

www.pibb.ac.cn

多态性蛋白 Mad2 与其配体 Cdc20¹²¹⁻¹³⁸ 的相互作用研究 *

张会亭 赵园园 葛保胜** 黄 方

(中国石油大学(华东)生物工程与技术中心,重质油国家重点实验室,青岛 266580)

摘要 多态性蛋白 Mad2 是有丝分裂纺锤体检测点(SAC)的关键蛋白,也是多态性蛋白质家族中研究最广泛的成员之一. Mad2 有两种不同的天然构象: O-Mad2 和 C-Mad2. Mad2 构象间的转变及其与配体 Cdc20 间的相互作用对 SAC 发挥其生物 学功能至关重要.本文利用荧光各向异性技术对 O-Mad2 和 C-Mad2 与配体 TAMRA-Cdc20¹²¹⁻¹³⁸ 间相互作用的热力学及动力 学过程进行了系统表征.结果表明:在无盐和低盐溶液(100 mmol/L NaCl)中,Mad2 两种构象与 Cdc20¹²¹⁻¹³⁸ 的平衡解离常数 (*K*_D)均在 10-6 mol/L,但 C-Mad2 与 Cdc20¹²¹⁻¹³⁸ 结合的 *K*_D 值约为 O-Mad2 的 1/5;在高盐(300 mmol/L NaCl)溶液中,Mad2 两种 构象与 TAMRA-Cdc20¹²¹⁻¹³⁸ 结合的 *K*_D 值无明显差别.动力学实验结果显示,在同一种缓冲液中 Mad2 两种构象与 Cdc20¹²¹⁻¹³⁸ 相互作用的解离速率常数 *k*_d 没有显著差别,而 C-Mad2 与 Cdc20¹²¹⁻¹³⁸ 的结合速率常数 *k*_a 却比 O-Mad2 高一个数量级,这表明 C-Mad2 与 Cdc20¹²¹⁻¹³⁸ 而 C-Mad2 与 Cdc20¹²¹⁻¹³⁸ 的结合速率常数 *k*_a 和比 O-Mad2 高一个数量级,这表明 化-Mad2 与 Cdc20¹²¹⁻¹³⁸ 和 Cdc20 间的相互作用不是通过静电相互作用,而可能是通过疏水相互作用来实现的.本研究为揭示多态性蛋白 Mad2 的构象转变机理及其在有丝分裂过程中的作用机制提供了重要的实验基础.

关键词 多态性蛋白 Mad2, Cdc20, 热力学,动力学,相互作用 学科分类号 Q6,Q7 **DOI**: 10.16476/j.pibb.2017.0013

有丝分裂阻滞缺陷蛋白 2(mitotic arrest deficient protein 2, Mad2)是细胞有丝分裂过程中纺锤体 检测点(SAC)监控机制的关键蛋白^[1-2]. Mad2 蛋 白属于多态性蛋白家族^[3-4],有两种不同的天然构 象:O-Mad2 和 C-Mad2,且两种构象间可以相互 转变^[5-6].当有丝分裂纺锤体检测点 SAC 激活时, 细胞内的 O-Mad2 转变为 C-Mad2 并与细胞分裂周 期蛋白 20(cell division cycle protein 20, Cdc20)结 合,抑制有丝分裂后期促进复合物(anaphase promoting complex/cyclosome, APC/C)的活性,阻 止有丝分裂过程中未成熟的姐妹染色单体分离^[1-2,7], 从而避免了由于染色体的错误分离造成的染色体不 稳定性或引发肿瘤等重大疾病^[8].越来越多的研究 证实,Mad2 在肿瘤的发生、发展中扮演着重要角 色,已成为肿瘤治疗的重要靶点^[9].

Mad2 构象间的转变及其与 Cdc20 间的相互作 用对于 SAC 发挥其生物学功能至关重要[10-11],基于 该问题的研究将为揭示 SAC 相关疾病的发病机理 及对症治疗提供重要的理论基础.目前虽然关于 Mad2 和 Cdc20 的相互作用对 SAC 不同功能状态 的调控取得了一定的进展^[10, 12-13],然而对于 Mad2 构象间的转变过程以及 Mad2 两种构象与 Cdc20 相 互作用的分子机制尚不十分清楚.文献报道, C-Mad2 比 O-Mad2 的活性更强且与 Cdc20 的结合 更快^[5-6].但为什么 C-Mad2 比 O-Mad2 与 Cdc20 的 结合力更强,C-Mad2 与 O-Mad2 的活性差异究竟 有多少? Mad2 与 Cdc20 是通过静电作用还是疏水 作用结合的?这一系列问题目前都没有解释清楚. 关于 Mad2 不同构象与 Cdc20 相互作用的详细热力 学和动力学研究,将有助于深刻理解 Mad2 两种构

^{*}国家自然科学基金(21573289,21373271,21673294)资助项目. **通讯联系人.

Tel: 0532-86981135, E-mail: gebaosheng@upc.edu.cn 收稿日期: 2017-01-09, 接受日期: 2017-02-27

象与配体 Cdc20 相互作用的分子机制,对于进一步揭示多态性蛋白 Mad2 的构象转变机理及其在有 丝分裂过程中的作用机制具有重要的意义.

