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Abstract Autofocusing is a fundamental step towards automated microscopic screening of Caenorhabditis elegans. Determining the
optimal focus in an optical microscope is based on a clarity-evaluation function that is applied to images acquired from different
focuses of the same field. The maximum value of the function is considered as the point of optimal focus. In this paper, 16 autofocus
algorithms which were collected from well-known algorithms as well as the most recently proposed focusing algorithms have been
evaluated. Through these evaluations, an optimal algorithm was found for C. elegants lipid droplets to set up an automatic screening
system. Many features were assessed in this paper, for instance accuracy, computational time, addition of noise, and focusing curve.
Our results have shown that most of the algorithms show an overall high performance for this type of image, and absolute Tenengrad
algorithm will be our first choice for its best performance considering accuracy.
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Caenorhabditis elegans (C. elegans) is an
established model organism for studying lipid droplets
and energy metabolism because it has many
advantages. For example, its mutation is simple to use
as genetic tool, and it is easily to be examined in
microscope [1]. In the past few years, owing to the
identification of lipid droplet-associated proteins such
as DHS-3 [1] and PLN [2], lipid droplets can be marked
with fluorescence protein-tagged as a fat storage
indicator. RNA interference (RNAi) has been
investigated in C. elegans since 1998 by Fire et al.
(Nobel Prize in Physiology or Medicine in 2006) [3].
Through an RNAi screen, uncharacterized fat storage
regulatory genes can be identified in C. elegans [2, 4-6].
However, manual identification and counting of
C. elegans lipid droplets is exhausting and time-
consuming. Moreover, it requires a trained operator,
and presents a high false-negative rate. Therefore, in
order to reduce this rate and speed up the process,
automatic screening is necessary.

Focusing is a fundamental and crucial step in
automatic system. Determining the optimal focus in an

optical microscope is based on a clarity-evaluation
function that is applied to images acquired from
different focuses of the same field [7]. The maximum
value of the function is regarded as the point of
optimal focus. Many autofocus algorithms have been
proposed in the literature, but their accuracy can vary
depending on contents of the processed images.
According to the previous studies, Santos et al. [8]

compared autofocus algorithm in molecular cytogenetic,
and drew the conclusion that the method Vollath-4 is
the most appropriate for FISH (fluorescence in situ
hybridization) images. Osibote et al.[9] determined that
method Vollath-4 [10] has the best focus accuracy for
tuberculosis in bright-field microscopy. However,
other studies such as Kimura et al. [11] found that
method variance provided the best overall performance
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for tuberculosis. Liu et al.[12] drew the same conclusion
in both blood smear and pap smear. Redondo et al. [13]
claimed that variance, normalized variance and
Vollath-5 are the most suitable method for automatic
system in bright-filed microscopy pathology.
Furthermore, the study by Mateos-P伢rez et al. [14]
included additional assessing features such as
variability of the fluorescent microscopy images,
addition of noise, illumination changes, and
prefiltering processes.

This paper focuses on the ascertainment of the
optimal autofocus algorithms for C. elegans lipid
droplets fluorescence imaging through a systematic
evaluation of 16 commonly-used autofocus algorithms.
A set of criteria, such as accuracy error, computation
time, the number of local maxima, FWHM (full width
at half maximum) of the focus curve and the noise
robustness, were assessed to evaluate the performance
of the autofocus algorithms. In the previous literature,
optimally focused image was identified by trained
operators, which will lead to a little uncertainty and
inaccuracy, because different observers could choose
slightly different images around the optimal focus
plane. For example, Osibote et al. [9] determined that
method Vollath-4 has the best focus accuracy for
tuberculosis, whereas Kimura et al. [11] found that
method variance provides the best overall performance
for tuberculosis. Therefore, we adopted an objective
way to determine the optimal focus plane in this paper
to avoid subjective deviation.

1 Materials
Strains Pvha-6::dhs-3::GFP (single copy) were

created by professor Ho Yi Mak (Hong Kong
University of Science and Technology). DHS-3 can be
used as a lipid droplet marker protein in C. elegans, as
well as a fat storage indicator in live worms. This
marker protein will facilitate further mechanistic
studies of lipid droplets in C. elegans [1]. All strains
were maintained on NGM plates under standard
conditions[15].

Worms were raised at approximately 22℃ and
prepared for imaging as described previously [16].
Briefly, the worms were soaked in a solution of 0.1%
tricaine and 0.01% levamlsole (Sigma-Aldrich) in M9
for 20～30 min prior to imaging [17]. The immobilized
worms were then transferred with a glass hook to a
slab of 3% agarose in M9. The coverslip was then
sealed with Vaseline.

