir-210 and 1 literature related to mir-362 (Table 3).
For mir-188 and mir-199a-2, there was no related
literature in the kidney cancer-related field, but they
did have related literature in the cancer-related field.
Carlsson et al.[19] found that mir-21 were differentially
expressed in RCC tissues using RT-qPCR.
Experimental literature using RT-qPCR found that the
expression levels of mir-185 were significantly
differentially expressed in RCC tissues[20].
Experimental research of Zhang et al. [21] found that
the expression levels of mir-210 were significantly
higher in the serum samples of ccRCC. Using RT-
qPCR, Zou et al. [22] found that mir-362 was down-
regulated in RCC tissues samples. The results of the
above experimental literature also support the
reliability of the markers we found.

2.5 Bioinformatic analysis
To make the predicted results more credible and

further discover the mechanism, bioinformatic
analysis was performed on the target genes of the 6
candidate miRNAs biomarkers.

Firstly, two databases were used to predict target
genes of the 6 miRNAs, then intersection was taken.
A total of 2 864 target genes were obtained.

Secondly, a tissue enrichment analysis was
performed on the 2 864 target genes. there were 303
genes enriched in kidney tissues, all the further
bioinformatic analyses were based on these 303 genes.

Lastly, pathway enrichment was performed, 56
genes were identified to be related to multiple
biological pathways including several cancer-related
pathways (Figure 6).

Among these enriched pathways with P-value≤
0.05, three of them, namely the MAPK signaling
pathway, TGF‑β signaling pathway and thyroid
hormone signaling pathway, were proved to be related
to RCC[23-26]. As for the 2 candidate miRNAs, mir-188
and mir-199a-2, which have no related literature in the
kidney cancer-related field, we found that both
mir-188 and mir-199a-2 participate in the MAPK
pathway, besides, mir-199a-2 participates in the
TGF- β pathway. These 2 miRNAs may be the new
diagnostic biomarkers for ccRCC and pRCC.
Additionally, it was found that there are 9 downstream
target genes of mir-185 which were all members of
the UGT1A gene family and involved in the formation
of UDP-glucuronidase. mir-185 has been reported to
be associated with kidney cancer through DNMT1/
MEG3 pathway[27], however, these 9 genes have not
yet been reported to be associated with renal cancer.

Further analysis and discussion will be
concentrated on those 9 UGT1A genes and the two
pathways related to the newly found miRNAs.

Table 2 Random forest verify results of candidate
biomarkers

Dataset

Accuracy score

AUC

KIRC

0.978

0.998

KIRP

0.979

0.999

KICH

0.964

0.989

Table 3 The literature search result of candidate miRNA
biomarkers

miRNA ID

mir-21

mir-185

mir-210

mir-362

mir-199a-2

mir-188

ccRCC

24

6

37

0

0

0

pRCC

4

1

2

0

0

0

RCC

32

5

19

1

0

0

Cancer

--

--

--

--

8

63
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2.6 Expression profile validation of miRNAs and
its target genes

The expression levels of 6 miRNA biomarkers
were shown in Figure 7.

As can be seen from the figure above, in both
ccRCC and pRCC, all the 6 miRNA biomarkers were
significantly differentially expressed between cancer
and normal samples.

The expression levels of the two novel miRNA
biomarkers’ target genes (TAB2, MAPK13,
ACVR1B, CD40, NR3C2) is shown in Figure 8.

As can be seen from the figure above, the target
genes of two novel miRNA biomarkers were also
significantly differentially expressed between cancer
and normal samples in the TCGA dataset, except
MAPK13 (P=0.06). However, Yasuda et al. [28] found
that the expression levels of MAPK13 is significantly
up-regulated in RCC tissues, this result was proved by
RT-qPCR. Thus, the reliability of MAPK13 still needs
further verification. It is known that differential
expression of miRNA will inevitably lead to
differential expression of target genes regulated by

miRNA. The above results showed that the expression
levels of the two novel miRNA biomarkers, mir-188
and mir-199a-2, and their target genes were
significantly differentially expressed in both types of
RCC tissues. This further demonstrates the reliability
of these biomarkers and their target genes.
2.7 External verification

In the external validation dataset GSE16441, 2
novel miRNA biomarkers, mir-188 and mir-199a-2,
were significantly differentially expressed in tumor
samples and normal samples, and the expression
levels of them were lower in tumors samples than in
normal tissues (Figure 9a).

Fig. 6 Pathway enrichment results of target genes
The size of the circle represents the amounts of genes enriched in the pathway, the color of circle is related to the P-value.

Fig. 7 Expression levels of miRNA biomarkers in two subtypes of RCC and normal samples
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In the external dataset GSE15641, the target
genes of the 2 novel miRNA biomarkers were all
significantly differentially expressed between tumor
and normal samples (Figure 9b).