本文采用荧光各向异性技术对 Mad2 两种构象 与配体 Cdc20 间的相互作用进行了系统研究,通 过对二者相互作用热力学和动力学过程的表征,不 仅有助于理解 Mad2 两种构象间相互转变机理及其 与 Cdc20 相互作用的生物学意义,还为进一步通 过调节 Mad2 与 Cdc20 的相互作用从而调控 SAC 功能提供了重要的理论依据.同时,本文还研究了 Mad2 两种构象与 Cdc20 突变体之间的相互作用, 并考察了溶液离子强度对 Mad2 与 Cdc20 相互作用 的影响.

1 材料与方法

1.1 实验材料和仪器

O-Mad2 和 C-Mad2 蛋白由实验室制备并保 存^[14-15].标记荧光染料 TAMRA 的多肽 Cdc20¹²¹⁻¹³⁸ 及其突变体 Cdc20^{121-138,K129A&R132A}和 Cdc20^{121-138,I130K}购 自南京英沛生物技术有限公司,其氨基酸序列如 下: TAMRA-Cdc20¹²¹⁻¹³⁸的氨基酸序列,TAMRA-NGFDVEEAKILRLSGKPQ; TAMRA-Cdc20^{121-138,K129A&R132A} 的氨基酸序列,TAMRA-NGFDVEEAAILALSGKPQ; TAMRA-Cdc20^{121-138,I130K}的氨基酸序列,TAMRA-NGFDVEEAKKLRLSGKPQ.

荧光各向异性检测在 HORIBA 公司的 FluoroMax-4 荧光光谱仪上完成.

1.2 实验方法

1.2.1 Mad2 两种构象与 Cdc20¹²¹⁻¹³⁸ 相互作用的热力学研究

a. 滴定系列样品的准备

分别取适量的 O-Mad2 及 C-Mad2 蛋白样品 配制滴定体系,实验中用的缓冲液共有 3 种,分 别是: 20 mmol/L Tris-HCl(pH 8.0)、20 mmol/L Tris-HCl(pH 8.0, 100 mmol/L NaCl)和 20 mmol/L Tris-HCl(pH 8.0, 300 mmol/L NaCl). 滴定系列样 品中 TAMRA-Cdc20¹²¹⁻¹³⁸ 的终浓度为 0.1 μmol/L, 滴定实验均在室温下完成.

b. 滴定样品的荧光各向异性检测

选用 3 mm×3 mm 的样品池,设定激发波长为 560 nm,发射波长为 582 nm,狭缝分别为 1 nm 和 2 nm,采样时间是每点 1 s,每个样品检测 3 次,取 其平均值作为最终的荧光各向异性值.用公式(1)^[10] 对实验数据进行拟合.

$$[RL] = \frac{(K_{\rm D} + [L] + [R]) - \sqrt{(K_{\rm D} + [L] + [R])^2 - 4[L][R]}}{2} \quad (1)$$

公式中 K_D 为平衡解离常数, [R]为 Mad2 的浓度, [L]是配体 TAMRA-Cdc20¹²¹⁻¹³⁸ 的浓度, [RL]是 Mad2-TAMRA-Cdc20¹²¹⁻¹³⁸ 复合物的浓度.所有数 据分析和拟合均采用 OriginPro 8 软件完成.

1.2.2 Mad2 两种构象与 Cdc20¹²¹⁻¹³⁸ 相互作用的动力学研究

分别配置不同浓度的 O-Mad2(2、3和 4 μmol/L) 和 C-Mad2(0.5、1和 2 μmol/L)蛋白质溶液,将其 与配体 TAMRA-Cdc20¹²¹⁻¹³⁸ 手动混合均匀(TAMRA-Cdc20¹²¹⁻¹³⁸ 终浓度为 0.1 μmol/L),连续检测溶液荧 光各向异性值随时间的变化.选用 3 mm×3 mm 样品池,设定激发波长为 560 nm,发射波长为 582 nm,狭缝均为 5 nm,采样时间是每个点 0.1 s, 实验在室温下进行.

根据公式(2)¹⁶⁰利用 OriginPro 8 对实验数据进 行分析和拟合即可以得到 Mad2 与 Cdc20 结合时的 结合速率常数(k_a),再根据 2.2.1 中所得 K_D ,即可 计算出解离速率常数(k_d).在此基础上,可以考察 不同溶液离子强度对 O-Mad2 和 C-Mad2 与 Cdc20 结合动力学的影响.

 $y=C_1[B_0]+(C_2-C_1)\frac{[B_0]}{1+K_D}(1-\exp(-k_a[A_0](1+K_D)x))$ (2) **1.2.3** Mad2 两种构象与 Cdc20¹²¹⁻¹³⁸ 突变体间的相 互作用研究

参照上述 1.2.1 和 1.2.2 中的测定方法,采用 荧光各向异性技术分别检测了 O-Mad2 和 C-Mad2 与 Cdc20 两 个 突 变 体 (Cdc20^{121-138, K129A&R132A} 和 Cdc20^{121-138, I130K})间的相互作用过程.实验在室温下 进行,所用缓冲液条件为 20 mmol/L Tris-HCl,

pH 8.0, 100 mmol/L NaCl.

2 实验结果

2.1 O-Mad2 和 C-Mad2 与 TAMRA-Cdc20¹²¹⁻¹³⁸ 相互作用的热力学研究

采用荧光各向异性技术对 O-Mad2、C-Mad2 与多肽 TAMRA-Cdc20¹²¹⁻¹³⁸ 间相互作用的热力学进 行了测定.如图 1 所示,随着 Mad2 浓度的不断增 加,TAMRA-Cdc20¹²¹⁻¹³⁸ 的荧光各向异性值不断增 加,这表明 Mad2 蛋白与其配体间的结合也逐渐增 多.当 Mad2 蛋白和配体间的结合达到饱和时,其 荧光各向异性值趋于稳定,不再随蛋白质浓度的增 加而增加.

