

www.pibb.ac.cn

鸡 FBXO38 转录剪接体 1 的克隆、 表达和功能分析 *

张志威 1, 2, 3 孙婴宁 1, 2, 3, 4 荣恩光 1, 2, 3 李 辉 1, 2, 3 王 宁 1, 2, 3**

(¹⁾农业部鸡遗传育种重点实验室,哈尔滨 150030;²⁾黑龙江省普通高等学校动物遗传育种与繁殖重点实验室,哈尔滨 150030; ³⁾东北农业大学动物科学技术学院,哈尔滨 150030;⁴⁾齐齐哈尔大学生命科学与农林学院,齐齐哈尔 161006)

摘要 F-box 蛋白(F-box proteins)广泛存在于真核生物,并且成员众多,功能多样. FBXO 蛋白是一类 C 端没有亮氨酸重复序列(leucine-rich repeats, LRRs)和 WD 重复序列(WD repeats)的 F-box 蛋白.本研究利用 PCR 和克隆测序的方法从鸡腹部脂肪组织获得一个未知全长编码区序列(coding sequence, CDS),序列分析显示,该序列是鸡 *FBXO38*的一个转录体,本研究将其命名为鸡 *FBXO38* 基因转录本 1(gallus gallus *FBXO38* transcript variant 1, *gFBXO38* three reverse transcriptase-PCR 分析显示,*gFBXO38* three reverse transcriptase-PCR repertendent reverses transcriptase-PCR repertendent reverses representation reverses repertendent reverses representation reverses representation reverses representation reverses representation reverses repertendent reverses representation reve

关键词 F-box 蛋白, KLF7, 鸡, 脂肪组织, 转录调控 学科分类号 Q75, R3, S8

DOI: 10.3724/SP.J.1206.2012.00402

F-box 蛋白(F-box proteins)家族成员广泛存在 于酵母、拟南芥、线虫、果蝇、人及其他哺乳动物 等多种生物中.其结构特征是 N 端含有一段大约 由 40~50 个氨基酸组成的 F-box 模序(motif)^[1]. F-box 模序得名于细胞周期蛋白 F(cyclin F), F-box 模序最早被发现介导 cyclin F 与 SKP1 的蛋白互作^[2]. F-box 蛋白在泛素介导的蛋白质降解过程中特异性 地识别底物,并与 SKP1、Cullin 类蛋白组成 SCF (SKP1-Cullin-F-box protein)类 E3,从而介导蛋白质 的泛素化和降解.目前的研究结果显示,只有一部 分 F-box 蛋白是通过形成 SCF 复合体的方式,引 发蛋白质的泛素化降解或修饰^[3],其他 F-box 蛋白 并不形成 SCF 蛋白复合体,而是通过其他方式(如作为转录因子的辅助因子^[4]、酶活性的抑制物^[5]等) 来发挥生物学功能^[3].F-box 蛋白家族成员众多,功能多样,它们广泛地参与了泛素-蛋白酶体通路 (ubiquitin-proteasome pathway, UPP)^[6]、细胞周期^[7-8]、

** 通讯联系人.

^{*} 国家重点基础研究发展计划(973)资助项目 (2009CB941604),国家肉鸡产业技术体系建设资助项目(CARS-42),黑龙江省高等学校科技创新团队建设资助项目(2010td02).

Tel: 0451-55191770, E-mail: ningwang2001@yahoo.com 收稿日期: 2013-01-09, 接受日期: 2013-03-28

转录调控^[4]、细胞凋亡^[9]和信号转导^[10]等多个生命 过程.

到目前为止, 已经发现了 68 种人类 F-box 蛋 白和 74 种小鼠 F-box 蛋白^[3]. F-box 蛋白除了具有 N端保守的 F-box 模序外, C端通常还存在一些与 蛋白质互作密切相关的二级结构,这些二级结构介 导 F-box 蛋白与底物的特异性识别^[3]. 根据 C 端二 级结构的不同, F-box 蛋白家族可以分为 3 个亚家 族,即亚家族 FBXL、亚家族 FBXW 和亚家族 FBXO^[3]. 亚家族 FBXL 是指 C 端富含亮氨酸重复 序列(leucine-rich repeats, LRRs)的 F-box 蛋白^[11]; 亚家族 FBXW 是指 C 端含有 WD 重复序列(WD repeats)的 F-box 蛋白^[12]; 亚家族 FBXO 名字中的 "O"是英文"other(其他)"的首字母缩写,这个亚 家族包括所有 C 端不具有上述两种结构特征的 F-box 蛋白^[3]. 目前,在哺乳动物体内共发现 37 种 FBXO蛋白. 然而 F-box 蛋白的亚家族分类并不是 一成不变的, 随着蛋白质结构预测和分析方法的发 展,很多以前被认为属于 FBXO 亚家族的蛋白正逐 渐被重新归类到 FBXL 或 FBXW 亚家族^[3].

FBXO38 是 FBXO 蛋白亚家族的一个成员,对 哺乳动物研究结果显示,FBXO38蛋白是转录因子 KLF7 的辅助激活因子,因此又被叫做 MoKA (modulator of KLF7 activity)^[4]. 小鼠 FBXO38 通过 F-box 模序与 KLF7 蛋白的亮氨酸拉链结构域(第 59~119 位氨基酸残基之间)发生蛋白质互作, FBXO38蛋白和转录因子 KLF7 结合后,并不引起 转录因子 KLF7 的泛素化,也不形成 SCF 蛋白复合 体^[4]. FBXO38 通过形成 KLF7-FBXO38 蛋白复合体 发挥作用, 它利用自身的多个出核信号序列 (nuclear export signals, NES)和核定位信号序列 (nuclear localization sequence, NLS)调控 KLF7 在细 胞核和细胞质的亚细胞定位,并增强转录因子 KLF7 对其靶基因(如 p21 Wallar 基因)的转录调控作用[4]. 进一步的研究显示,位于小鼠 FBXO38 蛋白 NES 和 NLS 之间的第 473~766 位氨基酸残基是一个转 录激活调控结构域,FBXO38蛋白通过该结构域发 挥转录激活作用¹³.到目前为止,尚未发现 FBXO38 蛋白具有 DNA 结合结构域, 推测 FBXO38 是一个转录辅助因子.

虽然哺乳动物 FBX 038 的功能已有了一些报 道,但是目前还没有鸟类 FBX 038 的研究报道.本 研究从鸡腹部脂肪组织中克隆得到了一个鸡 FBX 038 转录本,将其命名为鸡 FBX 038 转录本1 (gallus gallus FBX038 transcript variant 1, gFBX038t1), 并分析了 gFBX038t1 在肉鸡不同组织中的表达模 式和在肉鸡腹部脂肪组织发育过程中的表达规律, 此外,还分析了鸡 FBX038t1 单独过表达以及与鸡 KLF7 同时过表达对多个脂肪组织发育和代谢相关 基因启动子活性的影响.本研究为进一步研究鸡脂 肪细胞分化和 FBX038 的生物学功能提供参考.