Images were acquired using a motorized Zeiss
Imager M2 Microscope equipped with AxioCam CCD
camera (Carl Zeiss, Germany) and X-Cite 120Q light
source (Lumen Dynamics, Canada) driven by
Axiovision (Carl Zeiss, Germany ). Green fluorescence
images were acquired with the resolution of 1388 伊
1040 pixels and 16bits of dynamic range in grayscale.
A trained operator selected the best focal plane from
which 30 images were captured upward in axrzial
direction and another 29 downward, thus the stacks are
made of 60 images. Two different magnifications were
used: 伊10 (NA =0.30) and 伊40 (NA =0.75). Different
magnification used different Z step: 驻Z=0.5 滋m at 伊40,
and 驻Z=2 滋m at 伊10. Ten stacks were captured with
two different magnifications each from ten different
worms. All algorithms implemented in Matlab 7.6.0
(The Mathworks, America) on an Intel Core i5
3.50 GHz 16 GB RAM computer using the Windows 8
operating system (Microsoft, America).

2 Autofocus methods
Autofocus is characteristic of automatic system.

There are two kinds of autofocus methods: active
methods and passive methods. Active methods are
based on measuring the distance between the lens and
object of the scene by emitting ultrasonic or infrared
waves[13]. But these methods have limitations in case of
live model organisms such as C. elegans. Passive
methods are grounded on analyzing the image
sharpness of the objects by autofocus functions, which
are usually related to high frequencies of the image.

The autofocus function gives a mathematical
value that shows the degree of focus for each image of
the same sample. The fundamental assumption behind
most of the functions is that a defocused image results
from convolution of the image with a certain point
spread function (PSF), which usually produces a
decrease in the high frequencies of the image [8]. This
result can also be regarded as the assumption that
focused images contain more information and detail
than defocus images. The sixteen autofocus functions
analyzed in this study can be classified into five
groups: (1) Derivative-Based function, (2) Transform-
Based function, (3) Statistics-Based function, (4)
Histogram-Based function and (5) Intensity-Based
function. For an image of size M伊N, the notation g(x, y)
refers to the image intensity at point (x, y), while the
symbol 塥 indicates the convolution operator.
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2.1 Derivative鄄based function
These functions are based on a derivative suppose

that defocused images usually have less
high-frequency content than focused images.

Brenner gradient (BREN). This function
calculates the first difference between a pixel and its
neighbor two points away[18].

AFBREN =
x
移

y
移|g(x, y+2)-g(x, y)|2 (1)

While |g(x, y+1)-g(x, y)|逸子(threshold value)
Laplacian(LAP). This focus function was originally

used to find focusing errors caused by noise [19]. The
algorithm implements the image convolution with a
discrete Laplacian mask as follows:

AFLAP =
x
移

y
移[g(x-1, y)+g(x+1, y)+

g(x, y-1)+g(x, y+1)-4g(x-1, y)]2 (2)
Tenengrad (TEN). This algorithm convolves an

image with Sobel operators and then it sums the
square of all the magnitudes greater than a threshold
value[20-22].

AFTEN =
x
移

y
移[g(x, y)塥S]2+

[g(x, y)塥S忆]2, 坌g(x, y)>子 (3)
Where S and S忆 are the Sobel's kernel and its

transpose respectively, where S is given by:

S=
1 0 -1
2 0 -2
1 0 -1
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(4)

Absolute Tenengrad (ATEN). This focus function
is similar to the previous Eq(3), but the absolute value
of the gradient coefficients is used in order to reduce
the computation time[23].

AFATEN =
x
移

y
移|g(x, y)塥S|+|g(x, y)塥S忆| (5)

Gaussian filter (GS). This focus function is based
on a gradient filter derived from convolving the image
with a first-order Gaussian derivative[24].