3 Discussion

As mentioned before, two miRNAs were found
to be candidate novel biomarkers for ccRCC and
pRCC, their downstream target genes were involved
in two RCC-related pathways, namely MAPK
signaling pathway and TGF- β signaling pathway.
Mir-185, another miRNA biomarker found in the
study, has been reported to be associated with RCC,
and 9 target genes of it were found to be involved in

the formation of UDP-glucuronidase, but UDP-
glucuronidase did not has any RCC-related literature,
thus the relationship between these 9 genes, UDP-
glucuronidase and RCC will be further discussed in
this section.
3.1 MAPK signaling pathway

Six miRNAs were eventually screened out as
common important SDE miRNAs for ccRCC and
pRCC. Among them, there were totally 5 miRNAs,
mir-199a-2, mir-185, miR-21, mir-210 and mir-188,
involved in the MAPK signaling pathway, including
two newly discovered miRNA biomarkers, mir-199a-2,
and mir-188. The MAPK signaling pathway controls
many biological processes, some of which are long-

Fig. 8 Expression levels of novel miRNA biomarkers’target genes in RCC and normal samples in the TCGA dataset and
the GEO dataset

Fig. 9 External verification of the 2 novel miRNA biomarkers and the 5 target genes of them
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term and complex processes, such as embryogenic
cell differentiation, cell proliferation and cell death,
and some of which are short-term processes, such as
homeostasis regulation and rapid hormonal
responses[29]. The association between the MAPK
signaling pathway and the development of RCC has
been widely demonstrated[25, 30-31]. MAPK13 gene
(target gene of mir-188) encodes p38 protein, which is
a MAP kinase and one of the key nodes in the MAPK
pathway, it is extensively involved in the
inflammatory response of cell proliferation,
differentiation and cell circulation. Previous studies
have shown that the overexpression of p38 can

promote the proliferation, differentiation and invasion
of renal cancer cells[32]. TAK1-binding protein 2
(TAB2) is encoded by the TAB2 gene (target gene of
mir-199a-2) can mediate the activation process
between TAK1 and TRAF6, and the overexpressed
TAK1 can effectively activate the p38 pathway; the
p53 protein encoded by TP53 gene (target gene of
mir-21) is one of the downstream substrates of p38,
and p38 can phosphorylate p53 and participate in the
regulation of cell apoptosis. The schematic diagram of
the MAPK signaling pathway consists of miRNA
biomarkers’ target genes is presented in Figure 10.

3.2 TGF-β signaling pathway
There were 3 miRNAs involved in the TGF- β

signaling pathway, mir-362, mir-21 and mir-199a-2,
including one newly discovered miRNA biomarker,
mir-199a-2. TGF‑β signaling pathway also controls
many cellular processes, such as cell proliferation,
recognition, differentiation and apoptosis, etc. TGF-β
signaling pathway related regulatory processes widely
exist in tissues from the embryonic stage to the
mature body[33]. Recent literature has demonstrated
the association between the TGF-β signaling pathway
and RCC[23-24, 34]. The protein encoded by the
ACVR1B gene (target gene of mir-199a-2) is activin
receptor I (ActivinRI), and its ligand molecule is
activin, which is also a member of the TGF-β family.
Once ActivinRI bind to bone morphogenetic protein
(BMP), it will be activated and cascade to activate
downstream receptor-regulated Smad (R-Smad),

namely Smad2/3, and the activated R-Smad will
transfer to the nucleus and combine with other
molecules such as co-Smad, co-activators and DNA-
binding factors to form Smad complex, the complex
will eventually bind to DNA and play a regulatory
role.Smad2/3 signaling pathway is associated with the
differentiation and migration of renal cancer cells, and
when this signaling pathway is inhibited, the
differentiation and migration of renal cancer cells are
also inhibited[24]. The schematic diagram of the TGF-β
signaling pathway consists of miRNA biomarkers’
target genes is presented in Figure 11.
3.3 UDP-glucuronosyl transferase

The downstream target genes of mir-185
included 9 genes that belong to the UGT1A gene
family (UGT1A1, UGT1A3, UGT1A4, UGT1A5,
UGT1A6, UGT1A7, UGT1A8, UGT1A9 and
UGT1A10), the proteins encoded by them jointly
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Fig. 10 Schematic diagram of MAPK signaling pathway consists of miRNA biomarkers’target genes
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participate in the formation of UDP-glucuronosyl
transferase (UGT). Studies of UGT mainly focused on
its detoxification effect on exogenous compounds
(especially drugs), and some experimental studies
have also proved the association between UGT1A and
the occurrence and development of cancer, including
ovarian cancer[35], liver cancer[36], stomach cancer[37],
pancreatic cancer[38] and bladder cancer[39]. No
literature was found on the correlation between the
UGT1A gene family and the occurrence and
development of renal cancer, but some studies have
shown that the UGT1A gene family is related to the
drug resistance of renal cancer patients[40-41]. UGT is a
cell membrane binding enzyme that catalyzes the
transfer of uridine diphosphoglucuronic acid
(UDPGlcA) to the functional groups of specific
substrates (such as hydroxyl, carboxyl and amino),
this glucuronidation can polarize exogenous
substances, drugs or endogenous compounds, making
them more easily to be excreted from the body.
Although the liver is considered to be the main site
where the process of gluconaldeation occurs, UGT is
widely found in the brain, prostate, kidney and other
tissues, indicates that these organs can also affect the
whole body’s gluconaldeate ability. UGT plays a role
in a variety of metabolic pathways, and studies have
shown that when the expression of UGT is abnormal,
it may alter an individual’s susceptibility to diseases
such as cancer[42]. A study of colorectal cancer
elucidated the mechanism by which UGT1A subtype
molecule UGT1A_i2s participates in several