1 材料与方法

1.1 材料

采用东北农业大学肉鸡高、低脂双向选择系 (Northeast Agricultural University broiler lines divergently selected for abdominal fat content, NEAUHLF) 14 世代 2~10 周龄肉鸡(公鸡共 114 只,其中包括高脂鸡 60 只,低脂鸡 54 只)和爱拔 益加(Arbor Acre, AA)12 日龄肉仔鸡为实验材料. NEAUHLF 群体已经在我们以前的研究报道中有了 详细的介绍^[14],经过 14 个世代的选择,7 周龄 NEAUHLF 群体中,高脂系肉鸡的腹脂率是低脂系 肉鸡的 4.45 倍.

1.2 方法

1.2.1 组织取样.从1~12周龄,每周龄高、低脂 系肉鸡各3~6只.屠宰后收集腹部脂肪组织,在 7周龄时,屠宰后同时收集肝、十二指肠、空肠、 回肠、胸肌、腿肌、心脏、脾、肾、胰腺、腺胃、 肌胃、脑和睾丸组织.收集的所有组织马上用液氮 冷冻,然后储存到-80℃冰箱.

1.2.2 鸡前脂肪细胞培养.从12日龄AA肉鸡中 取腹部脂肪组织(3~5g), PBS 清洗 2 遍后, 用 2 g/L 的 I 型胶原酶(Sigma 公司) 37℃ 消化 1 h, 每 隔 10 min 上下颠倒混匀一次. 然后让消化后的组 织液依次通过 100 µm 和 600 µm 的滤网,除去未 消化的组织块. 收集过滤后的组织消化液, 200g 离心 10 min. 吸取上层中的絮状物即为鸡成熟脂肪 细胞(fat cell, FC),之后弃去上层液体,下层细胞 再次经过红细胞裂解液处理后, 200g 离心 10 min, 获得鸡前脂肪细胞(stromal-vascular cells, SV). 分 离的鸡前脂肪细胞用培养基 DMEM/F12(Gibico 公 司)+10%FBS(Gibico 公司)+1% K(penicillin-streptomycin solution; Sigma 公司)悬浮,以1×10⁵细胞/cm²接 种到细胞培养瓶中,在37℃,5%CO,条件下培养. 待细胞汇合 70%~90%(3~4 d)后,用胰酶消化, 将细胞以 1×10⁵ 细胞 /cm² 接种到 6 孔板. 培养 12 h 后,细胞大约汇合90%,此时添加160 µmol/L油

酸到培养基中诱导鸡前脂肪细胞进行分化.

1.2.3 总 RNA 提取及反转录. 总 RNA 提取利用 Invitrogen 公司的 Trizol 试剂按照操作说明完成. 反转录(reverse transcriptase, RT)以 Oligo(dT)为引物,利用 Promega 公司的 ImProm-II reverse transcriptase Kit 完成.

1.2.4 鸡 *FBXO38t1* 克隆及载体构建. 以高、低脂 系 脂 肪 组 织 混 合 cDNA 为 模 板 PCR 扩 增 *gFBXO38t1* 全 长 编 码 区 序 列 (coding sequence, CDS), 引物信息和 PCR 条件见表 1. PCR 产物回 收纯化后连接到 pMD-18T 载体上(TaKaRa 公司),

转化大肠杆菌 DH5 α 感受态细胞,提取质粒酶切鉴 定正确后,进行测序(华大基因).测序正确后,利 用引物两端的酶切位点(*Eco*R I 和 *Xho* I)将目的片 段亚克隆到 pCMV-HA 载体(Clontech 公司)上,构 建 pCMV-HA-*gFBXO38t1* 质粒.本研究用到的其他 质 粒 包 括 : pCMV-myc-*gKLF7*、 pGL3-basic*gC/EBP* α (-1863/+332)、pGL3-basic-*gFASN*(-1096/+160)、 pGL3-basic-*gLPL*(-1914/+66)和 pGL3-basic-*gFABP4* (-1996/+22)由东北农业大学动物分子遗传实验室制 备并提供.

 Table 1
 Primers and PCR conditions for chicken FBX038t1 clone

Gene	Reference sequence	Length (bp)	<i>T</i> _m (℃)	Site	Cycle	Primers (5'~3')
gFBX038t1	XM_414482	1650	61.5	18	35	CA <u>GAATTC</u> CGATGGGTCCCAGGCGGAAAAATG
				1667		CG <u>CTCGAG</u> TCACAAAGACCAGAGATTACCCTC

1.2.5 鸡胚成纤维细胞系(DF1)的培养.DF1细胞 培养采用完全培养基(DMEM/F12+10%FBS),在 37℃,5%CO₂的条件下进行培养.

1.2.6 定量 RT-PCR. Real-time PCR 利用 SYBR Premix Ex Taq (Takara 公司)和 ABI Prism 7500 sequence detection system(Applied Biosystems 公司) 完成,反应采用 20 μl 体系,反应体系在冰上配 置,体系包括: cDNA 2 μl、2×SYBR Premix Ex Taq 10 μl、PCR Forward(Reverse) Primer(10 μmol/L)各 0.4 μl、50 × Rox Reference Dye II 0.4 μl、双蒸水 6.8 µl;反应条件为 95℃ 预变性 5 s,而后进行 40 个循环,每个循环包括 95℃ 5 s 和 60℃ 34 s.40 个循环完成后进行融解曲线(dissociation curves)检 测,*gFBXO38t1* 和 *gFBXO38t2* 半定量 RT-PCR 反 应条件为:94℃ 预变性 7 min,而后进行 33 个循 环,每个循环包括 94℃ 30 s,53.6℃ 30 s 和 72℃ 30 s. β -ACTIN 半定量 RT-PCR 反应:94℃ 预变性 7 min,而后进行 25 个循环,每个循环包括 94℃ 30 s,56℃ 30 s 和 72℃ 30 s. Real-time PCR 和半 定量 RT-PCR 所用到的引物详见表 2.