AFGS(滓)= 1
MN x

移
y
移[g(x, y)塥Gx(x, y, 滓)]2+

[g(x, y)塥Gy(x, y, 滓)]2 (6)
Where Gx and Gy are the first-order Gaussian

derivatives in the x and y directions. The 滓 parameter
of the Gaussian method should be adjusted in relation
to the objects present in the image. We evaluated
different 滓 values to test the robustness of the method.
Here we set 滓=1.
2.2 Transform鄄based function

Transform-based functions are utilized to
calculate the degree of focusing for each image by a

mathematical transform.
Discrete Cosine Transform (DCT). Focusing

techniques based on band-passed filters perform well.
In this algorithm, images are divided into blocks of
40伊40 pixels then DCT is applied, and the sum of four
band-pass diagonal bands representing mid and high
frequencies is chosen[25]:

C(u, v)= 1
16 x

移
y
移g(x, y)cos 仔(2m+1)u

2M蓸 蔀
cos

仔(2n+1)v
2N蓸 蔀 (7)

Midfrequency-DCT (MDCT). The influence of
the band-pass DCT coefficients on the focus measure
has been analyzed [26]. A 4 伊4 convolution mask for
extracting the central coefficient C (4, 4) of the DCT,
which is used as a focus measurement. The MDCT
operator can be calculated as:

AFMDCT =
x
移

y
移(g(x, y)塥OMDCT)2 (8)

With

OMDCT=

1 1 -1 -1
1 1 -1 -1
-1 -1 1 1
-1 -1 1 1
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煽
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衫衫衫衫衫衫衫衫衫衫衫衫

(9)

Wavelet transformation (WT). This function is
based on discrete wavelet transformation. The wavelet
focus function calculates ratio of the energy in low and
high pass bands[27].

AFWT=‖hw( f )‖
‖ lw( f )‖

(10)

Where hw( f ) is the discrete wavelet transformation
in high pass band, and lw ( f ) is the discrete wavelet
transformation in the low pass band.
2.3 Statistics鄄based function

Statistics-based functions use features such as
variance and autocorrelation to calculate the degree of
focusing for each image.

Variance (VAR). This function computes the
variations in the gray level among the image pixels,
where bright and dark pixels have the same influence[28].

AFVAR= 1
MN x

移
y
移[g(x, y)-g軃]2 (11)

Where g軃= 1
MN 移x移y g(x, y) is the image mean.

Normalized variance (NVAR)[28]. This function is

a variation of Eq(11) by normalizing with the mean g軃,
which compensates for changes in the average image
brightness.

AFNVAR= 1
MNg軃 x

移
y
移[g(x, y)-g軃]2 (12)
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Most algorithms (frame) Human observer1 (frame) Deviation1 (frame) Human observer2(frame) Deviation2 (frame)

Stack1 32 33 1 32 0

Stack2 32 32 0 32 0

Stack3 32 32 0 34 2

Stack4 34 33 -1 33 -1
Stack5 31 32 1 33 2

Stack6 37 38 1 36 -1
Stack7 30 31 1 30 0

Stack8 31 30 -1 30 -1
Stack9 33 33 0 34 1

Stack10 34 35 1 34 0

Vollath-4 (VOL4) [29-30]. This algorithm proposed
by Vollath is based on an autocorrelation function.

AFVOL4=
M-1

x
移

y
移g(x, y)窑g(x+1, y)-

M-2

x
移

y
移g(x, y)窑g(x+2, y) (13)

Vallath-5 (VOL5) [29-30]. Vollath proposed a
modification of Eq(13) which is based on the standard
deviation function.

AFVOL5=
M-1

x
移

y
移g(x, y)窑g(x+1, y)-MNg

2
(14)

2.4 Histogram鄄based function
These functions are grounded on the assumption

that focused images have a greater number of grey
levels than defocused images[31].

Log-histogram (LOG). Image histogram
approximates a probability distribution function of
gray levels, where the variance of this distribution
increases as the image sharpness increases too[13]. This
algorithm is based on the bright pixels in the image by
multiplying the variance by the logarithm function:

AFLOG =
l
移[l-Elog{l}]2·log(pl) (15)

Where pl is the probability if the intensity level l
and Elog{l}=移 l l·log(pl) is the expected value of the

log-histogram.
Weighted histogram (WHS). Images focused

under fluorescence illumination present higher
portions of pixels with bright gray levels than
unfocused image. This recently proposed algorithm is
based on a weighted image histogram without
introducing a constant threshold[32].

AFWHS =
l
移 h(l)5姨 ·l5·10-15蓘 蓡 (16)

2.5 Intensity鄄based function
Intensity of the image is another feature that

characterizes the degree of focusing. It can be
estimated with different ways.

Power squared (PS). This focus function sums all
image intensities[8].

AFPS =
x
移

y
移g(x, y)2 (17)

Threshold (TH). This function sums the number
of pixels above a threshold as follows[28]:

AFTH =
x
移

y
移T子[g(x, y)] (18)

With

T子= 1 if g(x, y) > 子
0 otherwise嗓 (19)

We used a fixed threshold at 50% of maximum
brightness value in the whole stack.

