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Abstract In this paper, a novel scale-free network construction algorithm based on reconnection method was proposed. The
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has. The network in the experiment was testified using log-log graph. And the simulated gene expression profiles were also tested with
three different well developed algorithms' software available free from internet by reconstructing the network. PPV and Se of the links
were calculated and visualized. A part of the results and the full version program written by java could be downloaded from our
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1 Introduction
Gene expression profiles yield quantitative and

semi-quantitative data on the concentration of protein
expressed by the corresponding genes in a specific
condition and time, especially ncRNA. One of the
high-throughput data applications is to infer or
reverse-engineer gene regulatory networks (GRNs)
among genes using various mathematical approaches[1].
But various expression profiles could not be enough
for testifying the increasing number of inferring
algorithms. Simulation profiles could be one of many
measures used for the given inference algorithm.

The gene regulatory network is a kind of complex
network according to the researches [2]. The reality of
the network in biology gene regulatory level could be

found according to various experiments [3]. The
scale-free property is very common in the gene and
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pathway network. The properties of scale-free are
contained by the network. Hence, scale-free network
can be constructed for generating and simulating gene
expression profiles. On the other hand, Internet, social
network and other common networks also follow a
scale-free power-law distribution [4]. For these reasons,
modeling the scale-free network with some suitable
methods is one of the most challenging tasks in the
complex network research. The existing algorithm
includes BA model [5], fitness model [6], other important
models. All these scale-free network models have two
basic mechanisms. The first one is growth, which
means network should be expanded continuously by
the addition of new nodes to the existing network. The
other is preferential attachment, which means new
nodes should attach preferentially to the old nodes that
already have many links.

The proposed scale-free construction model
defined by our research focuses on the growth part,
proposed reconnection method for emphasizing the
core role of the hub regulatory genes.

The more important part of our research is the
generation of the gene expression profiles. To simulate
the suitable values in the profiles, a well fitted function
should be used and testified. And the method used for
generating profiles should be dynamic. The differential
equation (DE) [7], model was used to be the simulation
functions. Simulated profiles fit developed models to
the network. Fitting adjusts the unknown parameters
so that an optimal value for a fitness criterion is
ensured. The least square is used as criterion value.
And some heuristic search algorithms described later
were used to optimize the criterion. The formula of the
DE model was perfect for time series profiles data
simulation.

As the number of the network and simulation
profiles parameters for even medium sized networks
may be very large to a computer, a suitable fitting
algorithm for underdetermined problems have to be
applied. Among different fitting strategies the forward
selection fitting algorithm [8] has shown reasonable
performance, in particular for sparse networks, which
is also the form of our network. Therefore, it has been
adopted in our research.

We tested the proposed network algorithm with
power-law property and visualized the distribution
graph. And we reconstructed the network with gene
expression profiles simulated by our method with three

kinds of GRN inference algorithms' software.

2 Scale鄄free network construction
The computer simulation is performed in two

major parts. The first part is the construction of the
regulatory network, which corresponds to the static
part of the simulation since the network is
unchangeable during the dynamics. Actually, sparseness
of GRNs can be found as a general property [9]. So the
most common and important design rule for simulating
GRNs is that their topology should be sparse.
Sparseness reflects the fact that genes are regulated
only by a limited number of genes [10]. Sparseness
means that regulatory inputs per gene should be
limited, thus a low in-degree is desired. However,
some regulatory genes may control a large part of the
entire network, thus the out-degree per gene is
unrestricted. In the algorithm aspect of the
mathematics, enforcing the sparseness property during
network construction has the benefit that it
significantly reduces the number of model parameters
to be estimated and consequently improves the
efficiency of network construction and gene expression
matrix simulation. Because of the sparseness, scale-
free networks grow with connectivity k=1 by using the
growing network with redirection algorithm [11]. The
connectivity corresponds to the number of regulators
that a new node can have when it connects to the
network. The network is grown as follows.

