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Abstract This paper proposed the “ self-checking” algorithm to improve the detection accuracy of multiple moving targets in
time-series fluorescence images, such as vesicles. The main idea of this algorithm is to construct a multi-kernel function superposition
model and use the model to fit the data at the indistinguishable moment; the number of vesicles and the central positions of vesicles are
determined from the set based on 字2-statistics of the residuals in least-square fits of the models to the image data. By comparing the
detection accuracy with or without the“self-checking” algorithm in simulated images, we found that the detection accuracy with the
“self-checking” algorithm was improved significantly. Meanwhile, we proposed an optimized flow chart of vesicle tracking which
was applied to analyze the vesicles in mice 茁 cells. We found that the number of vesicle traces will increase and the average docking
time of vesicles will decrease after glucose stimulation based on our tracking analysis. This is because 茁 cells will release insulin to
regulate glucose balance with the help of vesicle translocation and secretion after glucose stimulation. In a word, we quantified the
vesicles activity in mice 茁 cell by tracking analysis on subcellular level.
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In a biological study, it is often necessary to
observe the dynamic movement of vesicles in cells;
when we mark vesicles with fluorescent protein, the
dynamic movement of vesicles can be recorded by a
total internal reflection fluorescence microscope.
Then, we can obtain much valuable information
through the analysis of the dynamic movement of
vesicles [1-3]. Because manually analyzing a large
number of vesicles is time-consuming and exhausting,
automatic algorithms are necessary to speed up the
process [4-5]. Many methods are used to detect the spot
signal [6], such as the adaptive threshold algorithm,
which divides a gray level image into the background
and target according to the maximum between-cluster
variance [7]. The larger the between-cluster variance
between the background and target, the more different
the two parts of the image will be; if some targets are
wrongly classified as the background or some
backgrounds are wrongly classified as the target, the

difference between the two parts will be smaller.
Therefore, the segmentation for maximum
between-cluster variance indicates the minimum
probability of misclassification. However, this global
threshold method cannot obtain truly satisfactory
results for biological fluorescence images because the
signal and background in biological fluorescence
images are inhomogeneous [8]. This means that the
signal in one part of the image can be brighter or
darker than the background in another part. To
overcome this problem, the top hat algorithm based on
morphology was proposed [9]. This algorithm first
carries out the erosion operation for an image to filter
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out the spots in images and lower the overall
brightness of the image and then carries out the
dilation operation to restore the area and brightness of
the light background; finally, it subtracts the processed
image from the original image to obtain the filtered
image. A more robust algorithm was proposed that is
based on multi-resolution analysis [8]. This algorithm
first applies the 佗 trous wavelet transform to the image
and then calculates the median absolute deviation 滓 of
each coefficient [10], with t =k滓/0.67 as the threshold
value for each coefficient filtering [11], and finally
reconstructs the image by using the product of each
coefficient. Many paper showed that the algorithm was
robust in detecting spots in biological fluorescence
images [12-14]. This algorithm was used to track small
particles in fluorescence images [15-16]. However, if two
spots are too close, the algorithm will be unable to
distinguish them. This is an inevitable problem for
threshold segmentation algorithms.

The local maximum algorithm was put forward to
detect spots with small distances [17]. This algorithm is
defined as follows: if a pixel is brighter than the other
pixels around it within the distance range w, then this
pixel will be regarded as the local maximum value.
This algorithm was used to track spots in fluorescence
images [18-19]. The watershed algorithm was put forward
to detect spots with small distances [20]. The watershed
algorithm regards the image as a “ topographic
map” , among which the areas with strong brightness
have higher pixel values, and the areas with weak
brightness have lower pixel values. It carries out the
image segmentation by finding the “ catchment
basin” and “watershed boundary”. Although these
two algorithms are able to detect spots within small
distances of each other, we found that the detection
accuracy dramatically decreases as the distance gets
smaller. The above situation will occur frequently in
fluorescence images during the motion of vesicles, and
if detection is wrong, an error result will be obtained
after automatic analysis of the vesicles’ dynamic
movements. Therefore, we proposed the
“ self-checking” algorithm to improve the detection

