2016, 43(9):831-838.
摘要:组蛋白磷酸化是组蛋白翻译后修饰诸多方式中的一种,属于表观遗传学的范畴,在DNA损伤修复、细胞分裂等过程中发挥作用.近年来研究表明,组蛋白磷酸化在学习记忆等认知功能中也发挥重要的调节作用.本文主要就组蛋白磷酸化在学习记忆中的作用,及其上游信号通路、下游转录调控机制做一综述,旨在为认知功能障碍相关疾病提供新的理论基础和治疗靶点.
张星 , 廖雨恒 , 童慧敏 , 张磊 , 张胜利 , 任罡
2016, 43(9):839-849.
摘要:抗体(antibody)又称免疫球蛋白(immunoglobulin,Ig),是人体免疫反应的重要参与者.了解抗体的结构和结构动态特征,是理解人体免疫作用机理、修复或提高免疫能力、定向设计抗体以治疗各种疾病的基础.本文以人体IgG1抗体为对象,综述了使用透射电子显微学方法研究IgG1抗体结构方向的最新进展.详细介绍了使用逐个分子的电子断层三维重构技术(individual-particle electron tomography,IPET)对抗体进行结构研究的方法,包括样品制备、图像处理和数据分析等.并描述了利用该技术,在研究抗体结合肽分子后的结构形变和通过收集不同构象来研究抗体动态结构特征方面所取得的阶段性成果.最后,对尚待解决的关键问题与该技术未来的发展方向进行了讨论与展望.
2016, 43(9):850-857.
摘要:病毒融合蛋白可以分为三种类型,不同类型的病毒融合蛋白的结构差异很大,但是会采用相似的“发卡”构象实现融合.在一定条件下,病毒融合蛋白的疏水结构域,融合环或融合肽插入靶膜中,通过其自身折叠形成发卡使病毒和宿主的膜靠近.与此同时,融合蛋白构象变化会释放出足够的能量将双方膜打破并完成融合.本文中,我们总结了三种类型病毒融合蛋白的特征,并对其中央发卡三聚体结构域、跨膜结构域以及近膜结构域在融合过程中的作用进行了论述.
2016, 43(9):858-863.
摘要:逆转运复合体(retromer)作为一种蛋白复合物,参与蛋白质从内体到反面高尔基体的逆向运输或从内体到质膜的回收过程,调节了细胞内货物的丰度及亚细胞分布.近期研究发现,retromer可与一些病毒蛋白相互作用从而影响病毒的生命周期.本文通过总结retromer与丙肝病毒、人类免疫缺陷病毒、人乳头瘤病毒、痘苗病毒以及松鼠猴疱疹病毒的相互作用,探讨retromer在病毒侵染中的作用.
2016, 43(9):864-879.
摘要:底物蛋白的多聚泛素链修饰参与调节多种生命运动过程(包括蛋白质降解、自噬、DNA损伤修复、细胞周期、信号转导、基因表达、转录调节、炎症免疫等).去泛素化酶通过水解底物蛋白的单泛素和泛素链修饰,对泛素相关过程进行反向调节.人类基因组中约含90余种去泛素化酶,它们通过对自身酶活性和底物识别特异性的调节,实现了对细胞内复杂泛素过程的精密且层次性的调控.本文针对去泛素化酶对不同泛素链的识别选择性,综述目前已知泛素链水解酶的选择性和产生机制.
2016, 43(9):880-886.
摘要:脆性 X 综合征(fragile X syndrome,FXS)是最常见的遗传性认知障碍疾病,也是一种与自闭症谱系障碍(autism spectrum disorder,ASD)相关的严重的基因疾病.它主要是由于脆性X智力低下基因1(fragile X mental retardation 1,FMR1)的异常扩增及其上游CpG岛的异常甲基化,导致其编码的脆性X智力低下蛋白(fragile X mental retardation protein,FMRP)表达减少或缺失引起的.FMRP与miRNA(microRNA)均具有翻译抑制活性,而且FMRP在生物化学和遗传学上均与miRNA调控通路有相互作用.此外,越来越多的研究发现miRNA调控通路在FXS的发病和治疗中发挥作用.因此,本文对miRNA的功能及其与脆性X蛋白家族成员间的相互作用进行阐述,为在miRNA水平了解FXS的发病机制奠定基础.