Another difference in the novel scale-free
network construction is that direction property can be
found in the network. The initial network condition
consists of only one node, or a seed network composed
of a small number nodes. Because of k=1, a new node
is linked to the only one old node. And the old node is
the regulator of the new node and the source of the
directed line between them. The regulatory node is
selected by a special probability selected method. The
details will be described later. As the regulatory node
is found, the new directed link from the selected
regulatory old node to the new node is established with
probability r. Or the directed link from another old
node calculated basis on the selected old node and the
new of node is established with probability 1 -r. We
call this approach is reconnection method. The work
flow of reconnection method can be described as
follows:

(1) If the selected node hasn't ancestor node, the
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Fig. 1 The flow chart of the network construction part

regulatory node is the selected node itself.
(2)If the selected node has and only has one

ancestor (k =1), the regulatory node becomes the
ancestor node at this epoch with probability 1-r. If the
arrowed line is reconnected, go to (1). Else go to (3).

(3)The regulatory node of the new node according
to (2) is the old node itself.

The links in the network are directed arrow line
from regulatory node to the target node, which means
the regulator node's behavior control the target node's
behavior, for instance, the gene expression.

In one hand, the reconnection method is used for
emphasizing the hub regulatory node in the network.
The phenomenon of various mutations in the genetic
world is very common, which means that statistically
speaking the nodes with less connectivity have more
chances to be the ones that fail. This allows the system
to maintain itself very easily since it is still
well-connected. The hub regulatory was found as a
general model in the gene networks, p53 in the human
genome for example [12]. In other hand, the novel
method is used because the real networks such as
social network, relationship network, especially the
gene expression network, have the ability that the
control behavior has lag time. It seems that one thing is
controlled by the other, but in fact, the mutual
information [13] between the two things is 0. Both of
them are regulated by the same regulator.

The parameter gamma in the power-law
distribution function could be defined by Equation(1)

according to the research[14].
酌 = 1 + r-1 (1)

Where r is the probability that a new node
connects to the selected old node. For instance, when
酌=3, the network has r=0.5, corresponding to a growth
with linear preferential attachment.

The selected method is based on the well
connected nodes priority. The probability that one old
node is selected as a candidate linked node depends on
the number of links the node already had. But the
nodes which have less number of links or even have no
links also have the change to link to the new one. The
selected weight value 1 is evaluated to each node even
they have no links. What's more, the selected weight
value 2 is evaluated to each link the old nodes have.
For example, the old node that has 4 links will be
evaluated selected weight value 2伊4+1=9. The selected
probability p of old node i in the network could be
defined as Equation(2):

p i = 2伊ni +1

i
移(2伊ni +1)

(2)

Where ni is the number of links node i already
had. But if the node is the target of the link, the link
between the source and this node doesn't count. The
denominator of Equation(2) is the total selected weight
value of the network before the new node is added.

The flow chart of scale-free network construction
procedure is shown as Figure 1.

Initial: one
node

Select candidate
old node

Is regulated
by the

ancester

Candidate node
becomes the

ancestor of the
given node

Add a new node

Y

N

According to the modeling algorithm details
described above, the nodes in the network only know
his child nodes. But the nodes don't know which node
is their ancestor, this is more sense to the common
network. And because of k=1, each node only has one

ancestor to simply the network model. The out-degree
per gene in the model is unrestricted.

The relation between topological property and the
functional property of the control network can be seen
from the network. The most important control node of
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the network is the node which has the most number of
the controlled nodes in the network. Observed directly
from the simulated network, this node is the first
produced node in the figure. What's more, the relation
can be seen that the number of control nodes is very
small and the control nodes and the controlled nodes
are power-law distribution.

3 Simulation of gene expression profiles
The novel scale-free network construction

algorithm proposed in this paper could be used for the
simulation of the gene expression profiles. The second
part of the computer implements is the simulation of
the gene expression profiles.

When the network is composed of N nodes
connected by directed links, each node i is assigned an
expression variable v i (t) at time t. The state of the
network at time t is represented by a set of expression
variables (v0(t), v1(t),……, vN(t)). And each node has T
time steps, so do the network. At each time step t, the
value of one node i is defined as follows: v i(t)=F(v0(0),
v1(0),……, vN(0), v0(1), v1(1),……, vN(1),……, v0(T-1),
v1 (T -1),…… , vN (T -1)). The parameters include the
node i value itself at time 0, 1,…… , T -1. This is a
classical mathematical Markov problem [15]. But too
many parameters make the problem become N-P hard
problem. The first-order Markov chain[16] is used in our
research to simply the problem. That is, the value of
node i at time t, v i (t) just depends on the value of
regulatory node, which may be the node itself, in the
network at time t-1. And t is greater than or equal to 1
absolutely. When t is 0, random value is used for the
node i value.