accuracy of multiple moving targets in time-series
images, such as vesicles. The idea of the algorithm is
that two vesicles which are close together at some time
are difficult to distinguish, but these vesicles are in a
state of motion, and the distance between them will be
large enough to help us distinguish them at some other
time. This algorithm first constructs a multi-kernel

function superposition model and then uses the model
to fit the data at the indistinguishable moment before
finally determining the number of vesicles and the
central positions of vesicles from the set based on the
字2-statistics of the residuals in least-square fits of the
models to the image data.

1 Methods
1.1 Algorithm

When analyzing the vesicle dynamic movement
in fluorescence images, we find that vesicle movement
can be roughly divided into three types of motion
states [1, 21-22]: single direction motion state, random
motion state and “ Cage” motion state. The
“ Cage” motion state refers to when the vesicle is
limited to some location or has tiny swing at some
location. It shall correctly detect the entire path of the
vesicle to analyze the vesicle’s dynamic movement.
However, at the cell surface, a large number of vesicles
in motion will inevitably be close to one another or
overlap. In this case, the application of the traditional
adaptive threshold algorithm and top hat algorithm to
an image is unable to solve the above problem, even
when using the wavelet transform algorithm. Using the
local maximum algorithm and watershed algorithm
can separate a portion of the vesicles, but the detection
accuracy is low. To improve the detection accuracy,
we find solutions from image sequences. Two vesicles
that are close together at some time are difficult to
distinguish, but these vesicles are in a state of motion,
and the distance between them will be large enough to
help us distinguish them at some other time. Therefore,
we constructed a multi-kernel function superposition
model and then used this model to fit the data at the
indistinguishable moment; finally, the number of
vesicles and the central position of vesicles were
determined from the set based on the 字2-statistics of the
residuals in least-square fits of the models to the image
data.

First, we construct a multi-kernel function
superposition model

f (x, y, n) =
n

i=1
移g(x, y) (1)

where g (x, y) is the kernel function. Because the
vesicles in fluorescence images are indicated by the
superimposed point spread function (PSF) of the
microscope imaging system, the kernel function can be
approximated by using a Gaussian distribution for the
2D case.
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g(x, y)=a exp - (x-c)2+(y-d)2

2滓2蓸 蔀 (2)

Putting equation (2) into equation (1), we can obtain
f (x, y, n) as follows

f (x, y, n)=
n

i=1
移ai exp - (x-c i)2+(y-di)2

2滓i
2蓸 蔀+b (3)

In this model, where n is the number of Gaussians, c i is
the center position of each Gaussian in the x-axis
direction, di is the center position of each Gaussian in
the y-axis direction, ai is the amplitude of each
Gaussian, b is the background value, and 滓i is the
standard deviation of each Gaussian. In practice, when
calculating a discrete approximation of a Gaussian,
approximately 3滓i outside the range can be ignored.

We set the width of slide window L =2, and
images of the entire time series can be divided into

collection {Ik, Ik +1}
N-1

k=1 , where Ik is the image data in
frame k, and N is the total number of frames. There is
Dk, j( j = 1, 2 ... M) for each Ik, where Dk, j represents
detected particles in frame k, and M is the number of
detected particles in frame k. For each Dk, j, the center
coordinate is (xk, j, yk, j). We can cut out the sub image
Bk, j from Ik with (xk, j, yk, j) as the center and R as the
radius. In our experiment we set R =5 which is big
enough to contain the particles. The number of
detected particles in Bk, j and Bk +1, j are nk and nk +1,
respectively. Next, we compare nk and nk +1. If nk is
equal to nk +1, then the same number of particles are
found in two adjacent images, and no process is
needed. If nk is greater than nk +1, then we need to
determine whether it is really one point less or whether
the two points are too close to be identify correctly.
Thus, we fit Bk +1, j with f (x, y, nk) and f (x, y, nk +1) to