Table 2	Primers	used	for	RT-qPCR
---------	---------	------	-----	---------

Gene	Sequence ID	Site	Primer (5'~3')	Product (bp)
gFBX038t1	XM_414482	1596	AATGAGCTGCGGCAGGATG	88
		1683	TGACTGCCAATAACGTTCACAAAGA	
gFBX038t2	XM_003642051	2078	GATGTTCATACACGCTAC	158
		3091	TGATACGGTTTCTTTCT	
β -ACTIN	NM_205518	865	TCTTGGGTATGGAGTCCTG	331
		1195	TAGAAGCATTTGCGGTGG	
GA PDH	NM_204305	227	CTGTCAAGGCTGAGAACG	185
		411	GATAACACGCTTAGCACCA	

1.2.7 Western-blot. 在 6 孔板培养的 DF1 细胞 中分别转染 2 μg 的 pCMV-HA-gFBXO38t1 质粒、 pCMV-myc-gKLF7 质粒,以及 pCMV-HA 和 pCMV-myc 质粒的混合物(empty vector, EV, 两种 质粒各 1 μg)培养 48 h 后,弃去培养基,室温下用 PBS 洗 3 次细胞. 按照每孔 0.15 ml 的量加入细胞

裂解液(RIPA 缓冲液),置于冰上,轻轻摇动,作 用 15 min 裂解细胞,裂解完成后,用干净的细胞 刮将细胞刮于培养孔的一侧,用移液器将细胞裂解 液移至 1.5 ml 离心管中. 10 000 g 4℃离心 10 min, 上清即为细胞总裂解物.取细胞总裂解物 40 µg, 加入等体积的 2×上样缓冲液与细胞裂解物混合, 100℃加热 5 min 使蛋白质样品变性.之后每个变 性蛋白质样品取 10 µl,用 BIO-RAD 公司的 Mini-PROTEAN3 电泳系统进行 SDS-PAGE.电泳 结束后,采用 BIO-RAD 公司的 Mini Trans-Blot 系 统将蛋白质样品由 PAGE 胶上转移至硝酸纤维素 膜.用含有 5%脱脂乳的 PBST(含 0.05%吐温的 PBS)将硝酸纤维素膜室温封闭 1 h. 然后洗去膜上 的封闭液,将膜孵育在含有一抗(鼠源鸡 GAPDH 蛋白单抗购自碧云天公司: 1:100;鼠源 myc 标 签单抗或兔源 HA 标签多抗购自 Clontech 公司: 1:200)的 PBST 溶液,置于水平摇床上室温作用 1 h. 用 PBST 洗膜 3 次,每次 5 min,然后将膜孵 育在含二抗(山羊抗小鼠或山羊抗兔购自碧云天公 司:1:5000)的 PBST 溶液中,置于水平摇床上室 温孵育 1 h. 用 PBST 洗膜 3 次,每次 5 min,之后 进行常规 ECL(碧云天公司)显色.

1.2.8 细胞转染.细胞转染采用罗氏 FuGENE HD 转染试剂按照说明书操作完成.

1.2.9 荧光素酶活性检测. 在 12 孔板培养 DF1 细胞系中进行,每孔细胞转染约 1 μg 质粒,每孔细胞的转染体系见表 3,转染后 48 h,回收细胞,用 Dual-Luciferase Reporter Assay System (Promega 公司)试剂盒检测双报告基因荧光素酶活性.

Table 3	Plasmid DNA	transfection for	per one well of cells

Promoter luciferase reporter pla	smids ¹⁾	pRL-TK (Promega)	<i>gKLF7</i> , <i>gFBXO38t1</i> overexpression or the empty plasmid ²⁾
pGL3-basic-gC/EBPα (-1863/+332)	200 ng	10 ng	800 ng
pGL3-basic-gFASN (-1096/+160)	400 ng	8 ng	600 ng
pGL3-basic-gLPL (-1914/+66)	400 ng	20 ng	600 ng
pGL3-basic-gFABP4 (-1996/+22)	400 ng	20 ng	600 ng

¹⁾ pGL3-basic- $gC/EBP\alpha$ (-1863/+332): The reporter plasmid pGL3-basic (Promega, Madison, WI) containing the chicken $C/EBP\alpha$ gene promoter (nucleotides -1863 to +332 relative to the start site of X66844.1); pGL3-basic-gFASN (-1096/+160): The reporter plasmid pGL3-basic (Promega) containing the chicken *FASN* gene promoter (nucleotides -1096 to +160 relative to the start site of J04485.1); pGL3-basic-gLPL (-1914/+66): The reporter plasmid pGL3-basic (Promega) containing the chicken *LPL* gene promoter (nucleotides -1914 to +66 relative to the start site of NM_205282.1); pGL3-basic-gFABP4 (-1996/+22): The reporter plasmid pGL3-basic (Promega) containing the chicken *FABP4* gene promoter (nucleotides -1996 to +22 relative to the start site of AF432507.2). ²⁾ Included the plasmid of pCMV-myc-gKLF7, pCMV-HA-gFBXO38t1, the plasmids mix of pCMV-myc-gKLF7 and pCMV-HA-gFBXO38t1 (the mass ration of pCMV-myc to pCMV-HA was also 1 : 1) was used as empty vector (EV).

1.2.10 序列分析. BLAST 分析采用 NCBI 网站在 线工具(http://blast.ncbi.nlm.nih.gov/Blast.cgi); 多序 列比对使用 Vector NTI Advance 11 组件 Align X (Invitrogen 公司); Blat 分析采用 UCSC 网 站在线 工具(http://genome.ucsc.edu/cgi-bin/hgBlat?command= start).

1.2.11 数据分析.所有统计分析运用 SAS 9.2 软件(SAS Institute Inc),数据格式表示为 $\bar{x} \pm s$,两组数据之间的比较采用双尾不配对 Student's *t*-test,两组以上数据的分析采用 GLM 过程和 Duncan 多重检验, P < 0.05 被认为差异显著.分析 *gFBXO38t1* 在不同组织的表达水平差异前,先利用

公式(1)标准化不同组织中 gFBX038t1 的表达水平.

 $Y = (gFBXO38t1/gGAPDH) \times N$ (1)

其中 Y 为标准化后的 gFBX038t1 的表达水平, N 为已经报道的不同组织中 GAPDH 表达水平^[15].

- $Y = \mu + T + L + e \tag{2}$
- $Y = \mu + A + L + e \tag{3}$

公式(2)用来分析 gFBXO38t1 表达水平与组织 类型的关系,公式(3)用来分析脂肪组织 gFBXO38t1 表达水平与肉鸡周龄的关系,其中 Y 为 gFBXO38t1 的表达水平,μ为群体平均数,T为 固定效应的组织类型,A为固定效应的肉鸡周龄, L为固定效应的肉鸡品系(高、低腹脂含量),e为 随机误差.