The quantity relationship between node i at time t
and the ancestor of node i at time t -1 can be found
with many methods. Many simulation functions are
testified to simulate gene expression profiles. Finally,
in our research, the differential equation (DE)
approach was used as our basis simulation model. For
simplicity, we considered only systems that are
operating near a steady state, so that the dynamics can
be approximated by a linear system of a set of ordinary
differential equations as Equation(3):

dxi(t)/dt =
N

j
移wijxj(t-1)+b i (3)

Where the xi(t) is the concentration of the mRNAs
at time t that reflect the expression levels of the gene at
time t, N is the number of measured genes; the wij is
the coefficient representing the influence of node j on

the regulation of node i, with a positive sign indicating
activation, a negative sign indicating repression, and a
zero indicating no interaction; and the b i is the
constant output observed in the absence of regularity
inputs, especially presents the algebraic sum of the
external stimulus and noise for gene i.

When the network construction is completed, the
construction of the sparseness control weight value
matrix W is known. If the directed line from gene j to
gene i exists, the value of wij is non-zero, positive or
negative, and if the directed line from gene j to gene i
doesn't exist, wij is zero.

For simplicity and discretization of differential
equation, we converted the Equation(3) to Equation(4):

xi(t)-xj(t-1) =
N

j
移wijxj(t-1)+b i (4)

In an experiment, we can apply a prescribed
random stimulus b i and use a set of random values to
the non-zero wij for gene i, the value of xi is what we
want. It's the concentrations of all T different measured
times. The matrix X can be presented as Equation(5):

XN伊T =
x11 … x1T

…

xN1 … xNT

晌

尚

上上上上上

裳

捎

梢梢梢梢梢
(5)

Where xij is the value of concentration of gene i at
the time j.

The solution space is too big to fit the Equation(4)
exactly. So two kinds of heuristic research algorithms,
which are Genetic algorithm (GA) [17], and Particle
Swarm Optimization (PSO) [18], were used to find the
matrix .

For each gene, least square[19], of Equation(4) can
be calculated. And the algebraic sum of all the genes
can be used for the fitness for GA and PSO. When the
fittest Matrix , according to the smallest fitness value,
was found, or the max number of iteration was
reached, the algorithm ends.

From the Equation(3) of DE model, we can see
this model is specially used for presenting the dynamic
system. The time series is the essence of the model.
Though the time complexity is bigger than some other
algorithm, DE model allows us to consider more
accurate networks and gene expression matrix.
Because of increasingly development of the hardware
of the computers, larger networks even include
hundreds of genes also can be constructed and the
relevant gene expression matrix can be exactly
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simulated.

4 Experiments
To show the efficiency of the proposed scale-free

network construction method and simulation of gene
expression profiles approach, we implemented the
algorithm with java, and used a series of parameters to
investigate the properties of the network and the
profiles values and compare the efficiency of our
algorithm with other existed traditional algorithms.
4.1 Scale鄄free Network construction

Artificial scale-free regulatory networks were
generated with the parameters in Table 1. In Table 1:
nodes indicate the number of vertices in the final

generated networks; 酌 is the exponent value, which
was 3 for every node in our experiment, in the degree
distribution function for each node; times is the
number of time spans; steps means the time span unit;
overFlow is the threshold of the gene expression
profiles values which are subject to 0臆x臆overFlow;
outTimes means the number of time spans in one
merge group, which indicate that there are 20 time
points in the gene expression matrix in our experiment;
signal is the level of the noise added to each value;
seed is used to generate the random noise value.
If seed = -1, the procedure will use the number of
millisecond at current time, otherwise the program will
use the seed value directly.

Table 1 The parameters for generating network and simulating gene expression profiles
Parameters Nodes 酌 Times Steps overFlow outTimes Signal Seed

Value 100 3 1000 0.01 50 50 0.05 -1

One of the network construction algorithm results
was shown as Figure 2. In Figure 2, the most right
node is the node 0. The shape is round and the size is
the biggest, the other nodes are clockwise from it. The
lines, from the regulatory node to its target node, have
rectangle resource part, which indicate the regulatory
node. The hollow circle means that the regulator of the
node is the node itself. That is, it regulates itself.