obtain the residues R
nk

k+1, j and R
nk垣１

k+1, j． If R
nk

k+1, j is less

than R
nk垣１

k+1, j , it indicates that there are more nk than nk +1

points in Bk +1, j. Fitting parameters ai, b, c i, di, and 滓i

need to be limited to a reasonable range to further
confirm this judgment. Finally, we use fitting center
points (c i, di) to replace the original center points in
Bk+1, j. Conversely, if nk is less than nk+1, we can perform
a similar process to replace the original center points
in Bk, j with fitting center points (c i, di).
1.2 Simulated images construction

First, we test the effectiveness of the algorithm
through a series of standard simulated images. Then,
we generate a series of 100 frames time sequence
images with a size of 256伊256 and place each vesicle’s

generation into the time series image one by one; the
number and maximum movement speed of vesicles
will also serve as parameter settings. We use a 2D
Gaussian to simulate the vesicles’ distribution of
fluorescence intensity; the radius of each vesicle is a
fixed pixel value, and the vesicles’ initial positions
and the lengths of their motion trajectories will be
generated at random. Moreover, the direction and
speed of vesicles’ motion trajectories are generated
randomly for each frame. We generate vesicles with
three types of motion states and generate them in the
images with a certain proportion: one third single
direction motion, one third random motion and one
third“Cage” motion.
1.3 Islet 茁 cell isolation and labeling

Islet 茁 cells were isolated from C57/6J mice
(Nanjing Model Animal Experiment Center). First, the
pancreas was separated and digested in collagenase
(Sigma, America, 0.5 g/L in Hank’s) for 20 min. Then,
islets that appeared to be globular or rod-like under a
stereoscope were sorted and cultivated in a 茁 cell
culture medium overnight at 37℃ . The 茁 cell culture
medium was made using RPMI 1640 with L-glutamine
containing 10% heat-inactivated fetal bovine serum
(FBS; from Wisent, Canada), 11.2 mmol/L glucose, 1%
(v/v) 100 U/ml penicillin and 100 g/L streptomycin.
The islets were washed with Hank’s and digested with
pancreatin for 3 min. Then, the 茁 cells were
re-suspended in the 茁 cell culture medium and then
seeded onto 18-mm glass coverslips (Fisher Scientific,
America) at 30 islets/coverslip. Adenovirus, which
carries the NPY-EGFP(NPY is a neuropeptide which is
composed of 36 amino acids; NPY can be wrapped in
the form of cargo in the insulin vesicles, so it is often
used to mark the insulin vesicles [23]) DNA sequence
(SinoGenoMax, China), was added into the culture
medium at a concentration of 1 滋l/10 ml for labeling.
After 6 h of incubation, the culture medium was
replaced with a fresh medium.
1.4 TIRM imaging

After 12-24 h of infection, the 茁 cells were
transferred to a chamber filled with Krebs-Ringer
HEPES buffer (KRBB) for imaging. The experiments
were performed at 30℃ . Time-series images were
acquired by the total internal reflection fluorescence
microscopy (TIRFM) imaging system, which was
constructed based on the prismless and through-
the-lens configuration, as previously described [5]. The
TIRFM imaging system was equipped with a 150 伊 ,
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We can see from Figure 2 that the traditional
threshold segmentation algorithm, taking the wavelet
transform algorithm as the example in the paper, has a
recognition accuracy close to 0% for vesicles with
distances within a pixel interval of [1, 6), whereas
the detection accuracy is 100% for pixel intervals of

[6, +肄). However, the local maximum algorithm and
watershed algorithm have a detection accuracy of
100% within a pixel interval of [5, +肄); the detection
accuracy is gradually reduced for less than 5 pixels.
The local maximum algorithm has a detection
accuracy of 70.8% within a pixel interval of [4, 5),

Fig. 1 Simulated vesicle images with different distances
(a)-(f) The two-dimensional simulated vesicle images, with a central distance ranging from 1 pixel to 6 pixels. (g)-(l) corresponds to the intensity
distribution graph of (a)-(f).

