自组装无载体纳米药物的研究进展
作者:
作者单位:

1)广东工业大学生物医药学院,广州 510006;2)河南科技大学材料科学与工程学院,洛阳 471000

作者简介:

王文霞 Tel: 020-39322093, E-mail: fewwxia@gdut.edu.cn郑俊霞 Tel: 13418001695, E-mail: junxiazheng@gdut.edu.cnWANG Wen-Xia. Tel: 86-20-39322093, E-mail: fewwxia@gdut.edu.cnZHENG Jun-Xia. Tel: 86-13418001695, E-mail: junxiazheng@gdut.edu.cn

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(22106020,82073977) 和广东省基础与应 用基础研究基金(2020A1515110718) 资助项目。


Research Progress in Self-assembled Carrier-free Nanodrugs
Author:
Affiliation:

1)School of Biomedical and Phamaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;2)Institute of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471000, China

Fund Project:

This work was supported by grants from The National Natural Science Foundation of China (22106020, 82073977) and Guangdong Basic and Applied Basic Research Foundation (2020A1515110718).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,自组装无载体纳米药物由于具有高载药量、低毒副作用、合成方法简便等特点,在生物医药领域受到广泛关注,尤其在抗肿瘤和抗菌等方面具有广阔的应用前景和发展潜力。本文简述了无载体纳米药物自组装作用力,详细综述了目前自组装无载体纳米药物的制备方法,着重阐述了其在抗肿瘤、抗菌、抗炎和抗氧化等生物医学领域的应用及研究进展,最后讨论了无载体纳米药物面临的挑战和未来的发展方向,以期为合理设计更有效的自组装无载体纳米药物及其在临床应用提供理论依据。

    Abstract:

    With the continuous development of nanotechnology, nanoformulations show unique advantages in improving drug delivery and bioavailability. However, most nanocarriers have low drug delivery efficiency, poor therapeutic effect, potential systemic toxicity and metabolic instability. In recent years, self-assembled carrier-free nanodrugs have attracted tremendous attentions in the field of biomedicine due to their unique properties such as high drug loading capacity, low toxicity, and facile synthesis. Therefore, the self-assembled carrier-free nanodrugs exhibit broad application prospects and development potential in biomedical fields, especially in anticancer and antibacterial applications. In this review, we firstly give a brief introduction to the various intermolecular interactions of self-assembly carrier-free nanodrugs, including the hydrogen bonding, π-π stacking, hydrophobic interaction and other non-covalent forces as exemplified by electrostatic interaction and Van der Waals forces. The chemical structures of drug molecules determine the strength of non-covalent interactions. Secondly, we provide an overview of the typical methods used for self-assembly of carrier-free nanodrugs including in vitro self-assembly strategy (e.g., top-down, anti-solvent precipitation, template-assisted precipitation) and in vivo self-assembly strategy. Especially, nanodrugs prepared by in vivo self-assembly method can be targeted and self-assembled at the target location, reducing adverse reactions and achieving higher efficacy. Besides, the application of carrier-free nanodrugs in biomedical fields including anticancer, antibacterial, anti-inflammatory as well as antioxidant are comprehensively reviewed. Finally, the future challenges and development trends of carrier-free nanodrugs are also prospected, which may provide a theoretical basis for the rational design of more effective self-assembly vector free nano drugs and the feasibility of clinical application.

    参考文献
    相似文献
    引证文献
引用本文

陈婷婷,程浩艳,李震,金保胜,陈炜睿,黄蕊,王文霞,郑俊霞.自组装无载体纳米药物的研究进展[J].生物化学与生物物理进展,2022,49(12):2278-2291

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-18
  • 最后修改日期:2022-11-15
  • 接受日期:2022-07-26
  • 在线发布日期: 2022-12-20
  • 出版日期: 2022-12-20