Fig. 1 Fluorescence anisotropy analysis of O-Mad2 and C-Mad2 conformers binding TAMRA-Cdc20¹²¹⁻¹³⁸ in different buffers

(a) Fluorescence anisotropy analysis of O-Mad2 and C-Mad2 conformers binding TAMRA-Cdc20¹²¹⁻¹³⁸ in 20 mmol/L Tris-HCl at pH 8.0. Experimental and fitted data are shown as squares (circles) and curves, respectively. Fluorescence anisotropy was recorded at room temperature with a 3 mm quartz cell. All experimental data reported here were averaged from 3 scans. (b) The same as (a) except the buffer is 20 mmol/L Tris-HCl, pH 8.0, 100 mmol/L NaCl. (c) The same as (a) except the buffer is 20 mmol/L Tris-HCl, pH 8.0, 300 mmol/L NaCl. ■: O-Mad2; ●: C-Mad2.

为了考察不同溶液离子强度对 Mad2 与配体 Cdc20121-138 相互作用的影响,我们分别在 3 个不同 盐浓度溶液中(0 mmol/L NaCl、100 mmol/L NaCl 和 300 mmol/L NaCl),对 Mad2 与 Cdc20121-138 间的 相互作用进行了对比研究.运用公式(1)分别对 O-Mad2 和 C-Mad2 与 TAMRA-Cdc20121-138 相互作 用的荧光各向异性值进行拟合,即可以得到它们间 相互作用的 K_D 值(表 1). 由表 1 中数据可以看出: 在无盐或低盐(20 mmol/L Tris-HCl, 100 mmol/L NaCl, pH 8.0)溶液中, C-Mad2 与 Cdc20 间结合的 *K*_D 值约是 O-Mad2 的 1/5, 这表明 C-Mad2 与 Cdc20的结合力比 O-Mad2 更强,这与文献报道一 致[17]; 而在高盐(20 mmol/L Tris-HCl, 300 mmol/L NaCl, pH 8.0)溶液中, Mad2的两种构象与Cdc20 间结合的 K_D 值无明显差别.另一方面,当盐浓度 从 0 mmol/L 增加到 100 mmol/L NaCl 时, Mad2 两 种构象与 Cdc20 间的结合力均逐渐减弱(K_D 变大); 而当盐浓度从 100 mmol/L NaCl 增加到 300 mmol/L NaCl时,这两者间的结合力反而增强(Kn减小). 这表明溶液离子强度对于 Mad2 与 Cdc20 的相互作 用具有显著的调控作用. 假设 Mad2 和 Cdc20 间是 通过静电相互作用来实现的,那么随着离子强度的 增加,电荷的屏蔽作用增强,这两者间的相互作用 力应该减弱,而实验中发现在高盐条件下 Mad2 与 Cdc20 间的结合力反而增强,这提示 Mad2 与 Cdc20间的结合不是通过静电相互作用,更有可能 是通过一种疏水相互作用来实现的.

2.2 O-Mad2 和 C-Mad2 与 TAMRA-Cdc20¹²¹⁻¹³⁸ 相互作用的动力学研究

为了进一步考察 O-Mad2 和 C-Mad2 与 TAMRA-Cdc20¹²¹⁻¹³⁸相互作用时动力学的差异以及 溶液离子强度对其相互作用动力学的影响,我们又 采用荧光各向异性技术分别检测了 O-Mad2 和 C-Mad2 与 TAMRA-Cdc20¹²¹⁻¹³⁸在不同缓冲液条件 下相互作用的动力学过程.时间依赖的荧光各向异 性值的增加与复合物 Mad2-TAMRA-Cdc20¹²¹⁻¹³⁸的 形成相关.用公式(2)对动力学数据进行拟合(图 2) 可以得到 Mad2 与 TAMRA-Cdc20¹²¹⁻¹³⁸相互作用的 结合速率常数(*k*_a),进而根据上述测定的平衡解离 常数(*K*_D)可以计算出解离速率常数(*k*_a).拟合结果 见表 1.

分析表1中数据可知,在所测定的三种不同离子强度溶液条件下,C-Mad2与TAMRA-Cdc20¹²¹⁻¹³⁸结合的 *k*_a 值均比同一溶液条件下 O-Mad2 与

Table 1 The K_{D} , K_{a} and K_{d} between Mad2 and Cdc20 ^{mind} in different buffers ¹						
	O-Mad2/Cdc20 ¹²¹⁻¹³⁸			C-Mad2/Cdc20 ¹²¹⁻¹³⁸		
	$K_{\rm D}/({ m mol} \cdot { m L}^{-1})$	$k_{a} / (\text{mol}^{-1} \cdot L \cdot s^{-1})$	$k_{\rm d} / { m s}^{-1}$	$K_{\rm D}/({\rm mol} \cdot {\rm L}^{-1})$	$k_a / (\text{mol}^{-1} \cdot \text{L} \cdot \text{s}^{-1})$	$k_{\rm d} / { m s}^{-1}$
0 mmol/L NaCl	3.52×10 ⁻⁶	8.7×10 ³	0.031	0.72×10 ⁻⁶	4.6×10^4	0.033
100 mmol/L NaCl	5.01×10-6	5.7×10 ³	0.029	1.03×10-6	3.6×10 ⁴	0.037
300 mmol/L NaCl	0.92×10 ⁻⁶	4.3×10 ³	0.0040	0.69×10 ⁻⁶	2.2×10 ⁴	0.0015

 ${}^{1}K_{D}$ values were obtained by fitting the anisotropy data in Figure 1 using OriginPro 8 software according to a 1 : 1 model. The k_{a} values were obtained by fitting the anisotropy data in Figure 2 according to equation 1-2, and k_d values were calculated with equation: $k_d = K_D \cdot k_a$.