2 结果与分析

2.1 鸡 FBXO38t1 全长编码区克隆

利用 Blast 工具在 NCBI Nucleotide 数据库查找 与小鼠 FBX038(GenBank accession NM 134136)同 源的鸡 cDNA 序列,发现数据库存在两个鸡 cDNA 序列与小鼠 FBXO38 高度同源,分别是鸡 FBXO38 (Gallus gallus FBX038-like)预测 cDNA 序列 (GenBank accession: XM 003642051, 4 060 bp)和鸡 假想基因 LOC416151 (gallus gallus hypothetical LOC416151)预测 cDNA 序列(GenBank accession: XM 414482, 2 155 bp). 利用 UCSC 网站 Blat 工具 分析二者在鸡基因组上的位置,发现它们都位于鸡 第13号染色体,且鸡假想基因LOC416151预测 cDNA 序列所在的基因组区域(chromosome="13", 7526570-7533408)包含在鸡 FBXO38 预测 cDNA 序 列所在的基因组区域(chromosome="13", 7524219-7546884)之内,并且二者的多个外显子完全一致 (图 1a),此外,Blast 结果还显示二者所在这段基 因组区域是鸡FBXO38所在的基因组区域(图 1a), 表明鸡假想基因 LOC416151 预测 cDNA 序列和鸡 FBX038 预测 cDNA 序列是鸡 FBX038 的两个不同 的预测转录本.为了研究方便,本研究将鸡假想基 因 LOC416151 预测 cDNA 序列(GenBank accession: XM 414482)命名为鸡 FBX038 基因转录本 1(Gallus gallus FBX038 transcript variant 1, gFBX038t1), 鸡 FBX038 预测 cDNA 序列 (GenBank accession: XM 003642051)命名为鸡 FBX038 基因转录本 2 (gallus gallus FBX038 transcript variant 2, gFBX038t2) (图 1a). 本研究设计了这两种转录本 mRNA 表达 的特异性检测引物,半定量 RT-PCR 显示,在6和 7 周龄肉鸡腹部脂肪组织中 gFBXO38t1 和 gFBX038t2 均有表达,并且 gFBX038t1 的表达水 平显著高于 gFBX038t2 (P<0.01,图2).

此外,蛋白质序列分析显示,gFBXO38t1预测 蛋白序列(GenBank accession: XP_414482.2)和 gFBXO38t2预测蛋白序列(GenBank accession: XP_003642099.1)与已经报道的人 FBXO38的两 个转录本蛋白序列(human FBXO38 isoform a, GenBank accession: NP_110420.3和 human FBXO38 isoform b, GenBank accession: NP_995308.1)以及小 鼠 FBXO38 蛋白序列(GenBank accession: NP_598897.2)同源性高达 80%以上(图 3). 鉴于较

高的蛋白质序列同源性,并且小鼠 FBXO38 的蛋 白质结构已经有了明确的研究报道[4,13].本研究参 考小鼠 FBXO38 蛋白序列, 对 gFBXO38t1、 gFBXO38t2 和人 FBXO38 的两个转录本编码蛋白序 列进行了生物信息学分析,结果显示,人 FBX038 两个转录本的编码蛋白和 gFBX038t2 编码蛋白均 包含小鼠 FBXO38 蛋白具有的所有功能结构域, 而 gFBX038t1 编码蛋白仅具有 F-box 模序和 4 个 出核信号序列(nuclear export signals, NES), 缺少一 个完整的转录激活结构域(transactivating domain)和 全部3个核定位信号序列 (nuclear localization sequence, NLS)(图 3). 进一步的蛋白质结构分析发 现,gFBX038t2的编码蛋白序列、人FBX038转录 本 2 (human FBX038 transcript variant 2, GenBank accession: NM 205836) 的编码蛋白序列 (human FBXO38 isoform b, GenBank accession: NP 995308.1) 与小鼠 FBXO38 蛋白序列 (GenBank accession: NP 598897.2,即 MoKA)在结构上更加接近,并且 序列长度也极为接近(图 3). 和小鼠 FBXO38 蛋白 序列相比,人 FBX038 的转录本 1(human FBX038 transcript variant 1, GenBank accession: NM 030793) 编码的蛋白序列(human FBXO38 isoform a, GenBank accession: NP 110420.3)缺失了位于转录激活结构域 和第二个 NLS 之间的 80 多个氨基酸(图 3). 而 gFBX038t1 预测蛋白序列比两种人 FBXO38 转录 本和鼠 FBXO38 的蛋白序列都短,并且明显缺失 了多个C端的重要功能结构域(图 3). gFBX038t1 显然是一个预测的 FBX038 新转录本,但尚未实验 证实.为证实 gFBX038t1 是否真实存在,本研究 根据序列 XM_414482 的特异性设计了一对扩增 gFBXO38t1 全长编码区的克隆引物 gFBXO38t1-F1/R1. 这对引物的上游引物 gFBXO38t1-F1 处于两 个转录本序列的同源性很高的保守区域,而下游引 物 gFBX038t1-R1 则位于 gFBX038t1 (GenBank accession: XM_414482)的特有序列上(图 1b). 利用 引物 gFBX038t1-F1/R1, 以肉鸡腹部脂肪组织 cDNA 为模板进行 PCR, 琼脂糖凝胶电泳显示, PCR 获 得一条长度为 1.6 kb 左右的特异性条带(图 1c), 胶 回收连接 pMD-18T 后进行测序,结果显示获得的 序列长1650 bp,与 NCBI 数据库提供的鸡假想基 因 LOC416151 (GenBank accession: XM 414482)的 全长 CDS 序列完全一致(DNA 序列相似性 100%), 测序所得序列已经提交 GenBank 数据库(GenBank accession. JX290204).

(c)

3 000 2 000

gFBX038t1

(a) The schematic representation of the different predicted transcript variants of chicken FBX038. (b) The sequences and location of the chicken FBX038t1 primers on the sequence of XM 414482. (c) Electrophoretic analysis of the PCR amplification of the full-length coding region of chicken FBX038t1 gene. M: DNA marker; 1: The PCR product of the full-length coding region of the chicken FBX038t1.

(a)

(b)

Fig. 2 Expression characterization of *gFBXO38t1* and *gFBXO38t2* in abdominal fat tissues of broilers by Semi-Quantitative RT-PCR

(a) Semi-RT-PCR analysis of gFBXO38t1 and gFBXO38t2 in chicken abdominal fat tissues. Lane $1 \sim 6$ indicate the chicken abdominal fat tissues at 6 weeks of age; Lane $7 \sim 12$ indicate the chicken abdominal fat tissues at 7 weeks of age; lane *M* indicates the DL2000 DNA marker. (b) Histogram of relative expression of gFBXO38t1 and gFBXO38t2 in chicken abdominal fat tissues as described in Figure 3a; the error bars represent the standard deviations of six biologic replicates; and the asterisks (**) indicate the significantly different expression levels between gFBXO38t1 and gFBXO38t2 in chicken abdominal fat tissues as described in Figure 3a; the error bars represent the standard deviations of six biologic replicates; and the asterisks (**) indicate the significantly different expression levels between gFBXO38t1 and gFBXO38t2 in chicken abdominal fat tissues (student's *t*-test; P < 0.01). \blacksquare : IOD(gFBXO38t1)/IOD($g\beta$ -A CTIN); \blacksquare : IOD(gFBXO38t2)/IOD($g\beta$ -A CTIN).