3 Results
3.1 Accuracy error and computational time

Because the Z-axis step is small, it is hard to
distinguish the best focused image around the focus
plane for human observers. Different observers could
choose slightly different images around the focus
plane. So the assessment of autofocus algorithms
would be slightly different from different observers. In
this paper, we adopted an objective way to determine
the optimal focus plane to avoid subjective deviation.
Autofocus functions were computed for each stack.
The focus plane calculated by each function was not
the same. Therefore, we defined the focus point as the
point which most algorithms are considered as the
focus point. We compared the focus point obtained by
most algorithms and human observers. The results are
shown in Table 1. Because of the cases are similar in
both 伊10 and 伊40, only the data at 伊40 is shown in the

Table 1 Comparison of most algorithms and human observers at 伊40
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Computational time and accuracy in automatic
systems is a trade-off and the algorithms with the best
ranking in computational time are not necessarily
effective in accuracy (Figure 3). Autofocus functions
implemented in Matlab 7.6.0 (The Mathworks,
America) on an Intel Core i5 3.50 GHz 16 GB RAM

computer using the Windows 8 operating system
(Microsoft, America). According to the evaluated
algorithms, the TH method was the fastest with
5.28 ms per image and the WT method was the slowest
with 289.65 ms per image.

present work.
The deviation with the focus point was considered

as the focus error for each algorithm. The errors of the
algorithms applied to the ten stacks are shown in
Figure 1. The variance of data was indicated by the

lines drawn above the bars. The stacks acquired
at different focus points using a constant Z step (驻Z=
0.5 滋m at 伊40, 驻Z=2 滋m at 伊10). The error of the
algorithm (sum of average and variance) less than one
step indicates that the algorithm has high performance.

According to the plots, ATEN,BREN, DCT, WT,
MDCT, GS,TEN show high performance at 伊40 (less
than 0.5 滋m which indicates 1 frame distance), while
ATEN, BREN, DCT, MDCT, LAP, GS, TEN, VAR,
VOL4, WHS show high performance at 伊10 (less than
2 滋m which indicates 1 frame distance). So ATEN,

BREN, DCT, MDCT, GS, TEN show high
performance at both magnifications. Furthermore,
ATEN achieves the best accuracy of all algorithms. In
addition, the percentage of correctly focused images
was computed and show in Figure 2.

0.5

0
BREN

1.0

1.5

2.0

2.5

3.0

3.5

4.0

LAP TEN ATEN GS DCT MDCT WT VAR NVARVOL4VOL5 LOG WHS PS TH

Fig. 1 Error according to magnification value
: 伊40(NA=0.75); : 伊10(NA=0.30).

NVARVOL4VOL5 LOG WHS PS TH

10

0
BREN LAP TEN ATEN GS DCT MDCT WT VAR

20

30

40

50

60

70

80

90

100

Fig. 2 Percentage of images correctly focused
: 伊40(NA=0.75); : 伊10(NA=0.30).
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Fig. 4 C. elegans lipid droplets fluorescence
images used in evaluation

(a) 伊40 focused image. (b) 伊40 focused image with 80 dBW Gaussian
noise. (c) 伊10 focused image. (d) 伊10 focused image with 80 dBW
Gaussian noise.

3.2 Noise responses
The performance of autofocus function has been

evaluated when different levels of noise are added to
the stacks. We have added increasing levels of white
Gaussian noise to the original data(Figure 4). Although
the used values are not the real experiment conditions,
this test can give additional information about the
robustness of the algorithms. We calculated their
influence in the accuracy error and the results for noise
robustness are summarized in Figure 5. It is noticed
that most of the algorithms are relatively stable until
the distortion becomes very large, with the exception
of WT which demonstrate more sensibility to noise
than other algorithms.

Fig. 3 Mean computation time required by each algorithm per image

25

0
BREN
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100
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175

200
225

250
275

300

325

NVAR VOL4 VOL5 LOG WHS PS THLAP TEN ATEN GS DCT MDCT WT VAR

(a) (b)

(c) (d)

10 滋m 10 滋m

50 滋m 50 滋m

-1
0

1

10

100
(a)

20 40 60 80
Noise energy/dBW

-1
0

1

10

100
(b)

20 40 60 80
Noise energy/dBW

Fig. 5 Responses of algorithms to white Gaussian noise at 伊40(a) and 伊10(b)
Because the value of ATEN is 0, 0, 0, 0, 0.2 here, it doesn't show in the logarithmic coordinate. : BREN; : LAP; : TEN; : ATEN;

: GS; : DCT; :MDCT; :WT; : VAR; : NVAR; : VOL4; : VOL5; : LOG; :WHS; : PS; : TH.