(a) Kinetic binding of O-Mad2 and TAMRA-Cdc20¹²¹⁻¹³⁸ in 20 mmol/L Tris-HCl buffer at pH 8.0. (b) Kinetic binding of C-Mad2 and TAMRA-Cdc20¹²¹⁻¹³⁸ in 20 mmol/L Tris-HCl buffer at pH 8.0. (c) Kinetic binding of O-Mad2 and TAMRA-Cdc20¹²¹⁻¹³⁸ in 20 mmol/L Tris-HCl buffer at pH 8.0 in the presence of 100 mmol/L NaCl. (d) Kinetic binding of C-Mad2 and TAMRA-Cdc20¹²¹⁻¹³⁸ in 20 mmol/L Tris-HCl buffer at pH 8.0 in the presence of 100 mmol/L NaCl. (e) Kinetic binding of O-Mad2 and TAMRA-Cdc20121-138 in 20 mmol/L Tris-HCl buffer at pH 8.0 in the presence of 300 mmol/L NaCl. (f) Kinetic binding of C-Mad2 and TAMRA-Cdc20¹²¹⁻¹³⁸ in 20 mmol/L Tris-HCl buffer at pH 8.0 in the presence of 300 mmol/L NaCl. All the above experiments were carried out at room temperature with final concentration of Cdc20 as 0.01 µmol/L. =: O-Mad2, 4 µmol/L; •: O-Mad2, 3 μmol/L; Δ: O-Mad2, 2 μmol/L(a, c). C-Mad2, 2 μmol/L; Ο-Mad2, 1 μmol/L; Δ: C-Mad2, 0.5 μmol/L(b, d, e, f).

TAMRA-Cdc20¹²¹⁻¹³⁸结合 k_a 值约高出一个数量级, 而这两者的解离速率常数 k_d 值无明显差异,这表 明 C-Mad2 与 TAMRA-Cdc20¹²¹⁻¹³⁸的结合速率比 O-Mad2 与 TAMRA-Cdc20¹²¹⁻¹³⁸的结合速率要快得 多,而这两者的解离速率无明显差别.这与上述热 力学数据中 C-Mad2 与 TAMRA-Cdc20¹²¹⁻¹³⁸的结合 能力更强相一致.

我们同时发现,O-Mad2 和 C-Mad2 与 Cdc20 间相互作用的动力学随离子强度的改变而显著变 化.当盐浓度从 0 mmol/L NaCl 增加到 100 mmol/L NaCl 时,O-Mad2 和 C-Mad2 与 Cdc20 间的解离速 率 k_d 无明显改变,而结合速率 k_a 却显著减慢,所 以导致O-Mad2 和 C-Mad2 与 Cdc20 间的结合力减 弱(K_D 值增大).但当盐浓度从 100 mmol/L NaCl 增 加到 300 mmol/L NaCl 时,O-Mad2 和 C-Mad2 与 Cdc20 间的解离速率 k_d 显著减慢,而结合速率 k_a 减慢的幅度较小,所以在高盐时 O-Mad2 和 C-Mad2 与 Cdc20 间的结合力反而比在低盐时要强 (K_D 值减小).该结果也从动力学的角度很好地解释 了上述热力学的研究结果.

2.3 Mad2 与 Cdc20¹²¹⁻¹³⁸ 不同突变体间的相互作用 研究

根据文献报道, Cdc20 的¹²⁹KILR¹³² 短基序是 Cdc20 与 Mad2 相互作用时起关键作用的氨基酸^[18]. 其中 K 和 R 是带正电荷的氨基酸残基, 而 I 和 L 是疏水性氨基酸残基.以往研究表明, 突变带 正电荷的氨基酸残基对 Cdc20 与 Mad2 间的结合 力影响较小,而突变疏水性氨基酸残基能显著减弱 Cdc20与 Mad2间的结合^[18].为了进一步分析该短基序中的氨基酸残基在 Cdc20与 Mad2相互作用过程中所起的作用,我们设计了 2 个突变体(Cdc20^{121-138, K129A&R132A}、Cdc20^{121-138, I130K})来检测它们与Mad2的相互作用过程.