Fig. 3 Sequence analysis of chicken FBXO38t1 protein

Alignment of the chicken FBXO38t1 protein sequence (gFBXO38t1, XP_414482.2) with those of chicken FBXO38t2 (gFBXO38t2, XP_003642099.1), human FBXO38 transcript variant 1 (hFBXO38t1, NP_110420.3), human FBXO38 transcript variant 2 (hFBXO38t2, NP_995308.1) and mouse FBXO38 (mFBXO38, NP_598897.2) using the Align X program of Vector NTI Advance 11 (Invitrogen). And the sequence information of mouse FBXO38 (MoKA)^[4, 13] was used to annotate these protein sequences. F-box =F-box motif, NES =nuclear export signals, NLS =nuclear localization sequence.

2.2 鸡 FBXO38t1 基因组织表达谱

利用 Real-time RT-PCR 方法,分析 7 周龄高、 低脂系肉鸡 15 种组织中 gFBXO38t1 的表达水平, 结果显示,鸡 gFBXO38t1 在所选的 15 种组织和器 官(胸肌、脾、肝、肾、腿肌、肌胃、心脏、腺胃、 十二指肠、腹脂、空肠、回肠、睾丸、脑、胰腺) 中均有一定程度的表达,并且在胸肌、腿肌、 肌胃、脾脏、睾丸和肾脏组织中,高脂肉鸡 gFBX 038t1的表达量要显著高于低脂肉鸡,而在腺 胃中,高脂肉鸡 FBX 038t1的表达量要显著低于低 脂肉鸡(P < 0.05,图 4a).比较 gFBX 038t1 在肉鸡 不同组织中的相对表达水平可见,相对于其他组 织,gFBX 038t1 在腹部脂肪、回肠和胰腺中的表达 水平较高(P < 0.05,图 4b).

Fig. 4 Tissue expression characterization of gFBX038t1 in 7-week-old broilers of NEAUHLF

(a) The *gFBX038t1* mRNA expression was detected with Real-time RT-PCR in various tissues of 7-week-old NEAUHLF male broilers, and the *GAPDH* (glyceraldehyde-3-phosphate dehydrogenase) was used as an internal control. Diagrams show the relative quantification of *FBX038t1* expression. Error bars represent the standard deviations of three replicates. Asterisks indicate significant difference between fat and lean broilers (student's *t*-test), P < 0.05 (*) or P < 0.01 (**). \blacksquare : Lean line; \square : Fat line. (b) The relative *GAPDH* expression level in these tissues reported in human^[15] was used to normalize the expression level of *gFBX038t1*. Diagrams show the relative quantification of *gFBX038t1* expression. Error bars represent the standard deviations of six replicates. The different lowercase letters above histograms indicate statistically significant expression differences among various tissues (GLM followed by Duncan's multiple test, P < 0.05). *1*: Pectoralis; 2: Spleen; 3: Liver; 4: Kidney; 5: Leg muscle; 6: Gizzard; 7: Heart; 8: Proventriculus; 9: Duodenum; *10*: Abdominal fat; *11*: Jejunum; *12*: Ileum; *13*: Testis; *14*: Brain; *15*: Pancreas.

2.3 鸡 FBXO38t1 基因在高、低脂肉鸡 1~12 周龄的表达规律

为了分析 gFBXO38t1 在肉鸡脂肪组织中的 表达模式,本研究采用东北农业大学肉鸡高、低脂 双向选择系 14 世代 1~12 周龄肉鸡为实验材料 (图 5a, b).利用 Real-time RT-PCR,以 g3-ACTIN 为 内参,分析 gFBXO38t1 在高、低脂系第 14 世代 1~12 周龄肉鸡腹部脂肪组织中的表达规律,结果 表明:gFBXO38t1 在高、低脂系 1~12 周龄肉鸡腹 部脂肪组织均有表达,统计分析显示,随着周龄的 变化,肉鸡腹部脂肪组织 gFBXO38t1 的表达量呈现出先上升后下降的趋势,在3周龄时鸡 FBXO38t1 基因的表达量达到最高,而后开始下降 (P < 0.05,图 5c).此外,gFBXO38t1 的表达水平 在高、低脂系间的2个时间点存在显著差异 (P < 0.05),即在3和4周龄时,低脂肉鸡腹部脂肪 组织中 gFBXO38t1 的表达水平显著高于高脂肉鸡 (P < 0.05,图 5c),其他时间点两系间没有显著差 异(P > 0.05,图 5c).

Fig. 5 Expression characterization of *gFBX038t1* in abdominal fat tissue of male broilers of NEAUHLF (a), (b) The body weight and abdominal fat weight of the NEAUHLF male broilers used in the current study. (a) The diagrams show the body weight of the NEAUHLF male broilers, and the error bars represent the standard deviations of replicates ($n \ge 3$). (b) The diagrams show the abdominal fat weight of the NEAUHLF male broilers. Error bars represent the standard deviations of replicates ($n \ge 3$). (b) The diagrams show the abdominal fat weight of the NEAUHLF male broilers. Error bars represent the standard deviations of replicates ($n \ge 3$). Asterisks indicate significant difference between fat and lean broilers (student's *t*-test) P < 0.05 (*) or P < 0.01 (**).••••: Lean line; o–••: Fat line. (c) The *gFBX038t1* mRNA expression in abdominal fat tissue of male broilers at various ages (each age, each line $n \ge 3$) was analyzed by Real-time RT-PCR. β -*ACTIN* was used as internal control. The diagrams show the relative quantification of *gFBX038t1* expression. Error bars represent the standard deviations of *gFBX038t1* expression among individuals of the same age and line. Asterisks indicate significant different expression level between fat and lean broilers (student's *t*-test) P < 0.05 (*) or P < 0.01 (**). The different lowercase letters above histograms indicate statistically significant expression differences among various ages (GLM

2.4 鸡 FBXO38t1 基因在脂肪细胞分化过程中的 表达规律

followed by Duncan's multiple test, P < 0.05), $1 \sim 12$ w = $1 \sim 12$ weeks of age. \blacksquare : Lean line; \square : Fat line.

以 $g\beta$ -ACTIN 为内参,利用 Real-time RT-PCR 分析 gFBXO38t1 在鸡脂肪细胞分化过程的表达规 律,发现在油酸诱导鸡脂肪细胞分化过程中,随着 诱导时间的增加,gFBXO38t1 的表达量除 72 h 时 间点外,总体呈现出下降的趋势(P < 0.05,图 6a). 此外,发现 gFBXO38t1 在直接分离(未经培养)的前 脂肪细胞(stromal-vascular cells, SV)中的表达水平 显著高于在成熟脂肪细胞的表达水平(P < 0.01, 图 6b).