荫 荫 荫 荫 茛 茛 银 银
荫 荫 荫 荫 银 银荫 荫 荫 荫 茛 茛茛 茛银 银
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Fig. 6 Comparison of focus algorithms in terms of averaged number of local maxima (included the global maximum)
: 伊40(NA=0.75); : 伊10(NA=0.30).

4 Discussion
Identifying the gene which related to fat

metabolism in C. elegans is a laborious and
time-consuming task. Therefore, automatic screening
system, from image acquisition to analysis, will be

beneficial to the gene identification in C. elegans. We
have presented here a study of autofocus algorithms for
automatic detection of C. elegans lipid droplets in
fluorescence images.

From the results, most of the algorithms show a
low accuracy error. Especially, ATEN, DCT, MDCT,

3.3 Accuracy in focus curve
The reliable and fast autofocusing method is an

important aspect in the automatization system and the
shape of the focus curve can play an influential role in
this aspect. The focus function should be unimodal in
theory, but in fact it can present diverse local maxima
which can affect the convergence of the autofocus
procedure. Moreover, the focus curve should be sharp
at the peak, which can speed up the convergence of the
procedure. In order to characterize the autofocus

algorithms more completely, we take into account two
aspects: the number of local maxima and the width at
50% maximum of the focus curve (FWHM, full width
at half maximum).

First, we can see in Figure 6 that most algorithms
present a unique maximum except PS. In terms of the
width ratio of the focus curve, (Figure 7), ATEN,
BREN, DCT, WT, MDCT, LAP, GS, TEN, VOL4,
WHS show high performance both at 伊40 (less than
10 滋m) and at 伊10 (less than 40 滋m).

0.5

0
BREN

1.0

1.5

2.0

2.5

3.0

LAP TEN ATEN GS DCT MDCT WT VAR NVAR VOL4 VOL5 LOG WHS PS TH

NVAR VOL4VOL5 WHS PS TH

10

0
BREN LAP TEN ATEN GS DCT MDCT WT VAR

20

30

40

50

60

70

LOG

Fig. 7 Comparison of focus algorithms in terms of average FWHM of the focus curve
: 伊40(NA=0.75); : 伊10(NA=0.30).
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GS, TEN show high performance at both
magnification 伊40 and 伊10. So they could be regarded
as suitable algorithms for a C. elegans automatic
system. Moreover, ATEN achieves the best accuracy
of all algorithms for C. elegans lipid droplets. In the
presence of noise, most of the algorithms do not
change noticeably except WT. These results show that
most of the algorithms are quite robust and
independent of noise. In addition, most of the
algorithms show no false maxima except PS. In terms
of the width ratio of the focus curve, ATEN, BREN,
DCT, WT, MDCT, LAP, GS, TEN, VOL4, WHS show
high performance at both magnification 伊40 and 伊10.

To sum up, in our study WT show a poor
accuracy, and has a long computational time, so it is
not suitable for C. elegans lipid droplets, although WT
may have a good performance in other applications.
Comprehensive consideration of accuracy and
computational time, we recommend ATEN, MDCT
and TEN for C. elegans lipid droplets. Moreover,
ATEN achieves the best accuracy. In an automatic
screening system, we often require both high accuracy
and fast acquisition. In this case, we can apply the
fastest algorithm TH for rough search, and then apply
ATEN algorithm for fine search.
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摘要 自动对焦是实现线虫自动化筛选的一个重要步骤．在光学显微镜系统中，通过采集同一个视野下不同焦面的图像，再

通过清晰度评价函数对这些图像进行运算，得到的最大值被认为是最佳对焦位置．在本研究中，对 16 种常用的自动对焦算

法以及最近提出的一些算法进行了评估，通过评估找出最适合线虫脂滴图像的自动对焦算法，从而搭建一套线虫脂滴自动化

筛选系统．同时就对焦精度、运算时间、抗噪声能力、对焦曲线等特征进行了分析评价，结果表明，大多数算法对线虫脂滴

图像都有较好的表现，特别是绝对 Tenengrad 算法在对焦精度上有最好的表现，我们将优选该算法应用到线虫脂滴自动化筛

选系统中．
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