李小燕 , 李根保 , 李敦海 , 郝宗杰 , 王高鸿 , RICHTER R. Peter , SCHUSTER Martin , LEBERT Michael , 刘永定
2016, 43(9):887-894.
摘要:利用神舟8号飞船的SIMBOX发射机会,对真实微重力影响裸藻光合作用活性进行了研究.我们发现,微重力降低了光合活性(Fv/Fm),提高了细胞内叶绿素a和胡萝卜素含量.快速叶绿素荧光动力学研究显示微重力降低了叶绿素荧光强度,但快速叶绿素荧光动力学曲线的形状(O-J-I-P)没有改变.在微重力处理下裸藻的最大光化学效率(φPo)、用于电子传递的量子产额(φEo)和光合作用性能指数(PIABS and PICS)都明显降低,但单位反应中心吸收的光能(ABS/RC)和单位反应中心耗散的能量(DIo/RC)都明显升高.77K低温荧光光谱实现微重力改变了能量在PSⅠ和PSⅡ之间的分配并出现了红移现象.这些结果表明真实微重力降低光合作用的活性有可能通过两个途径,即抑制裸藻抑制光合电子传递中PSⅡ的受体端和改变PSⅠ的结构从而引起流向PSⅠ的能量传递减少.
2016, 43(9):895-902.
摘要:本文运用现代分析手段系统考察了溶液离子强度对菠菜来源光系统Ⅰ(PSⅠ)和光系统(PSⅡ)结构性质的影响,研究的结构性质包括:低温荧光光谱、放(耗)氧活性、聚集尺寸、聚集形貌、Zeta电位和热稳定性等.结果表明,溶液离子强度对PSⅠ和PSⅡ的放(耗)氧活性、聚集尺寸和热稳定性具有显著影响.此外,根据测试结果的分析得知,“筛分效应”在光系统Ⅰ的超滤分离过程中起决定性作用.
Saffiyeh , Fatemeh Behnam Rassouli , Maryam M Matin , Mahdi
2016, 43(9):903-909.
摘要:Valproic acid (VPA) is a histone deacetylase inhibitor that has been an object of interest to clinicians for its promising potency in cancer therapy, as it induces apoptosis and differentiation, and enhances of chemotherapy sensitivity. Esophageal squamous cell carcinoma (ESCC) is a malignant disease with growing incidence and low survival rate. Due to limited information on VPA activity in ESCC cells, we aimed to determine effects of VPA on chemotherapy responsiveness and expression of malignant markers in ESCC stem-like cells. Upon coadministration of non-toxic VPA + cisplatin (DDP), paclitaxel and 5-fluorouracil, viability of KYSE30 cells was assessed, and induced apoptosis was evaluated by DAPI staining, DNA laddering and flow cytometry. In addition, real time RT-PCR was performed to study changes in the expression of P21, CD44 and BMI-1 upon treatments. MTT test demonstrated that VPA significantly (P < 0.05) increased toxicity of DDP, which was confirmed by DNA laddering, flow cytometry analysis and significant (P < 0.05) overexpression of P21. Moreover, real time RT-PCR results indicated significant (P < 0.05) down regulation of CD44 and BMI-1 after VPA administration. Present attempt provided evidence, for the first time, that VPA not only improved responsiveness of esophageal stem-like cancer cells to DDP, also negatively regulated cancer stem cells markers in these cells.
2016, 43(9):910-918.
摘要:糖基化修饰是生物体内最常见、最重要的蛋白质翻译后修饰之一.哺乳动物体内超过50%的蛋白质都会发生糖基化修饰.糖蛋白广泛分布于各种组织的细胞膜表面,执行着重要的生物学功能.随着高通量、高灵敏度和高分辨率的蛋白质组学时代的来临,许多基于串级质谱技术解析糖链结构的生物数据库和分析软件也亦应运而生.本文综述了目前文献中最常用的糖类生物信息学资源,包括各种糖蛋白的数据库以及质谱解析糖类的相关工具和新技术、新方法.
生物化学与生物物理进展 ® 2024 版权所有 ICP:京ICP备05023138号-1 京公网安备 11010502031771号