2.5 过表达鸡 FBXO38t1 对脂肪组织重要功能基因启动子活性的影响

哺乳动物的研究表明,FBXO38的主要功能是

增强转录因子 KLF7 的转录调控作用^[4].为了解 gFBX038t1 在脂肪组织生长发育中的作用,本研究 利用 gFBX038t1 克隆引物两端的酶切位点(EcoR I 和 Xho I),在保证阅读框正确的情况下,将鸡 gFBX038t1 全长 CDS 区序列亚克隆到 pCMV-HA 载体上,成功构建了 pCMV-HA-gFBX038t1 表达质 粒.Western blot 分析显示,转染了 pCMV-mycgKLF7 和 pCMV-HA-gFBX038t1 质粒的 DF1 细胞, 分别成功地过表达了鸡 KLF7 和鸡 FBXO38t1 蛋白 (图 7b).启动子报告基因分析显示,与对照组(转 染空质粒的细胞)相比,单独过表达 gFBX038t1 对 鸡 增 强 子 结 合 蛋 白 α (CCAAT/enhancer-binding protein α , C/EBP α)、脂蛋白脂酶(lipoprotein lipase, LPL)、脂肪酸合成酶(fatty acid synthase, FASN)和脂

(a) The *gFBX038t1* expression during chicken preadipocyte differentiation, induced by oleate *in vitro*, was detected by real-time RT-PCR. Cells were harvested at designated time points after treatment with oleate. The β -*ACTIN* was used as an internal control. The diagrams show the relative quantification of *gFBX038t1* expression. Error bars represent the standard deviations of three replicates. The different lowercase letters above histograms indicate statistically significant differential expression of *gFBX038t1* among various time points (GLM followed by Duncan's multiple test, P < 0.05). \blacksquare : Oleate induced. (b) The *gFBX038t1* gene expression in chicken preadipocytes (stromal-vascular cells, SV) and mature adipocytes (fat cells, FC) was detected by Real-time RT-PCR; the β -*ACTIN* gene was used as an internal control. The diagrams show the relative quantification of *gFBX038t1* expression. Error bars represent the standard deviations of eight biology replicates. Asterisks (**) indicate significant differences between SV and FC (student's *t*-test, P < 0.01).

Fig. 7 Effects of individual and combined overexpression of *gKLF7* and *gFBXO38t1* on the promoter activities of chicken *LPL*, *C/EBPα*, *FABP4* and *FASN* genes

(a) Luciferase assays were conducted in DF1 cells, the promoter activities were expressed as ratios of firefly/Renilla luciferase activity. The diagrams show the quantification of promoter activities. Error bars represent the standard deviations of three replicates. Asterisks indicate significant difference between these dedicated groups and control group (EV, DF1 cells transfected with the plasmids mix of pCMV-myc and pCMV-HA), P < 0.05 (*) or P < 0.01 (**; Student's *t*-test). Number signs indicate significant difference between these dedicated groups and the group transfected with the plasmids mix of pCMV-myc-*gKLF7* and pCMV-HA-*gFBX038t1*, P < 0.05 (#) or P < 0.01 (##; Student's *t*-test). *I*: KLF7; 2: FBX038t1; 3: EV; 4: FBX038t1 + KLF7. (b) Western blot analysis of KLF7 and gFBX038t1 in the DF1 cells transfected with pCMV-myc-*gKLF7*, pCMV-HA-*gFBX038t1* and empty vector (EV, the mix of the empty pCMV-myc and pCMV-HA plasmids). GAPDH was used a loading control. *1*: KLF7; 2: FBX038t1; 3: EV.

肪酸结合蛋白 4(fatty acid-binding protein 4, *FABP4*) 的启动子活性具有显著的抑制作用(P < 0.05, 图 7a); 过表达鸡 *KLF7* 对 *FABP4* 启动子活性没有显著影 响(P > 0.05, 图 7a), 对 *C*/*EBP* α 、*LPL* 和 *FASN* 启 动子活性具有显著抑制作用(P < 0.05, 图 7a). 但 *gFBXO38t1* 和鸡 *KLF7* 同时过表达时, *C*/*EBP* α 启 动子活性显著低于对照组和单独过表达鸡 *KLF7* 或 *gFBXO38t1* 的实验组(P < 0.05, 图 7a), *LPL* 启动 子活性显著低于单独过表达*gFBXO38t1* 的实验组 和对照组, 但是高于单独过表达鸡 *KLF7* 的实验组 (P < 0.05, 图 7a), *FASN* 和 *FABP4* 的启动子活性 显著高于单独过表达*gFBXO38t1* 的实验组(P < 0.05, 图 7a), 但是与对照组和单独过表达鸡 *KLF7* 的实 验组均没有显著差别(P > 0.05, 图 7a).

3 讨 论

对小鼠的研究结果表明,FBXO38不参与形成 SCF 复合体, 它通过与 KLF7 形成 KLF7-FBXO38 蛋白复合体发挥转录调控作用[4]. 人体的研究结果 表明,FBX038是一个具有多种转录本的基因,目 前已鉴定出两种人 FBXO38 转录本,分别是人 FBX038t1 (human FBX038 transcript variant 1, GenBank accession: NM 030793) 和人 FBX038t2 (human FBX038 transcript variant 2, GenBank accession: NM 205836),本研究利用鸡腹部脂肪 组织 cDNA 为模板,通过 PCR 扩增克隆了一个鸡 FBX038转录本(gFBX038t1),其所编码的蛋白没 有 NLS 序列,并且转录激活结构域也不完整(图 3). 这是目前第一个被克隆测序证实的鸡 FBX038 转录 本,同时这也是一个全新 FBX038 基因转录本,它 和已经报道的所有人和小鼠 FBX038转录本都不一 样. 序列分析结果显示, gFBX038t1 产生的原因 是,鸡FBX038 基因在选择性转录拼接时缺失了第 1和第13~22外显子,并且第12外显子和部分第 12 内含子序列被剪接成了一个带有翻译终止密码 子的新外显子.

检索鸡数量性状位点(quantitative trait loci, QTL)数据库发现,鸡*FBX038*所在的基因组区域 (chromosome="13",7524219-7546884)附近存在两 个与鸡脂肪性状显著相关的QTL,分别是QTL (ADL0147-ADL0225,QTL区域:32~70 cm)和 QTL(MCW340,QTL区域:22 cm附近).QTL (ADL0147-ADL0225)与腹部脂肪重和皮肤脂肪重都 显著相关^[16],QTL(MCW340)只与腹部脂肪重显著 相关^[17],但是目前还无法确定鸡 FBXO38 是否确实 处于这两个 QTL 之中,也没有鸡 FBXO38 基因单 核苷酸多态(single nucleotide polymorphism, SNP) 与鸡脂肪性状显著相关,或鸡 FBXO38 基因位于脂 肪性状显著 SNP 连锁不平衡区间的研究报道.本 研究发现 gFBXO38t1 和 gFBXO38t2 在 6 和 7 周龄 肉鸡腹部脂肪组织中均有表达(图 2),暗示了鸡 FBXO38 基因可能对鸡腹部脂肪发育具有调控作 用.而 gFBXO38t1 的 mRNA 表达水平显著高于 gFBXO38t2 的 mRNA 表达水平(图 2),进一步提示 相对于 gFBXO38t2,转录体gFBXO38t1 可能在鸡脂 肪组织发育过程中起着更重要的作用.