The in-degree for each node was 1 because k = 1,
but the out-degrees were different, and the values were
unrestricted. In our algorithm, the out-degree
distribution of the network is power-law. The scale-
free network has many nodes with only a few links and
a few nodes with many links. So when the number of
nodes is big enough, the curve of degree distribution
approximated to the axes of the 2-dimention graph.
Log-log graph [20] was used to display our distribution
curves. Log-log graph use numerical data that are
logarithmic scales on both the horizontal and vertical
axes. Because of the nonlinear scaling of the axes, a
function of the form y = x酌 will appear as a straight
line on the graph, in which 酌 will be the slope of the
line (gradient). We used Matlab to display log-log
graph of the out-degree of network of Figure 2. The
graph is described as Figure 3.

In Figure 3, Frequency is the number of
out-degree, Degrees is the number of node which has
Frequency links. The fit curve in Figure 3 is generated
by Matlab according to the points in log-log graph, the
parameter 酌 is -3.321, the absolute value of 酌
approximated to our parameters, which is 3 according
to Table 1. Power-law distribution could be found and
the efficiency of the reconnection algorithm performs.

Fig. 2 The graph of the network constructed by the
computer program according to the Table 1 parameters
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Fig. 5 The undirected network which corresponds
to Figure 4 generated by MatlabFig. 3 The log鄄log graph of degree distribution function

generated by computer program according to Figure 2

The out-degree of network and the result network
matrix which is discrete to Boolean network [21],
generated according to Table 1 can be downloaded
from our website. And the matrix file is the one used
to generate Figure 3.

The log-log graph of the BA network model with
100 nodes was shown as Figure 4. The corresponding
network was shown as Figure 5. Power-law distribution
also could be found in BA model. But the slope of the
fitted linear function always approximates -1. So the
slope can't be selected by the traditional algorithm.
And the network is undirected which can't match many
genetic networks. The corresponding BA Matlab codes
can be downloaded from our website.

4.2 Profiles simulation
The efficiency of gene expression profiles

simulation algorithm is the core part of our research.
Some gene regulatory network construction methods
with corresponding software available free on the
internet were used to test the profiles. These
algorithms' software includes Banjo [22], ARACNE [23]

and NETI[24].
Banjo is gene network inference software that is

based on Bayesian networks formalism. ARACNE
belongs to the family of information-theoretic
approaches. The NETI identifies the gene network as
well as the direct targets. It is based on differential
equation and is applied when gene expression data are
dynamic (time-series).

Run these algorithms' software with our gene
expression profiles data and some real data with 50
variables because of lack of biological experiments [25],
we can know about the efficiency of our algorithm and
also recognize the merits and drawbacks of the 3 kinds
of network inference algorithm: Bayesian, mutual
information and differential equation. The real data
also can be downloaded from our website.

When we reconstructed the networks from the
generated time series using the software described
above. We will be in hypothesis that the lines
generated by these three algorithms were true lines.
Then the number of links for True Positives (TP), False
Positives (FP) and False Negatives (FN) will be
calculated which can be used to be combined to
estimate Positive Predictive Value(PPV) and Sensitivity
value (Se) defined as in[1]. And they can be described as
Equation(6).

Fig. 4 The log鄄log graph of degree distribution
function generated by BA algorithm
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PPV = TP
TP+FP ; Se = TP

TP+FN (6)

The main configuration settings of Banjo,
ARACNE and NETI were shown as Table 2, Table 3
and Table 4.

In Table 2, discretizationPolicy means the Banjo
will discrete our gene expression profiles values to 5
different discrete values, this method will discards
many important information about the corresponding
genes. Our profiles values, which were from 0 to 50,

can't discrete more discrete types because of the
restriction of the program. Greedy was selected as
heuristic search algorithm in the Banjo because of only
two of them can be selected (the other is simulated
annealing).

In Table 3, the MI P value means Significance
level for a MI estimate to be considered statistically
different from zero. DPI tolerance means the
percentage of MI estimation considered as sampling
error. The kernel width of the Gaussian Kernel
Estimator (estimates the probability density function of
the dataset) affects the smoothness of the density
function. Default value is 0.15MI threshold is for a
mutual info (MI) estimate to be considered statistical
different from zero.

In Table 4, two functions are used as parameters.
NETI generalize the weight value matrix and
background stimulus matrix by converting differential
equations into integral equations with adjustable kernel
functions. This method simplified the number of
parameters. These functions were selected according to
the manual of the NETI.