1.45 NA oil-immersion objective (Olympus, Japan),
EMCCD camera (Andor iXon 897, England), and
lasers (Coherent, America). The EMCCD camera was
driven by Andor Solis (Andor, England). A 488-nm
laser was used to excite fluorescence during the
experiment.

2 Results
We choose the wavelet transform algorithm, local

maximum algorithm and watershed algorithm to
compare and verify the effectiveness of the algorithm
through analyzing the correct detection of vesicle
proportion before and after the self-check algorithm
process. The accuracy P is calculated as follows.

P= 1- FP(n)+FN(n)
NTotal

蓸 蔀伊100% (4)

where NTotal is the total number of test vesicles.
FP(n) is the number of false positives, which means
that the number of detected spots is more than the
number of ground truths. FN(n) is the number of false
negatives, which means that the number of detected
spots is less than the number of ground truths. False
positives and false negatives are identified manually.

We adopt EMCCDD (iXon 897, Andor, England)
with a pixel size of 16 滋m and an objective lens with a

magnification of 150伊; therefore, the pixel size in the
image is approximately 107 nm. The radius of the
simulated vesicle is 3 pixels, and the accuracy of the
three algorithms reaches up to 100% for vesicles with
a distance above 6 pixels. That is, if the distance
between two vesicles is large enough, they can be
detected correctly. Therefore, the accuracy of these
algorithms for distances below 6 pixels must be
determined. The simulated vesicle images with
different distances is shown in Figure 1 (a) -(f) show
the two-dimensional simulated vesicle images, with a
central distance ranging from 1 pixel to 6 pixels.
(g)-(l) corresponds to the intensity distribution graph
of (a)-(f). From Figure 1, we can see that two vesicles
can be detected correctly through setting the proper
threshold when the distance is 4 pixels and 5 pixels. If
the distance between two vesicles is within 3 pixels,
the vesicles cannot be detected correctly through
simply setting a threshold. Therefore, we take the
information of the time series image into consideration
to recognize the vesicles, which is the purpose of our
algorithm. Because the algorithm is a verification
process based on the recognition completion of other
algorithms, we call this algorithm the self-checking
(SC) algorithm.

(f)(e)(d)(c)(b)(a)

(l)(k)(j)(i)(h)(g)
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Fig. 3 The detection accuracy of the watershed algorithm and watershed algorithm plus
the self鄄checking algorithm under different parameters

Testing data are used in (a) to randomly generate three groups of time series images with different vesicle quantities; the vesicle quantities for each
group of data are 30, 40, 50 in order, and the maximum movement speed is 3 pixels for each frame. Testing data are used in (b) to randomly generate
three groups of time series images with different maximum movement speeds; the vesicle quantity in each group of data is 40, with the maximum
movement speed being 1, 2 and 3 pixels per frame, respectively.