因为 GAPDH 在同种组织中表达水平相对恒定,在不同组织中的表达水平已经有了详细报道^[19]. 所以本研究选择 GAPDH 作为内参基因来分析 gFBX038t1 的 组 织 表 达 规 律 . 结 果 显 示, gFBX038t1 在本研究选择的 15 种肉鸡组织中均有 一定程度的表达,表明 gFBX038t1 的表达规律与 KLF7 基本一致^[18],两者都在多种组织中广泛表达, 暗示 gFBX038t1 在功能上可能与 KLF7 具有一定的 联系.此外,本研究发现,gFBX038t1在腹脂、回 肠和胰腺中表达水平较高(P < 0.05,图 4b),暗示 gFBX038t1 可能在这 3 种组织中发挥重要作用.而 高、低脂系肉鸡的组织表达分析发现,gFBX038t1 在两系鸡的胸肌、腿肌、肌胃、脾脏、睾丸、腺 胃和肾脏这 7 种组织中存在显著表达差异,则暗示 gFBX038t1 的功能可能与肉鸡肥胖及其并发症有关.

β-ACTIN 是研究脂肪细胞分化常用的内参基 因, 3T3-L1 细胞系中的实验结果表明β-ACTIN 在 脂肪细胞诱导分化过程中的表达量相对恒定四,是 研究脂肪细胞分化的一个相对理想的内参基因. GAPDH 基因表达水平在脂肪细胞分化过程中变化 较大,不适宜作为分析脂肪细胞分化的内参基因四. 因此,本研究选择 B-ACTIN 为内参基因来分析鸡 腹部脂肪组织发育过程中 gFBX038t1 的表达模 式. 实验结果显示, gFBX038t1 的表达量随着肉鸡 周龄的变化而呈现出显著的变化(P<0.05),暗示在 脂肪组织发育过程中gFBX038t1参与了鸡腹部脂 肪组织的发育调控.此外,还发现在3和4周龄时 高、低脂系腹部脂肪组织中 gFBXO38t1 表达量存 在显著差异(P<0.05),而其他周龄腹部脂肪组织 gFBX038t1表达量在两系间没有显著差异(P>0.05), 暗示了 3~4 周龄可能是 gFBX 038t1 调控鸡腹部脂 肪组织发育的重要阶段.而在3和4周龄时,低脂

肉鸡腹部脂肪中 gFBXO38t1 表达水平显著高于高 脂肉鸡(P>0.05),则进一步暗示 gFBXO38t1 可能 对肉鸡腹部脂肪组织发育具有负调控作用.体外培 养的鸡前脂肪细胞在分化过程中 gFBXO38t1 的表 达量逐渐下降,前脂肪细胞中 gFBXO38t1 的表达 水平明显高于成熟脂肪细胞中的表达水平,这和已 经报道的众多脂肪细胞分化负调控因子(如 KLF2、 GATA2/3、ETO/MTG8、CHOP10 和 GILZ 等)的表 达模式完全一致^{[20-21},进一步暗示 gFBXO38t1 可能 具有抑制在鸡脂肪细胞分化的作用.

脂肪组织发育是一个复杂的生物学过程,它的 调控过程涉及到众多的转录因子^[23],C/EBPα 是脂 防细胞分化的一个主要调控因子^[20,23-24].此外,脂 防组织是机体重要的能量储存库和内分泌器官,它 在能量平衡、糖脂代谢、免疫、生殖以及癌症发生 等多方面发挥着重要的调控作用^[24],LPL、FASN 和 FABP4 是脂肪组织的重要功能性蛋白^[25-27].本研 究发现,过表达 gFBXO38t1 对鸡 C/EBPα、LPL、 FABP4 和 FASN的启动子活性都具有调控作用,表 明 gFBXO38t1 对脂肪组织的发育和功能可能都具 有重要的调控作用.过表达 gFBXO38t1 抑制鸡 C/EBPα、LPL、FABP4 和 FASN的启动子活性,从 另一个角度提示了 gFBXO38t1 具有抑制鸡脂肪组 织发育的功能.

对哺乳动物的研究结果表明,FBXO38 作为转 录因子 KLF7 的辅助因子发挥生物学作用¹⁴,本研 究发现,同时过表达鸡 KLF7 和 gFBXO38t1 对鸡 LPL、FASN和FABP4基因启动子活性的影响介于 单独过表达二者之间,说明在过表达 gFBX038t1 的同时,过表达鸡 KLF7 并不能显著增强过表达 gFBXO38t1 对鸡 LPL、FASN 和 FABP4 基因启动子 活性的调控作用,表明在本研究所用的 DF1细胞这 一系统中,gFBXO38t1 的调控并不完全依赖于转 录因子 KLF7, gFBXO38t1 可能通过其他途径来发 挥调控作用.此外,本研究还发现,同时过表达鸡 KLF7 可以抵消 gFBX038t1 过表达对鸡 FASN 和 FABP4 启动子抑制作用,并且能增强 gFBXO38t1 过表达对鸡 C/EBPα 启动子的抑制作用, 暗示鸡 FBXO38t1 和鸡 KLF7 可能存在蛋白质互作, 但这 种互作可能是基因特异性的. 序列分析结果显示, gFBXO38t1 虽然具有与 KLF7 蛋白互作相关的 F-box 模序,但是 gFBXO38t1 不存在核定位序列, 且缺乏完整的转录激活结构域,暗示 gFBXO38t1 与鸡 KLF7 蛋白互作的方式很可能与小鼠 FBXO38 不完全相同.

综上所述,本研究发现了一个新的 FBX038 的 转录剪接体——gFBX038t1.gFBX038t1 在多个组 织广泛表达.脂肪组织发育和细胞分化中的表达模 式分析和报告基因分析都提示 gFBX038t1 是鸡脂 肪组织形成的抑制因子.