图 3 是 O-Mad2 和 C-Mad2 分别与突变体 TAMRA-Cdc20^{121-138, K129A&R132A}, TAMRA-Cdc20^{121-138, 1130K} 间相互作用的荧光各向异性图谱.如图3所示,随 着蛋白质浓度的不断增加,Mad2 与其配体间的结 合也逐渐增多,因此标记 TAMRA 荧光染料的 Cdc20^{121-138, K129A&R132A} 和 Cdc20^{121-138, 1130K} 的荧光各向异 性值不断增加,但受蛋白质浓度所限,实验中荧光 各向异性值并未达到稳定的平台期,这说明在该实 验条件下蛋白和配体间的结合尚未达到饱和. 用公 式 (1) 分别对 O-Mad2 和 C-Mad2 与 TAMRA-Cdc20^{121-138, K129A&R132A}、TAMRA-Cdc20^{121-138, 1130K}结合的 荧光各向异性值进行拟合,可以得到它们相互作用 的 K_D 值 (表 2). 由表 2 数据可知,突变体 TAMRA-Cdc20^{121-138, K129A&R132A} 与 O-Mad2 和 C-Mad2 间结合的 K_D分别为 3.25×10⁻⁴ mol/L, 7.37×10⁻⁵ mol/L, 与野生型相比均减弱了约70倍.突变带正电荷的 氨基酸残基后 Cdc20 与 Mad2 间的结合力减弱,我 们推测如果 Mad2 和 Cdc20 间的相互作用是通过静 电作用实现的,那么将疏水性氨基酸残基突变为带 正电荷的氨基酸残基后, Mad2 与 Cdc20 间的相互 作用应该增强.于是实验中又设计了另一个突变体

Fig. 3 Fluorescence anisotropy analysis for binding of O-Mad2 and C-Mad2 with different mutants of TAMRA-Cdc20¹²¹⁻¹³⁸ (a) Fluorescence anisotropy analysis of O-Mad2 and C-Mad2 conformers binding TAMRA-Cdc20^{121-138, K129ARR132A} in 20 mmol/L Tris-HCl at pH 8.0 in the presence of 100 mmol/L NaCl, experimental and fitted data are shown as squares (circles) and curves, respectively. (b) Fluorescence anisotropy analysis of O-Mad2 and C-Mad2 conformers binding TAMRA-Cdc20^{121-138, K129ARR132A} in 20 mmol/L Tris-HCl at pH 8.0 in the presence of 100 mmol/L NaCl, experimental and fitted data are shown as squares (circles) and curves, respectively. (b) Fluorescence anisotropy analysis of O-Mad2 and C-Mad2 conformers binding TAMRA-Cdc20^{121-138, I130K} in 20 mmol/L Tris-HCl at pH 8.0 in the presence of 100 mmol/L NaCl. All experiments were recorded at room temperature with a 3 mm quartz cell, and the anisotropy data reported here were averaged from 3 scans. •: O-Mad2; •: C-Mad2.

Cdc20¹²¹⁻¹³⁸, II30K, 即将¹²⁹KILR¹³²序列中的疏水性氨 基酸残基 I 突变为带正电荷的 K. 结果表明该突变 体与 O-Mad2 和 C-Mad2 间的结合力并不是像预期 的那样增强,反而减弱了,与野生型相比也是分别 减弱了约 70 倍,而两个突变体间与 Mad2 不同构 象间结合的 K_D未见明显差别(表 2). 这表明 Mad2 与 Cdc20 间的相互作用不是通过静电相互作用来 实现的,更可能是通过一种疏水的相互作用. 这与 前面提到的盐浓度对 Mad2 与 Cdc20¹²¹⁻¹³⁸ 间相互作 用影响的结果一致.

Table 2 The K_D between Mad2 and different mutants of $Cdc20^{121\cdot138^{11}}$

		$mol \cdot L^{-1}$
	Cdc20 ^{121-138, K129A&R132A}	Cdc20 ^{121-138, 1130K}
O-Mad2	3.25×10 ⁻⁴	3.22×10 ⁻⁴
C-Mad2	7.37×10 ⁻⁵	7.92×10 ⁻⁵

¹⁾ $K_{\rm D}$ values were obtained by fitting the fluorescence anisotropy data in Figure 3 using OriginPro 8 software according to a 1 : 1 model.

在考察了 Cdc20 突变体与 Mad2 结合力的改变 后,根据表2中所得突变体Kp值我们设计了4个 不同浓度的 C-Mad2(80、60、40 和 20 µmol/L), 通过手动混合考察其与 Cdc20^{121-138, K129A&R132A} 相互作 用的动力学过程. 在实验所设计的4个蛋白质浓度 条件下, C-Mad2 与 Cdc20 混合后检测的第一个点 已经达到了平衡(数据未列出),这说明这两者结合 的表观速率较快,本方法已无法检测到这两者之间 结合的动力学过程.根据表观速率常数 $k_{obs}=k_d+k_a$ [Mad2], 当 Mad2 浓度增高时其表观速率就会加 快,以至于在我们观测的时间尺度内检测不到这两 者的结合过程.理论上讲可以通过降低 Mad2 的浓 度来减慢其表观速率,但由于 Cdc20 的突变体与 Mad2的结合力减弱,当 Mad2浓度降低时与 TAMRA-Cdc20121-138, K129A&R132A 结合的 Mad2-TAMRA-Cdc20^{121-138, K129A&R132A}减少,这又会导致荧光各向异性 值变化不明显,最终也无法检测到这两者结合的动 力学过程.

3 讨 论

Mad2 是 SAC 的关键蛋白,有两种不同的天然 构 象: O-Mad2 和 C-Mad2. 当 SAC 激活时 C-Mad2 能直接与 APC/C 的活化因子 Cdc20 结合, 从而抑制 APC/C 的活性,进而阻止有丝分裂过程 中未成熟的姐妹染色单体分离^[19]. Mad2 构象间的 转变及其与 Cdc20 间的相互作用对 SAC 发挥其生 物学功能至关重要. 尽管如此,Mad2 与 Cdc20 间 相互作用的机理仍不清楚^[20],对这两者相互作用机 理的研究,将有助于深入理解 Mad2 和 Cdc20 在 SAC 信号传导中发挥作用的分子机制,从而调控 Mad2 和 Cdc20 间的相互作用,进而有助于探索肿 瘤等相关疾病的发病机制,并为治疗相关疾病提供 新的思路.