7.7% within a pixel interval of [3,4), 6.1% within a
pixel interval of [2,3), and 1.2% within a pixel interval
of [1,2). For the watershed algorithm, the detection
accuracy is 86.2% within a pixel interval of [4,5),
47.6% within a pixel interval of [3,4), 0.5% within a
pixel interval of [2,3), and 0% within a pixel interval
of [1,2). Thus, it can be seen that the recognition
accuracy of the watershed algorithm is better than that
of the local maximum algorithm within the pixel
interval of [3,5), whereas the watershed algorithm is
worse than the local maximum algorithm within the
pixel interval of [1,3). When adding the self-checking
algorithm, the accuracy of each algorithm improves
greatly. The wavelet transform algorithm plus the
self-checking algorithm has an accuracy of 79.7%
within the pixel interval of [5,6), 63% within the pixel
interval of [4,5), 52% within the pixel interval of [3,4),
48.6% within the pixel interval of [2,3), and 19.5%
within the pixel interval of [1,2). The local maximum
algorithm plus the self-checking algorithm has an
accuracy of 97.8% within the pixel interval of [4,5),
93.9% within the pixel interval of [3,4), 82.1% within
the pixel interval of [2,3), and 42.8% within the pixel
interval of [1,2). The watershed algorithm plus the
self-checking algorithm has an accuracy of 99.5%
within the pixel interval of [4,5), 96.7% within the
pixel interval of [3, 4), 84.3% within the pixel interval
of [2,3), and 45.1% within the pixel interval of [1,2).
Therefore, the detection accuracy obtained by the
watershed algorithm plus the self-checking algorithm
is the best overall.

As shown in Figure 3, we also test the detection
accuracy of the watershed algorithm and watershed
algorithm plus the self-checking algorithm under
different parameters. Figure 3a uses the testing data to
randomly generate three groups of time series images
with different vesicle quantities; the vesicle quantities
for each group of data are 30, 40, 50 in order, and the
maximum movement speed is 3 pixels for each frame.

Fig. 2 Comparison of different algorithms on
detection accuracy at different distances

Comparison of the detection accuracy of the wavelet transform
algorithm, local maximum algorithm and watershed algorithm, as well
as these algorithms plus the self-checking algorithm. The abscissa 1
represents the pixel interval of [1,2), and 2 represents the pixel interval
of [2,3), and so on. Testing data is 20 groups of 100 frames time
sequence images with a size of 256伊256. The number of vesicles is 40
and the maximum movement speed is 3 pixels per frame in each group.
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We also carried out a test using mice 茁 cell
fluorescence images; Figure 5 is a fluorescence image
of a 茁 cell, acquired using total internal reflection
fluorescence microscopy. Figure 5a is the fluorescence
image of the 茁 cell; the length of the scale bar in the
figure is 1 滋m. An enlarged image of the vesicles in
the yellow box is shown in Figure 5b. The image
shown in Figure 5b is our testing area, and the red
round box and blue round box areas in Figure 5b are
vesicles recognized manually. First, we used the
wavelet transform algorithm to preprocess the image to
remove the background and noise, and then we applied
the watershed algorithm and the watershed algorithm
plus the self-checking algorithm to test detection
effects. Figure 6 is a comparison of the quantities of
vesicles detected in the Figure 5b area using the
watershed algorithm and the watershed algorithm plus

the self-checking algorithm. From Figure 6, it can be
seen that the detected vesicle quantity using the
watershed algorithm in the same area fluctuated
between 1 and 2, whereas the detected vesicle quantity
of the watershed algorithm plus the self-checking
algorithm remained steadily at 2. We traced the
vesicles continuously for 100 frames in the Figure 5b
area and drew the x coordinate of the traced vesicle
central position versus the time curve. Figure 7a is the
x coordinate of the traced vesicle central position
versus the time curve for the watershed algorithm plus
the self-checking algorithm. Figure 7b is the x
coordinate of the traced vesicle central position versus
the time curve for the watershed algorithm. From
Figure 7a, it can be seen that the self-checking
algorithm can trace the completed trajectory of two
vesicles due to its high accuracy. However, without the

Testing data are used in Figure 3b to randomly
generate three groups of time series images with
different maximum movement speeds; the vesicle
quantity in each group of data is 40, with the
maximum movement speed being 1, 2, and 3 pixels
per frame, respectively. From Figure 3, it can be seen
that different vesicle quantities and maximum speeds
have no effect on the algorithm’s detection accuracy
and that the watershed algorithm plus the self-checking
algorithm can obtain a high detection accuracy under
different parameters.