To test the efficiency of our novel algorithm and
assess the different GRN inference algorithms, 100
runs with different links which is from 1 to 100
were performed and PPV and Se values were
calculated. The result curves were presented and
shown as Figure 6.

Table 2 The configuration settings Banjo with
our simulation profiles

discretizationPolicy maxTime searcherChoice maxParentCount

q5 10 min Greedy 5

Table 3 The configuration settings ARACNE with
our simulation profiles

MI P value DPI tolerance Kernel width MI threshold

0.05 0.1 0.25 0.06

Table 4 The configuration settings NETI with
our simulation profiles

Background function Kernel function Times

10-t0.9 + t1.2 10-t0.3 伊 (1+t)0.4 0.9

Fig. 6 The PPV and Se graph of the three algorithms on the total number
of links for arbitrary networks and real data

The right graph is our generated data. The left graph is the real data from[25]. The three algorithms is Inference models NETI (* line), ARACNE (dash
line) and Banjo (solid line).
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We found that our novel simulation profiles
algorithm performs well. NETI was superior for our
algorithm model to both Banjo and ARACNE,
demonstrating higher predictive power and sensitivity.
The networks with our algorithm were reconstructed
using NETI with greater accuracy (i.e. with smaller
number of FP and FN). The fluctuation can be found
from the real data. It may be the perturbation of the
real gene world. If the number of links is greater than
twenty, many of those links were false positives,
decreasing the PPV values. And the values of Se for all
algorithms were not increased any more.

If the configuration settings for the three kinds of
algorithms were equivalent, the differential equation
model is the best one for time series data.

The data for all the three kinds of algorithm in the
case of links =100 according to Table 1 is also can be
downloaded from our website.
4.3 Software

The developed algorithm software of the
proposed method for generating gene expression
profiles was implemented with MyEclipse 7.0. The
program, named Simulator, which could be downloaded
from our website, could run on your own computer
with JRE 1.5.0.011 or higher version. JGAP [26],
JSwarm-PSO[27] and GFA algorithm[28] were used as our
heuristic search algorithms in the software. But
JSwarm-PSO could only create the fixed number of
genes, so this code was rewritten by our research group
for any number of genes. The parameters settings of
the GA and PSO were the same as their sample codes
on their websites. If you want our algorithm's java
codes, you can e-mail the authors.

5 Conclusion
In this paper we proposed a novel scale-free

construction algorithm named reconnection method,
and used the constructed network, which was large,
hub regulatory and sparsely connected on a scale-free
property, to simulate the gene expression profiles with
differential equation model. The GA and PSO were
used to optimize and find the fittest solution of the
gene expression profiles. We tested the simulated
profiles with Banjo, ARACNE, NETI, and PPV and Se
were calculated with different number of links, and
compare the real data.

Our algorithm performed in biochemical network
which can be observed from Figure 3～6. Differential
equations model is one of the well advanced

formalizations in biochemical systems network
modeling through the comparison of the algorithms.

Time-series data simulated by our software allow
one to investigate the dynamics of activation
(inhibition) of genes. These data can be useful to infer
the direct molecular mediators (targets) of the
regulatory gene in the cell. But network inference from
time-series data does not yield acceptable results.
Reverse-engineering algorithms need to be improved.
One of the reasons for the poor performance of
inference algorithms is the smaller amount of
information contained in time-series data when
compared with steady state data. One way to improve
performance in the time-series case is to get more time
series gene expression profiles. Our algorithm's
software can be used for the data.
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一种新的无标度网络构建方法及其

在基因表达谱模拟上的应用 *
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摘要 本文提出一种新的基于重连接方法的无标度网络构建算法．根据重连接方法新节点的调控节点会被重选，重连接概率

取决于幂率分布模型参数 gamma．用本文算法构建的网络通过微分方程模型来模拟基因表达谱数据，所用的优化算法为 GA
与 PSO．候选节点的选择可以根据已有节点的连接数决定．实验的网络可以用 log-log图，模拟的基因表达谱也用微分方程
模型来验证效果．每个连接的正确性将会通过实验验证，完整的程序可以通过我们的官方网站获得：http://ccst.jlu.edu.
cn/CSBG/ourown/.

关键词 基因表达谱，无标度网络，重连接，微分方程模型，启发式搜索
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