据文献报告 C-Mad2 比 O-Mad2 的活性更强, 但对于为什么 C-Mad2 比 O-Mad2 的活性强尚不清 楚.结构生物学研究显示^[6, 21-22],在 O-Mad2 中与 Cdc20 结合的关键结构域 β6 片层被 Mad2 的 C 端 结构阻挡(图 4),使得 O-Mad2 不能与 Cdc20 结 合.而与之不同的是,C-Mad2 中的 β6 片层是暴 露在外的,容易与 Cdc20 发生相互作用.在此过 程中,β8//8"发夹("安全带"结构)可能会先与β5 解离,再包绕 Cdc20,接着又与β5 附着,从而固 定 Cdc20 的构象.因此推测 C-Mad2 与 Cdc20 的结 合更快且结合力更强^[6].然而,未见实验方面的报 道去揭示 C-Mad2 比 O-Mad2 活性强的机理.

荧光各向异性技术是研究蛋白质相互作用的常用技术^[23],本论文中使用该技术系统表征了 O-Mad2和 C-Mad2与TAMRA-Cdc20¹²¹⁻¹³⁸相互作用的热力学及动力学过程,并考察了盐浓度对这两者相互作用的影响,结合Mad2与TAMRA-Cdc20¹²¹⁻¹³⁸不同突变体间的相互作用,初步探讨了这两者相互作用的机理.Mad2与TAMRA-Cdc20¹²¹⁻¹³⁸相互作用的热力学实验结果显示, O-Mad2的 K_D 值大约是C-Mad2的5倍,说明C-Mad2均Cdc20的结合活性大约是O-Mad2的5倍.这与细胞内发现的C-Mad2是活性状态而O-Mad2为非活性状态,C-Mad2比O-Mad2结合活性更强的报道一致¹⁵⁻⁶.

而 Mad2 与 TAMRA-Cdc20¹²¹⁻¹³⁸ 相互作用的动 力学结果显示, C-Mad2 与 Cdc20¹²¹⁻¹³⁸结合的 k_a 值 约是 O-Mad2 与 Cdc20¹²¹⁻¹³⁸结合 k_a 值的 5 倍(3.6× 10⁴ mol⁻¹•L•s⁻¹ vs. 5.7×10³ mol⁻¹•L•s⁻¹), 这表明 C-Mad2 与 Cdc20¹²¹⁻¹³⁸ 的 结 合 比 O-Mad2 与 Cdc20¹²¹⁻¹³⁸ 的结合要快得多,而这两者的 k_d 值无明 显差别(0.037 s⁻¹ vs. 0.029 s⁻¹),说明这两者的解离速 率几乎相同,所以 C-Mad2 与 Cdc20¹²¹⁻¹³⁸ 的结合比 O-Mad2 与 Cdc20¹²¹⁻¹³⁸ 的结合更快且结合力更强. 动力学实验得出的 O-Mad2 和 C-Mad2 间结合活性 的强弱与热力学实验结果相一致,而且动力学实验 解释了 C-Mad2 比 O-Mad2 活性强的原因主要是 C-Mad2 与 Cdc20 结合的速率更快. 另外,在动力 学实验中 O-Mad2 和 C-Mad2 与 Cdc20¹²¹⁻¹³⁸ 的解离 速率几乎相同也是合理的,因为不论是 O-Mad2 还 是 C-Mad2 与 Cdc20 结合后都形成相同的复合物 C-Mad2-Cdc20^[11].

Fig. 4 Schematic model explaining why C-Mad2 is more potent in binding Cdc20

In O-Mad2, the C-terminal β 7/8 hairpin blocks the access of Cdc20 to β 6. In C-Mad2, β 6 is exposed and can allow edge-on interactions with the Mad2-binding motif of Cdc20. Note that both the original β 7/8 hairpin and the corresponding regions in C-Mad2 are colored green.

值得注意的是,在 300 mmol/L NaCl 的溶液中 O-Mad2 和 C-Mad2 与 Cdc20¹²¹⁻¹³⁸ 结合的 K_D 值几乎 相同,分别是 0.92×10⁻⁶ mol/L 和 0.69×10⁻⁶ mol/L, 而且比在低盐溶液(100 mmol/L NaCl)中的 K_D 值要 小(表 1),这说明在高盐条件下 Mad2 与 Cdc20 间 的结合力更强.虽然这对在细胞内研究 Mad2 和 Cdc20 间的相互作用意义不大(已经超出了生理条 件),但对在体外研究这两者相互作用的机理具有 重要意义.假设 Mad2 和 Cdc20 间是通过静电相互 作用来实现的,那么随着盐浓度的增加,电荷的屏 蔽作用增强,这两者间的相互作用力应该减弱.而 实验中却发现在高盐条件下 Mad2 与 Cdc20 间的结 合力反而增强,这提示 Mad2 与 Cdc20 间的相互作 用不是通过静电相互作用来实现的,更有可能是通 过一种疏水的相互作用(疏水作用会随着盐浓度的 增加而增强).至于为什么在高盐条件下 O-Mad2 和 C-Mad2 与 Cdc20¹²¹⁻¹³⁸ 间的结合力无明显差别, 可能是因为在该条件下结合速率和解离速率变化的 幅度相同,具体机制尚待进一步研究.