metabolic pathways through a complex network of
protein interactions and ultimately affects the
metabolism of cancer cells[43]. One molecule that
plays an important role in this mechanism is pyruvate
kinase M2 (PKM2), a glycolytic enzyme that is also a
key metabolic regulator in the body. PKM2 can
prioritize the decomposition of glucose into lactic
acid, this process can provide necessary energy and
precursor substances for the synthesis of nucleic, acid
amino acids and lipids by cancer cells, thus promoting
the division of cancer cells. Also in this study, it was
found that cancer cells lacking UGT1A_i2s showed
stronger migration and invasion ability, and the
metabolic process of cancer cells shifted from
oxidative metabolism to glycolysis. This study also
showed that this change was related to the increased
PKM2 activity, suggesting that UGT1A_i2s may be a
regulatory factor of PKM2.

At present, the specific mechanism of the
UGT1A gene family involved in renal cancer has not
been reported by the literature, however, because
UGT1A and UGT1A_i2s also exist in kidney tissues,
and studies have shown that PKM2 expression levels
are significantly different between renal cancer tissues
and normal tissues[44]. Therefore, our study speculated
that this mechanism may also exist in renal cancer,
but this hypothesis still needs further verification.

Finally, an integrated miRNA-gene-pathway map
was constructed using Cytoscape (Figure 12), this
figure can visually show the relationship between
miRNAs, genes and pathways they enriched.
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4 Conclusion

By using statistical and machine learning
methods, 6 common important SDE miRNAs of
ccRCC and pRCC were found, including 2 miRNAs
that were not yet reported to be associated with RCC.
These miRNAs and their target genes participate in
two cancer-related pathways, namely MAPK
signaling pathway and TGF‑β signaling pathway, and
can provide new ideas for further RCC studies. They
may also be used as new diagnostic biomarkers or
therapeutic targets for RCC. Additionally, a
hypothesis that the UGT1A gene family participates
in RCC through UGT1A_i2s and PKM2 was also
given out in this study.

Supplementary PIBB_20210170_Table_S1-S2. xlsx
are available online (http://www. pibb. ac. cn or http://
www.cnki.net)
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两型肾癌的共同标志物筛选及机制研究*

聂仁清 唐 瑭 张小轶** 张 瑾
（北京工业大学环境与生命学部，北京 100124）

摘要 目的 肾细胞癌是一种源发于肾小管上皮系统的恶性肿瘤。在已有肾癌相关miRNA标志物的研究中，大都忽略了不

同亚型肾癌之间样本数据量差距对筛选结果的影响，这会导致miRNA生物标志物对不同亚型肾癌患者的诊断能力存在较大

差异，进而发生漏诊误诊。因此本课题考虑了两种亚型肾癌共同标志物进行研究。方法 对透明肾细胞癌（KIRC）和乳头

状肾细胞癌（KIRP）的表达谱数据分别进行统计学和两种机器学习方法筛选并对结果取交集获得两型肾癌共同miRNA标

志物。接着，用ROC方法验证了这些标志物的诊断能力。用机器学习方法对外部数据集KICH进行了验证，进一步证明这

些标志物的诊断能力以及避免过拟合。还用已有实验文献验证了这些标志物的合理性。用生物信息学方法对miRNA标志物

分子机制进行研究。结果 获得了 6 个两型肾癌共同 miRNA 标志物 （miR-21、mir-210、mir-185、mir-188、mir-362、

mir-199a-2），其中有4个已有实验报道和肾癌密切相关，而mir-188和mir-199a-2尚未见文献报道其与肾癌相关，可能是新

的肾癌相关miRNA标志物。之后对6个两型肾癌共同miRNA标志物进行了生物信息学分析，其结果表明新发现的两型肾癌

共同标志物mir-188和mir-199a-2参与调控了肾癌相关的MAPK信号通路和TGF-β信号通路。对miRNA及其在通路中的靶

基因进行了差异表达的验证，进一步证明了miRNA作为标志物的可靠性及其对靶基因的调控作用。本文还发现，标志物

mir-185的下游靶基因中同属于UGT1A基因家族的9个靶基因可能参与肾癌的机制，而在肾癌相关研究领域中尚未见到此种

机制研究的文献。结论 本研究发现了两型肾癌可能的新的共同miRNA标志物，揭示了肾癌相关领域中尚未见到的肾癌发

生机制。
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