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Dear Editor,
Photoactivated localization microscopy (PALM)

improves the resolution of microscope to 2 -25 nm
with the facility of photoactivated fluorescent proteins
(PAFPs) [1]. PALM, stochastic optical reconstruction
microscopy(STORM)[2] and fluorescence photoactivation
localization microscopy (FPALM) [3] are all based on
single molecule localization technique. The
localization precision of single molecule localization
microscopy (SMLM) depends on the photon output of
fluorescent probes and background noise, as
illuminated in the following formula[4]:
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Where 滓x,y is the standard deviation of
localization; Nm is the total photon number; b m is the

background noise level; a is the pixel size in the image
(taking into account the system magnification); s is the
standard deviation of PSF. As the optical properties of
PAFPs and background noise are related to excitation
laser power density, we design a series of experiments
to study the relationship between laser power density
and localization precision in PALM imaging.

Generally, PAFPs are divided into three types,
photoactivatable, photoconvertable and photoswitchable[5-6].
There are many new PAFPs of each type being
developed to improve the resolution, including
Dronpa, PAmCherry and mEos3.2[7-9]. We selected and
purified most widely used PAFPs(Table S1) for further
single molecule imaging test.

PAFPs were purified as previously described [9].
Single molecule imaging of PAFPs was performed

with TIRFM at room temperature. Cover slips were
cleaned seriously and placed in the sample holder of
PALM instrument. Additional PBS(pH 7.4) was added
to the sample chamber after spreading the samples on
the cover slip. We chose 561 nm excitation laser
power density from 0.1 to 2.0 kw/cm2 for red PAFPs
and 488 nm excitation laser power density from
0.01 to 2.5 kw/cm2 for green PAFPs. After image
acquisition, all molecules were identified and fitted
with a 2D Gaussian fitting [10] to obtain the position,
number of photons (Nm) and s of the point spread
function. The background noise level (bm) was
determined by calculating the s of the intensity of an
illuminated area where no single molecule is visible.
Finally, the 2D localization precision for each
molecule could be obtained with equation (1).

To get high localization precision, it is important
to maximize the photon yield of the fluorophores. We
found that total photon number of selected PAFPs
increased when increasing the excitation laser power,
but saturated after the laser power passed a threshold
(Figure 1a -c). PAmCherry and PATagRFP show
decreased photon output with higher laser power
density (Figure 1c), which is different from other
PAFPs. This may due to low laser tolerance of red
irreversible photoactivatable PAFPs. Excitation light
may have bleaching effect on fluorescent molecules,
suitable excitation laser power density should be
chosen to maximize the photon output of specific
fluorophores to get best localization precision.

Background noise level is affected by
autofluorescence of the sample and residual
fluorescence of surrounding probe molecules in the
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Fig. 1 Effects of the excitation laser power density on the number of photons detected from PAFPs,
background noise and localization precision

Total photons(a-c), background photons(d-f) and position error(g-i) of photoconvertable FPs(a, d, g), photoswitchable FPs(b, e, h), photoactivatable

FPs (c, f, i).

dark state. For fluorophores with low contrast ratios,
the collective fluorescence from dark molecules can
obscure the signal from the small number of bright
molecules during each imaging cycle [11]. We found
these kind of background noise is positively related to
laser power density (Figure 1d～f).

As in formula (1), our results showed that in order
to get high localization precision, appropriate
excitation power needs to be chosen to balance the
number of photons detected from activated PAFPs and
the background noise. We found the optimal

localization precision can be achieved at around
0.5 kw/cm2 laser power density for selected red PAFPs
(Figure 1g～i, Table 1). For green PAFPs, mGeos-M
delivers the highest localization precision at very
low laser power. It shows that mGeos-M is suitable
for live cell imaging which is sensitive to photo
toxicity (Figure 1h, Table 1). We further verified our
results with large quantity single molecule imaging
data at their optimal laser power density respectively
(Figure S1-S6).
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Table 1 Optical localization precision of PAFPs at different laser power density

PAFPs
Photoconvertable FPs Photoswitchable FPs Photoactivatable FPs

mEos2 mEos3.2 mGeos-M Dronpa PAmCherry PATagRFP

Laser power density/(kw窑cm-2) 0.7 0.7 0.05 0.7 0.2 0.3

Position error/nm 12.42 10.92 18.19 15.75 13.44 12.30

In summary, we selected several mostly used
PAFPs and studied the relationship between laser
power density and their localization precision in
PALM imaging. These results can guide researchers to
choose appropriate laser power densities for specific
PAFPs in PALM imaging and achieve optimal
resolution.
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Supplements

Table S1 Properties of selected proteins
PAFPs Pre-/post activation color Activation light Absorbance/emission peaks(nm) Oligomeric status Reference

Photoconvertable fluorescent proteins
mEos2 506/519 (G)

573/584 (R)

Monomer [1]

mEos3.2 518/525 (G)

585/591 (R)

Monomer [2]

Photoswitchable fluorescent proteins

Dronpa 503/522 Monomer [3]

mGeos-M 503/514 Monomer [4]

Photoactivatable fluorescent proteins

PAmCherry 564/595 Monomer [5]

PATagRFP 562/595 Monomer [6]

Figure S1 Single molecule properties of mEos2 at optimal laser power density
Distribution of total photons (a), background photons (b), position error (c), number of single molecules per frame (0.05 s) and emerging molecules per

frame (0.05 s) (d).
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Figure S2 Single molecule properties of mEos3.2 at optimal laser power density
Distribution of total photons (a), background photons (b), position error (c), number of single molecules per frame (0.05 s) and emerging molecules per

frame (0.05 s) (d).

Figure S3 Single molecule properties of Dronpa at optimal laser power density
Distribution of total photons (a), background photons (b), position error (c), number of single molecules per frame (0.05 s) and emerging molecules per

frame (0.05 s) (d).
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Figure S4 Single molecule properties of mGeosM at optimal laser power density
Distribution of total photons (a), background photons (b), position error (c), number of single molecules per frame (0.05 s) and emerging molecules per

frame (0.05 s) (d).

Figure S5 Single molecule properties of PAmCherry at optimal laser power density
Distribution of total photons (a), background photons (b), position error (c), number of single molecules per frame (0.05 s) and emerging molecules per

frame (0.05 s) (d).
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Figure S6 Single molecule properties of PATagRFP at optimal laser power density
Distribution of total photons (a), background photons (b), position error (c), number of single molecules per frame (0.05 s) and emerging molecules per

frame (0.05 s) (d).
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