文献报道 Cdc20 的¹²⁹KILR¹³² 序列是 Cdc20 与 Mad2 相互作用时起关键作用的氨基酸^[18].实验过 程中我们先设计了突变体 Cdc20^{121-138,K129A&R132A},即将

¹²⁹KILR¹³²序列中带正电荷的K和R突变为疏水性 氨基酸 A. 荧光各向异性实验结果显示, 与野生型 Cdc20¹²¹⁻¹³⁸ 相比, Cdc20^{121-138, K129A&R132A} 突变体与 Mad2的两种构象间的结合力均减弱了约70倍. 我们推测如果 Mad2 和 Cdc20 间的相互作用是通过 静电作用实现的,那么将疏水性氨基酸残基突变为 带正电荷的氨基酸残基后, Mad2 和 Cdc20 间的相 互作用应该增强.于是实验中又设计了另外一个突 变体 Cdc20121-138, 1130K, 即将 129KILR132 序列中的疏水 性氨基酸残基 | 突变为带正电荷的 K. 荧光各向异 性实验结果表明, 该突变体与 O-Mad2 和 C-Mad2 间的结合力也并没有像预期的那样增强, 与野生型 相比也是分别减弱了约 70 倍, 这表明 Mad2 和 Cdc20间的相互作用不是通过静电相互作用来实现 的,更有可能是通过一种疏水的相互作用.这与前 面提到的盐浓度对 Mad2 与 Cdc20¹²¹⁻¹³⁸ 间相互作用 影响的结果一致.

比较突变体 Cdc20^{121-138 K129A&R132A} 和 Cdc20^{121-138,1130K} 与 Mad2 结合的 K_D 值(表 2)不难发现,尽管两个突 变体与 Mad2 间的结合力均减弱,但不同突变体与 Mad2 两种构象间的结合力无明显差别.这与文献 报道的突变 Cdc20¹²⁹KILR¹³² 序列中带正电荷的氨 基酸残基对 Cdc20 与 Mad2 间的结合力影响较小, 而突变疏水性氨基酸残基能显著减弱 Cdc20 与 Mad2 间的结合¹¹⁸¹不一致,分析原因可能是因为文 献中是将疏水性氨基酸残基 I 和 L 都突变为疏水性 氨基酸 A,而我们实验中只是突变了 I,且是突变 为带正电荷的 K.因此,最终得到的结果可能有所 不同.Cdc20 与 Mad2 两种构象间相互作用的详细 分子机制尚需进一步工作验证.

4 结 论

荧光各向异性技术是研究蛋白质相互作用的常用技术,本文利用该技术对 O-Mad2 和 C-Mad2 与配体 TAMRA-Cdc20¹²¹⁻¹³⁸ 间相互作用的热力学及动力学过程进行了系统表征.结果发现,C-Mad2 与Cdc20¹²¹⁻¹³⁸ 间的结合力比 O-Mad2 强,约是 O-Mad2 的5倍.而动力学结果表明,C-Mad2 与TAMRA-Cdc20¹²¹⁻¹³⁸ 的结合速率常数 k_a 约是 O-Mad2 的5倍,而C-Mad2 和 O-Mad2 与Cdc20¹²¹⁻¹³⁸ 的解离速率几乎相同,所以C-Mad2 与Cdc20¹²¹⁻¹³⁸ 的结合比 O-Mad2 更快且结合力更强,

这与热力学实验结果一致.两种 Cdc20 突变体与 O-Mad2 和 C-Mad2 间的相互作用结果表明,与野 生型 Cdc20¹²¹⁻¹³⁸ 相比,突变体与 Mad2 间的结合力 均减弱了约 70 倍,但不同突变体间与 Mad2 的结 合无明显差异.结合溶液离子强度对 Mad2 与 Cdc20¹²¹⁻¹³⁸ 间相互作用影响实验结果,我们推测 Mad2 和 Cdc20 间的相互作用不是通过静电相互作 用,更可能是通过一种疏水的相互作用来实现的. 本研究为进一步揭示多态性蛋白 Mad2 的构象转变 机理及其在有丝分裂过程中的作用机制提供了重要 的实验基础.

参考文献

- Eytan E, Wang K, Miniowitz-Shemtov S, *et al.* Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc Natl Acad Sci USA, 2014, 111(33): 12019–12024
- [2] Vleugel M, Hoogendoorn E, Snel B, et al. Evolution and function of the mitotic checkpoint. Dev Cell, 2012, 23(2): 239–250
- [3] Aravind L, Koonin E V. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci, 1998, 23(8): 284–286
- [4] Goodchild S C, Curmi P M G, Brown L J. Structural gymnastics of multifunctional metamorphic proteins. Biophys Rev, 2011, 3 (3): 143–153
- [5] Luo X, Tang Z, Xia G, *et al.* The Mad2 spindle checkpoint protein has two distinct natively folded states. Nat Struct Mol Biol, 2004, 11(4): 338–345
- [6] Luo X, Yu H. Protein metamorphosis: the two-state behavior of Mad2. Structure, 2008, 16(11): 1616–1625
- [7] Yu H. Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model. J Cell Biol, 2006, 173(2): 153–157
- [8] Rajagopalan H, Lengauer C. Aneuploidy and cancer. Nature, 2004, 432(7015): 338–341
- [9] Schvartzman J M, Sotillo R, Benezra R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer, 2010, 10(2): 102–115
- [10] Lad L, Lichtsteiner S, Hartman J J, et al. Kinetic analysis of Mad2-Cdc20 formation: conformational changes in Mad2 are catalyzed by a C-Mad2-ligand complex. Biochemistry, 2009, 48(40): 9503–9515
- [11] Simonetta M, Manzoni R, Mosca R, et al. The influence of catalysis on mad2 activation dynamics. PLoS Biol, 2009, 7(1): e10
- [12] Fang G, Yu H, Kirschner M W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev, 1998, 12(12): 1871–1883
- [13] Hein J B, Nilsson J. Stable MCC binding to the APC/C is required