We also add different levels of Gaussian noise to
the time series images to test the detection precision of

the self-checking algorithm. First, we use the wavelet
transform algorithm to remove noise and then carry out
the detection using the watershed algorithm plus the
self-checking algorithm. We determined the bias of
only the self-checking algorithm. Bias is determined
by the difference between the detected center and the
real center. As shown in Figure 4, when the signal-
to-noise ratio (SNR) is 1, the average bias is 0.0423
pixels. Increasing the signal-to-noise ratio will make
the bias smaller (SNR=IS /滓N, where IS is the average
intensity of the signal, and 滓N is the variance of the
Gaussian noise). Thus, the detection precision of the
self-checking algorithm is very high.

Fig. 4 Bias of self鄄checking algorithm under different signal鄄to鄄noise ratio
(a) Simulated images with signal-to-noise ratio 1, 2, 3, 4, respectively. (b) Bias versus signal-to-noise ratio curve.
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1

2

20 40 60 80 100

Frame number

self-checking algorithm, the traced vesicle’s trajectory
is confusing because of detection error, as shown in

Figure 7b.

Fig. 5 Fluorescence image of a 茁 cell, acquired using total internal reflection fluorescence microscopy
(a) The fluorescence image of the 茁 cell. An enlarged image of the vesicles in the yellow box is shown in (b). The red round box and blue round box
areas in (b) are vesicles recognized manually.

(a) (b)

Fig. 6 The number of vesicles detected in Figure 5b using the watershed algorithm
and the watershed algorithm plus the self鄄checking algorithm

: Watershed; : Watershed+SC.

Fig. 7 X coordinate of the traced vesicle central position versus the time curve
(a) The x coordinate of the traced vesicle central position versus the time curve for the watershed algorithm plus the self-checking algorithm. Spot1-M
and Spot2-M indicate the trace of Spot1 and Spot1 tracked manually. Spot1-C and Spot2-C indicate the trace of Spot1 and Spot1 tracked by computer.
(b) The x coordinate of the traced vesicle central position versus the time curve for the watershed algorithm. : Spot1-M; : Spot2-M; :
Spot1-C; : Spot2-C.
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From Figure 9b，we can see that the number of
vesicle traces was significantly increased after glucose
stimulation, which indicated that there were more
vesicles trafficking to the membrane after glucose
stimulation in mice 茁 cells. The function of these
vesicles was to promote the release of insulin to
regulate glucose balance. This result was coincident
with previous studies [26]. In condition of high glucose,
the pancreas of body will release insulin to regulate

blood sugar balance. Meanwhile, we made a statistical
analysis of docking time before and after glucose
stimulation, as shown in Figure 10.

From the docking time histogram of before and
after glucose stimulation, we can see that the events
with docking time less than 5 seconds increased
significantly after glucose stimulation, which indicated
that glucose stimulation accelerated vesicle
translocation and secretion in 茁 cell. Average docking

Fig. 8 Flow chart of vesicle tracking analysis

Based on the result of the above analysis, we can
confirm that after joining the self-checking algorithm,
the accuracy of the vesicle detection in biological
fluorescence images was improved. Therefore, we
proposed an optimized flow chart of vesicle tracking
analysis as showing in Figure 8.

First, wavelet transform algorithm was used to
remove the noise and background in fluorescence
images. Then vesicles were segmented from binary
images by adaptive threshold algorithm. However,
only fixed threshold was difficult to separate close
vesicles, and it need to use watershed algorithm to
separate close vesicles. The centroids of well-
segmented vesicles were calculated in this step, and
self-checking algorithm was used to optimize detection
of vesicles further. Finally, we can use optimized data
to tracked vesicles and analyze the traces. Many
multiple particle tracking algorithm was proposed in
previous studies [24-25]. In this paper, we use the scheme
of Kalman filter and linear assignment problem to
track the vesicles [12]. According to the procedure of
vesicle tracking, we analyzed data of mice 茁 cells
before and after glucose stimulation as shown in
Figure 9.

