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Abstract In order to improve exon level sensitivity and specificity of recent gene-finding programs, strong “search b
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signal” components are needed to identify splice sites, translation start and other biological signal sites. A new model for
the identification of 3 splice sites ( acceptors) using Hidden Semi-Markov Model ( HSMM} was introduced. This model is
proved to be particularly suitable for modeling the biological structure of acceptors. When tested in Burset/Guigo dataset,

this new method demonstrated an improved accuracy compared with existing method. The success of this model gives a deep

understanding of the structure of acceptors and the biological process of splicing.
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New generation of gene-finding programs
developed in recent years have substantial improvement
compared with older ones. the goal of
computational gene finding is still far away. The exon

However,

level sensitivity and specificity is still unsatisfactory.
When tested in HMR195 dataset by Rogic, the
program that showed highest ESn and ESp, HMMgene,
has ESn and ESp as 0. 76 and 0. 77'". Even when the
best two programs, Genscan and HMMgene, are
combined, ESn and ESp is only a little higher than
0.80'". In order to improve exon level accuracy,
gene-finding programs have to have stronger “search by
signal” component { signal sensors) /.

Currently, most successful gene finding programs,
such as Genscan'” and HMMgene'?, usually use
Hidden Markov Model ( HMM)™® as a higher-level
model that integrates many sub-models. The sub-
models include coding statistics, transcription signals,
translation signals and splicing signals. I the sub-
models are all improved, we can expect a substantially
improved overall performance. In our recent work, we
specifically focus in improving the sub-model used in
identification of 3" splice sites.

Current programs have lower
accuracy than donor site accuracy'”. The reason is
that the signal of acceptor sites is not well conserved

acceptor  site

and the branch point is notoriously difficult to model.
The branch point is not only less conserved and the
position of the branch peint varies in a range of about
20 bases'™".

However acceptor site has its special structure.
The branch site lies 18 ~ 40 nucleotides upstream of
the 3° splice site’™. The branch site in higher
eukaryotes is not well conserved, but has a preference
for purines or pyrimidines at each position’ and has
an A nucleotide as target base to form a 5'-2" bond
with the 5" terminus at the end of the intron which is
released in the first transesterification reaction”™” . The

branch site is also the binding site of U2 snRNP when
splicesome is transformed from E complex into A
complex. Downstream of the branch site is a
pyrimidine rich tract. The pyrimidine rich tract is
bound by U2AF splicing factor. The binding of U2AF
with the pyrimidine rich tract is needed for U2 snRINP
to bind with branch site'™ . The region around the 3
splice is also a binding site for other ribonucleoproteins
such as U5 snRNP during C1 complex stage and this
binding is needed by the second transesterification
reaction™”

To deal with the intrinsic structure of acceptors,
Burge has developed a modified Weight Array Model
( WAM) method in his well-known gene-finding
program Genscan'”’ . Specifically, bases —20 to +3
relative to the intron/exon junction, encompassing the
pyrimidine-rich region and the acceptor splice site itself
are modeled by a first-order WAM model. He
introduced a “windowed WAM model” to model the
branch site region [ -40, -21]'.

To characterize the special structure of splice
sites, we have introduced a novel model for
identification of acceptors using Hidden Semi-Markov
Model { HSMM) ™. In this article, it is shown that this
model is more suitable for the acceptor site than
existing models. This model primarily aims to improve
the accuracy by combining the informaton contained in
the consensus around splice site, the polypyrimidine
tract and the branch site upstream.

1 Method
We use Hidden Semi-Markev Maodel instead of
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HMM because we think HMM does not characterize the
acceptor structure well and HSMM is more preferable.
As we will see in Figure 2, the distribution of branch
point position is quite different from 1-shifted geometric
distribution. However, if we use HMM as a higher-
level model, the distribution of state duration will
always be 1-shifted geometric, which is not the case.

HSMM model is used to combine sub-models
characterizing branch site, pyrimidine-rich region and
region around AG consensus. The states used in
HSMM model are [ { intron), B ( branch site}, P
{ polypyrimidine tract), A{ consensus around AG) and
E{exon}. The state transitions between states are trivial
according to their biological meaning. But the state
durations are flexible { Figure 1}.
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Fig.1 State transitions

For the sub-models of the branch site region and
the consensus around AG, a Linear Discriminant
Funetion { LDF) ') was used to combine Weight Matrix
Model ( WMM) and one-order WAM model. A
homogenous two-order Markov Model was used to
characterize the pyrimidine-rich region.