for a functional spindle assembly checkpoint. EMBO Rep, 2014, **15**(3): 264–272

- [14] Zhao Y, Li L, Wu C, et al. Stable folding intermediates prevent fast interconversion between the closed and open states of Mad2 through its denatured state. Protein Eng Des Sel, 2016, 29 (1): 23–29
- [15] Luo X, Yu H. Purification and assay of Mad2: a two-state inhibitor of anaphase-promoting complex/cyclosome. Methods Enzymol, 2005, 398: 246–255
- [16] 赵园园. 多态性蛋白 Mad2 折叠与功能的研究[D]. 青岛: 中国石 油大学(华东), 2015

Zhao Y. A Study on Folding and function of Metamorphic Protein Mad2 [D]. Qingdao: China University of Petroleum (Huadong), 2015

[17] Vendruscolo M, Zurdo J, MacPhee C E, *et al.* Protein folding and misfolding: a paradigm of self-assembly and regulation in complex biological systems. Philos Trans A Math Phys Eng Sci, 2003, **361**(1807): 1205–1222

- [18] Izawa D, Pines J. Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation. J Cell Biol, 2012, 199(1): 27–37
- [19] Marques S, Fonseca J, Silva P M, et al. Targeting the spindle assembly checkpoint for breast cancer treatment. Curr Cancer Drug Targets, 2015, 15(4): 272–281
- [20] Hauf S. The spindle assembly checkpoint: progress and persistent puzzles. Biochem Soc Trans, 2013, 41(6): 1755–1760
- [21] Heyduk T, Ma Y, Tang H, *et al.* Fluorescence anisotropy: rapid, quantitative assay for protein-DNA and protein-protein interaction. Methods Enzymol, 1996, **274**: 492–503
- [22] Yang M, Li B, Tomchick D R, et al. p31comet blocks Mad2 activation through structural mimicry. Cell, 2007, 131(4): 744–755
- [23] Mapelli M, Massimiliano L, Santaguida S, *et al.* The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell, 2007, **131**(4): 730–743

Study on The Interaction of Metamorphic Protein Mad2 and Its Ligand Cdc20^{121-138 *}

ZHANG Hui-Ting, ZHAO Yuan-Yuan, GE Bao-Sheng**, HUANG Fang

(State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (Huadong), Qingdao 266580, China)

Abstract Mitotic arrest deficient protein 2 (Mad2) is a typical metamorphic protein, which can adopt two distinct native folds at equilibrium under physiological conditions, an open inactive form (O-Mad2) and a closed active form (C-Mad2). This unusual two-state behavior of Mad2 and their interactions with cognate ligand Cdc20 plays a critical role in spindle assembly checkpoint signaling during mitosis. In this paper, interactions of O-Mad2 and C-Mad2 with TAMRA-Cdc20¹²¹⁻¹³⁸ were systematically investigated using fluorescence anisotropy techniques. As a result, the equilibrium dissociation constant of Mad2 two folds binding with Cdc20¹²¹⁻¹³⁸ were both within 10⁻⁶ mol/L range in lower ionic strength solutions, and the $K_{\rm D}$ value of C-Mad2 and Cdc20¹²¹⁻¹³⁸ was 5 times lower than that of O-Mad2. While in high ionic strength solution, there was no obvious difference on K_D value of C-Mad2 and O-Mad2 binding with Cdc20¹²¹⁻¹³⁸. The kinetic experiments suggested that the dissociation rate constant (k_d) between C-Mad2 and TAMRA-Cdc20¹²¹⁻¹³⁸ was similar to that of O-Mad2, but the association rate constant (k_a) between C-Mad2 and TAMRA-Cdc20¹²¹⁻¹³⁸ was one order of magnitude higher than that of O-Mad2, which suggested that the binding of C-Mad2 with Cdc20¹²¹⁻¹³⁸ is thermodynamically more stable and kinetically faster. Studies on interactions between Cdc20 mutants and Mad2 together with influence of ionic strength on their interactions both suggested that the interaction of Mad2 and Cdc20 is possibly not achieved by electrostatic interaction, but through hydrophobic interactions. Our results provide key information for revealing the conformational transition mechanism of metamorphic proteins and their important role in mitosis.

Key words Mad2, Cdc20, thermodynamics, kinetics, interaction **DOI**: 10.16476/j.pibb.2017.0013

^{*}This work was supported by a grant from The National Natural Science Foundation of China(21573289, 21373271, 21673294). **Corresponding author.

Tel: 86-532-86981135, E-mail: gebaosheng@upc.edu.cn

Received: January 9, 2017 Accepted: February 27, 2017