Adaptive threshold

Watershed

Self-checking

Tracking

Vesicle analysis

Wavelet transform

(a) (b)

10

0

20

30

40

50

Basal Glucose

Fig. 9 Vesicle tracking analysis of mice 茁 cells
(a) View of the vesicle tracks superimposed on fluorescence image. The color circles indicated the detection of the vesicle tracks. (b) Comparison of the
number of vesicle traces before and after glucose stimulation. Data represent the number of traces detected per 100 min-1窑滋m-1 from 4 cells in each
state. : Basal; : Glucose.

1 滋m
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3 Discussion
In biological study, it is often necessary to

observe the dynamic movements of vesicles in cells;
when we mark vesicles with fluorescent protein, the
dynamic movement of vesicles can be recorded by
using a total internal reflection fluorescence
microscope. Then, we can obtain much valuable
information through the analysis of the dynamic
movements of vesicles. Because manually analyzing a
large number of vesicles is time-consuming and
exhausting, automatic algorithms are necessary to
speed up the process. At present, many algorithms are
used to detect vesicles in fluorescence images.
However, we find that it is difficult to detect all vesicle

movement trajectories correctly using time series
images. The main reason for error tracking is the
incorrect detection of vesicles. We detected the central
positions of the vesicles and then connected these
vesicles to form a movement trajectory by using the
tracking algorithm. The reason for the incorrect
detection of vesicles is that vesicles may be very close
at some times during their dynamic movement, which
is a challenge for many algorithms. Therefore, in this
paper, we proposed a self-checking algorithm to
correct the detection error of other algorithms to
improve detection accuracy.

In the paper, we make a comparison of the
detection accuracy of the wavelet transform algorithm,
local maximum algorithm and watershed algorithm, as

Fig. 10 Statistical analysis on docking time before and after glucose stimulation
(a) Normalized docking time histogram from 4 cells in basal state. (b) Normalized docking time histogram from 4 cells after glucose stimulation.
(c) Comparison of docking time before and after glucose stimulation (Kolmogorov-Smirnov test, P < 10-3). : Basal; : Glucose. (d) Cumulative
frequency of docking time in two state. : Basal; : Glucose.

time and cumulative frequency before and after
glucose stimulation were compared in Figure 10c and
Figure 10d. In combination with Figure 9b, we came to
a conclusion that the number of vesicle traces
increased and the average docking time of vesicles
decreased after glucose stimulation. This is because 茁

cells will release insulin to regulate glucose balance
with the help of vesicle translocation and secretion
after glucose stimulation. In a word, we quantified the
vesicles activity in mice 茁 cell by tracking analysis on
subcellular level.
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well as these algorithms plus the self-checking
algorithm. We find that when the center distance of the
two vesicles is more than 6 pixels, all algorithms can
detect them correctly. When the distance between two
vesicles is less than 6 pixels, the detection accuracy of
the wavelet transform algorithm drops to
approximately 0%. The wavelet transform algorithm is
one of the segmentation algorithms based on a
threshold, which means that when the distance
between two spots is very small, the segmentation
algorithm based on a threshold has difficulty
separating them correctly. However, the local
maximum algorithm and watershed algorithm can
distinguish vesicles that are very close to some extent.
When the distance between two vesicles is less than 3
pixels, the detection accuracy drops below 50%. When
the center distance of two vesicles is less than 2 pixels,
the detection accuracy is less than 10%. The detection
accuracy of these algorithms improves greatly after
adding the self-checking algorithm. Moreover, after
adding the self-checking algorithm, the detection
accuracies of the local maximum algorithm and
watershed algorithm are improved from less than 10%
to above 80% for the pixel interval of [2,3) and from
less than 50% to above 90% for the pixel interval
[3,4). Thus, the improvement is very obvious.