参考文献

- Kipreos E T, Pagano M. The F-box protein family. Genome Biol, 2000, 1(5): S3002
- [2] Bai C, Sen P, Hofmann K, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996, 86(2): 263-274
- [3] Jin J, Cardozo T, Lovering R C, et al. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev, 2004, 18(21): 2573–2580
- [4] Smaldone S, Laub F, Else C, et al. Identification of MoKA, a novel F-box protein that modulates Kruppel-like transcription factor 7 activity. Mol Cell Biol, 2004, 24(3): 1058–1069
- [5] Hsu J Y, Reimann J D, Sorensen C S, et al. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC (Cdh1). Nat Cell Biol, 2002, 4(5): 358–366
- [6] Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol, 2004, 5(9): 739–751
- [7] Tsvetkov L M, Yeh K H, Lee S J, et al. p27(Kip1) ubiquitination and degradation is regulated by the SCF (Skp2) complex through phosphorylated Thr187 in p27. Curr Biol, 1999, 9(12): 661–664
- [8] Carrano A C, Eytan E, Hershko A, *et al.* SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol, 1999, 1(4): 193–199
- [9] Herbst A, Hemann M T, Tworkowski K A, et al. A conserved element in Myc that negatively regulates its proapoptotic activity. EMBO Rep, 2005, 6(2): 177–183
- [10] Matsuzawa S I, Reed J C. Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell, 2001, 7(5): 915–926
- [11] Kobe B, Kajava A V. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol, 2001, 11(6): 725-732
- [12] Smith T F, Gaitatzes C, Saxena K, et al. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci, 1999, 24(5): 181–185
- [13] Smaldone S, Ramirez F. Multiple pathways regulate intracellular shuttling of MoKA, a co-activator of transcription factor KLF7. Nucleic Acids Res, 2006, 34(18): 5060–5068
- [14] Guo L, Sun B, Shang Z, et al. Comparison of adipose tissue cellularity in chicken lines divergently selected for fatness. Poult Sci, 2011, 90(9): 2024–2034
- [15] Barber R D, Harmer D W, Coleman R A, et al. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics, 2005, 21 (3): 389–395

- [16] Ikeobi C O, Woolliams J A, Morrice D R, et al. Quantitative trait loci affecting fatness in the chicken. Anim Genet, 2002, 33 (6): 428-435
- [17] Atzmon G, Blum S, Feldman M, et al. QTLs detected in a multigenerational resource chicken population. J Hered, 2008, 99(5): 528-538
- [18] Matsumoto N, Laub F, Aldabe R, et al. Cloning the cDNA for a new human zinc finger protein defines a group of closely related Kruppel-like transcription factors. J Biol Chem, 1998, 273 (43): 28229–28237
- [19] Arsenijevic T, Gregoire F, Delforge V, et al. Murine 3T3-L1 adipocyte cell differentiation model: validated reference genes for qPCR gene expression analysis. PLoS One, 2012, 7(5): e37517
- [20] Farmer S R. Transcriptional control of adipocyte formation. Cell Metab, 2006, 4(4): 263–273
- [21] 张志威,李 辉,王 宁. KLF 转录因子家族与脂肪细胞分化.中国生物化学与分子生物学报,2009,25(11):983-999
 Zhang Z W, Li H, Wang N. Chin J Biochem Mol Biol, 2009, 25(11):983-990

 [22] 张志威,陈月婵,裴文宇,等. 过表达鸡 Gata2 或 Gata3 基因抑制 Pparγ 基因的转录.中国生物化学与分子生物学报, 2012, 28(9): 835-842

Zhang Z W, Chen Y C, Pei W Y, *et al.* Chin J Biochem Mol Biol, 2012, **28**(9): 835–842

- [23] Lefterova M I, Lazar M A. New developments in adipogenesis. Trends Endocrinol Metab, 2009, 20(3): 107–114
- [24] Rosen E D, Macdougald O A. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 2006, 7(12): 885–896
- [25] Shi H, Wang Q, Wang Y, et al. Adipocyte fatty acid-binding protein: an important gene related to lipid metabolism in chicken adipocytes. Comp Biochem Physiol B Biochem Mol Biol, 2010, 157(4): 357–363
- [26] Mead J R, Irvine S A, Ramji D P. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med (Berl), 2002, 80(12): 753-769
- [27] Berndt J, Kovacs P, Ruschke K, et al. Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia, 2007, 50(7): 1472–1480

Cloning, Expression and Function Analysis of Chicken FBX038t1*

ZHANG Zhi-Wei^{1,2,3)}, SUN Ying-Ning^{1,2,3,4)}, RONG En-Guang^{1,2,3)}, LI Hui^{1,2,3)}, WANG Ning^{1,2,3)**}

(¹⁾ Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin 150030, China;

²⁾ Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China;

³⁾ College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;

⁴ Biology and Forestry College, Qiqihar University, Qiqihar 161006, China)

Abstract F-box proteins are widely present in eukaryotes, and their biological functions are diverse in animals. In this study, the full-length coding sequence of an unnamed gene LOC416151 (GenBank accession XM 414482) was cloned from the chicken abdominal adipose tissue by reverse transcriptase (RT)-PCR, and the sequence analysis showed that the acquired sequence (GenBank accession. JX290204) is one of the transcript variants of chicken FBX038, which was designated as gFBX038t1. Real-time RT-PCR analysis showed that gFBX038t1 was widely expressed in various chicken tissues, with a relatively higher expression level in the pancreas, ileum and abdominal fat tissue. In addition, gFBXO38t1 was expressed in all the chicken abdominal fat tissues used in the present study, and at 3 and 4 weeks of age, the gFBX038t1 expression in lean males was significantly greater than that in fat males (P < 0.05) and no significant difference was observed at the other ages (P > 0.05). The gFBX038t1 expression decreased followed by the differentiation of chicken preadipocytes induced by oleate, and gFBX038t1 expressed more highly in chicken preadipocytes than in mature adipocytes ($P \le 0.05$), suggesting that gFBXO38t1 might play a negative role in the chicken adipogenesis. Additionally, The luciferase reporter assay showed that gFBX038t1 overexpression inhibited the promoter activities of chicken CCAAT/enhancer-binding protein α (C/EBPa), lipoprotein lipase (LPL), fatty acid synthase (FASN) and fatty acid-binding protein 4 (FABP4). The combined overexpression of gKLF7 and gFBX038t1 did not lead to an enhanced ability for gFBX038t1 to regulate the promoter activities of chicken LPL, FABP4 and FASN, indicating that gFBXO38t1 may regulate promoter activities of these genes through a KLF7-independent manner. The current study provides evidence that the gFBX038t1 is involved in chicken adipogenesis.

Key words F-box proteins, KLF7, chicken, adipogenesis **DOI**: 10.3724/SP.J.1206.2012.00402

^{*}This work was supported by grants from National Basic Research Program of China (2009CB941604), China Agriculture Research System (CARS-42) and Program for Innovation Research Team in University of Heilongjiang Province (2010td02).

^{**}Corresponding author.

Tel: 86-451-55191770, E-mail: ningwang2001@yahoo.com

Received: January 9, 2013 Accepted: March 28, 2013