In training, as to the exact state sequence in the
training set is unknown , EM Algorithm'™ is used to
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Fig. 2 Distribution of branch poeint position

train the model. Random or arhitrary initial parameters
are given. The result shows that the ultimate trained
model is not sensitive to the initial parameter values.
This suggests that the trained model is reliable.
Figure 2 shows part of the trained parameter values,
the distribution of branch point pesition. In testing
Viterbi Algorithm'® iz used to find the optimal state
sequence.

2 Result

Our method was tested on Burset/Guigo set'™ of
570 vertebrate multi exon gene sequences using cross-
validation. The 570 sequences were divided into four
parts randomly. Three of them were chosen as training
set and the other was used as test set. Then accuracy
was averaged.

We first compared our method with two earlier
models. One is the simplest, Weight Matrix Model
{ WMM). The second is modified WAM method used
by Burge in Genscan. The result shows that the
Genscan model is much hetter than WMM and HSMM
is clearly better than the Genscan model ( Table 1}.
Parameters of WMM were optimized to get best result.
Parameters for Genscan splice site model were exactly
the same provided by Genscan program.

WMM and modified WAM both use information in
a rather short region. Consequently, when comparing
with those two methods, we also take as input a short
region around splice sites, which contains about 50 bp
upstream and about 10 bp downstream. But a recent
program GeneSplicer'™ takes into a large coding and
noncoding area into consideration. It uses sequences of
80bp on either side of the splice sites. In order to
compare with GeneSplicer, we produced another
version of HSMM program, which use the same wide
window as input. We call it HSMM with wide window
(HSMM-W}. From Table 1, we can see that our
method is comparable with GeneSplicer and a little
hetter.

Table 1 Comparison of various methods

WMM Modified WAM HSMM GeneSplicer HSMM-W
Sn Sq Sp Sq Sp Sq Sp Sq Sp Sq Sp
0.88 0.933 0171 0.950  0.217  0.961 0.250  0.965  0.262  0.968 0.268
0.90 0.925  0.160  0.945  0.204  0.955 0.237  0.961 0.251  0.963 0.256
0.92 0.912  0.142  0.937  0.186  0.946 0.210  0.954  0.240  0.955 0.242
0.94 0.892  0.122  0.926  0.166  0.936 0.190  0.943 0.225  0.947 0.230
0. 96 0.868  0.104  0.904  0.135  0.913 0.159  0.922  0.180  0.928 0.218

Sn=TP/(TP+FN), Sq=TN/(TN+FP), Sp=TP/(TP + FP). TP is the number of acceptors that are predicted as acceptors. FV is the
number of acceptors that are predicted as pseudo-acceptors. TV is the number of pseudo-acceptors that are predicted as pseudo-acceptors. FP

is the number of pseudo-acceptors that are predicted as acceptors.
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To give a profile of branch sites, we aligned the
sequences identified as branch sites together and
caleulated the weight matrix. The result was given

Table 2 A weight matrix profile was calculated for the

helow ( Table 2}. From the result, we can see some
clue that the vertebrate branch site is evolved from the
original UACUAAC box in yeast.

aligned branch sites that is identified by our method

-6 -5 -4 -3 -2 -1 A site 1 2
A 0. 236 0.224 0. 264 0.115 0.126 0.305 1. 000 0.091 0.130
T 0. 289 0.289 0.329 0.202 0. 692 0. 144 0. 000 0. 349 0.354
C 0.240 0. 306 0.236 0. 549 0. 149 0.2438 0. 000 0. 456 0.335
G 0.233 0.179 0. 169 0.132 0. 031 0.301 0. 000 0.102 0.17¢

To show some characteristics of the pyrimidine-
rich region, we counted the frequencies of all sixteen
dinucleotides that occur in the identified pyrimidine-
rich regions. The result was given in Table 3. The
most frequent four dinucleotides are all pyrimidine
pairs and AG is the most unfrequent dinucleotide. The

exceedingly low frequency of AG might be an evidence
of the model suggested by Langlord and Gallwitz. In
1983, they demonstrated the role of branch site might
be telling the splicing machinery to splice to the first
AG downstream''" .

Tahle 3 The frequencies of all sixteen dinucleotides in the identified pyrimidine-rich regions

AA AC AG AT CA CC CG cT

GA GC GG GT TA TC TG T

0.015 0.038 0.004 0.039 0.03% 0.133 0.014 0.155 0.009 0.046 0.021 0.051 0.031 0.146 0.077 0.182

3 Discussion

We find that HSMM is especially suitable to
identify a “hidden™ structure which is composed of
several relatively consensus motifs and the exact
distance between the motifs is variable and unknown.
Aceeptor is such a kind of “hidden™ structure. The
method introduced here can also be used to identify
other biological signals such as translation start and
transcription start sites.
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