In this paper, we also tested the detection
accuracy of the self-checking algorithm under different
vesicle densities and different maximum movement
speeds, and from the results, we can see that different
parameters have little impact on the self-checking
algorithm’s detection accuracy. We also tested the
average detection precision of the self-checking
algorithm with different signal-to-noise ratio, and we
found that the average detection precision of the
self-checking algorithm is less than 0.05 pixels.

Meanwhile, we analyzed two adjacent vesicles in
mice 茁 cell fluorescence images. First, we used the
wavelet transform algorithm to preprocess the image to
remove the background and noise, and then we applied
the watershed algorithm to detect vesicles. Moreover,
it was found that the number of vesicles detected by
the watershed algorithm fluctuated between 1 and 2
during the 100 frames. After adding the self-checking
algorithm, all frames could detect the two vesicles
correctly. Moreover, the watershed algorithm plus the
self-checking algorithm could track the completed
movement trajectories of the two vesicles by using the
tracking algorithm. Without the self-checking

algorithm, the traced vesicle trajectories were
confusing because of detection error.

Finally, we proposed an optimized flow chart of
vesicle tracking and analyzed vesicle traces in mice 茁
cell before and after glucose stimulation. We came to a
conclusion that the number of vesicle traces increased
and the average docking time of vesicles decreased
after glucose stimulation based on our tracking
analysis. This is because 茁 cells will release insulin to
regulate glucose balance with the help of vesicle
translocation and secretion after glucose stimulation.
In a word, we quantified the vesicles activity in mice 茁
cell by tracking analysis on subcellular level.

To sum up, the detection accuracy is greatly
improved via the self-checking algorithm. Moreover,
the detection precision of the self-checking algorithm
is very high. When we apply the self-checking
algorithm to mice 茁 cell fluorescence images, it can
also detect the completed movement trajectory of
vesicles correctly. Therefore, the self-checking
algorithm can be used to detect and track objects in
biological fluorescence images to improve the
accuracy of analysis.

Ethics Statement Animal experimentation: This
study was performed in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of Institute of Biophysics, Chinese
Academy of Sciences. All of the animals were handled
according to approved institutional animal care and
use committee (IACUC) protocols of the Institute of
Biophysics. All experiments were approved by the
Animal Care Committee at the Institute of Biophysics
(license number: SYXK2016-19). All surgery was
performed under sodium pentobarbital anesthesia, and
every effort was made to minimize suffering.
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时间序列荧光图像中精确检测高密度快速

运动多囊泡的“自校正”算法 *

张 翔 1, 2)** 刘欣怡 2) 吕平平 2) 贾 策 2)

(1)华中科技大学生命科学与技术学院，武汉 430074；2)中国科学院生物物理研究所，北京 100101)

摘要 本文提出了一种“自校正”算法，用于提高时间序列荧光图像中的多个运动目标识别的正确率(如囊泡)．此算法的主
要思想是构建一个由核函数叠加构成的模型，然后用这个模型去拟合无法分辨时刻的数据，通过最小二乘拟合后得到的模型

与真实数据的 字2统计残差及拟合得到的核函数的参数，来确定该时刻囊泡的数目及各囊泡的中心位置．我们在合成图像上比

较加入了自校正算法和未加自校正算法的识别正确率，结果表明，加入了自检算法以后识别正确率得到了明显提高．同时，

提出了一个优化的囊泡追踪流程，并应用到小鼠 茁细胞的囊泡荧光图像分析中．统计分析显示，加入葡萄糖刺激后，小鼠 茁
细胞囊泡轨迹数目会增加，平均锚定时间会减少，这是由于胰岛细胞需要借助囊泡的转运和分泌来调控血糖平衡．因此我们

进一步在亚细胞水平定量分析了活细胞中囊泡的活动．

关键词 自校正算法，囊泡追踪，囊泡识别，时间序列图像
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