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Abstract Objective Long non-coding RNAs (lncRNAs) participate in a variety of vital biological processes and closely relate

with various human diseases. The prediction of lncRNA-disease associations can help to understand the mechanisms of human

disease at the molecular level, and also contribute to diagnosis and treatment of diseases. Most existing methods of predicting the

lncRNA-disease associations ignore the deep embedding features hiding in lncRNA/disease network topological structures.

Moreover, randomly selecting the negative samples will affect the robustness of predictors. Methods Here we first set up a high

quality dataset by using an effective strategy to select the negative samples (i. e., pairs of non lncRNA-disease association) with

relatively higher quality instead of randomly selecting the negative samples, then proposed a novel method (called NELDA) to

predict the potential lncRNA-disease associations by building 4 deep auto-encoder models to learn the low dimensional network

embedding features from the lncRNA/disease similarity networks, and lncRNA-disease association network, respectively. NELDA

takes the lncRNA/disease similarity network embedding features as the input of one support vector machine (SVM) classifier, and

the lncRNA/disease association network embedding features as the input of another SVM classifier. The prediction results of these

two SVM classifiers are fused by the weighted average strategy to obtain the final prediction results. Results In 10-fold cross-

validation (10 CV) test, the AUC of NELDA achieves 0.982 7 on high quality dataset, which is 0.062 7 and 0.020 7 higher than that

of other two state-of-the-art methods of LDASR and LDNFSGB, respectively. In the case studies of stomach cancer and breast

cancer, 29/40 (72.5%) novel predicted lncRNAs associated with stomach and breast cancers are supported by recent literatures and

public datasets. Conclusion These experimental results demonstrate that NELDA is a superior method for predicting the potential

lncRNA-disease associations. It has the ability to discover the new lncRNA-disease associations.
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Accumulated evidences reveal that more than
70% of the human genome can be transcribed, but
only less than 2% of the genome is able to be
translated into proteins[1-2] , and the RNAs which do
not encode proteins exist in the form of non-coding
RNAs[3]. Long non-coding RNAs (lncRNAs) with the
length more than 200 nucleotides account for a large
proportion of non-coding RNAs[4], participating in a
variety of vital biological processes[5-6]. Multiple lines
of evidence have linked dysregulations and mutations
of lncRNAs to diverse human diseases[7], such as
bladder cancer[8], lung cancer[9], gastric cancer[10], and
breast cancer[11]. For example, upregulated MALAT-1
contributes to bladder cancer cell migration by
inducing epithelial-to-mesenchymal transition[8].

LncRNA H19 expression was elevated in the lung
cancer cell lines and tissues. H19 promotes lung
cancer metastasis and proliferation by inhibiting the
function of miR-200a[9]. Therefore, identifying the
potential human disease-related lncRNAs will help to
understand the mechanisms of human disease at the
molecular level, and also provide the potential
biomarkers for human disease diagnosis and
treatment[12].
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In recent years, computational methods have
been developed to predict the lncRNA-disease
associations by utilizing diversity of biological data,
which can provide the candidate disease-associated
lncRNAs for biological experiment verification,
reducing the time-consuming and costs in biological
experiments[13-15]. Existing computational methods for
predicting lncRNA-disease associations can mainly be
divided into network-based methods[16-25] and machine
learning-based methods[12, 26-31]. The network-based
methods, such as RWRlncD[18] and IDHI-MIRW[16],
usually constructed the lncRNA similarity network, or
lncRNA-disease heterogeneous network by
integrating one or more of lncRNA similarity, disease
similarity, lncRNA-protein interactions, lncRNA-
miRNA interactions, disease-protein associations,
disease-miRNA associations, the known lncRNA-
disease associations and so on, then adopted the
random walk, flow propagation and other algorithms
to predict the lncRNA-disease associations. For
example, RWRlncD[18] implemented the random walk
with restart (RWR) algorithm to predict the potential
lncRNA-disease associations by constructing the
lncRNA functional similarity network based on the
known lncRNA-disease associations. IDHI-MIRW[16]

constructed a large-scale lncRNA-disease
heterogeneous network by integrating lncRNA
expression profiles, lncRNA-miRNA interactions,
lncRNA-protein interactions, disease ontology,
disease-miRNA associations, disease-protein
associations and known lncRNA-disease associations,
then used RWR to predict the potential lncRNA-
disease associations. However, because most of the
functions and mechanisms of lncRNAs are still
unclear, the lncRNA similarity or lncRNA-disease
heterogeneous network built in existing network-
based methods would be noisy and information
missing.

The machine learning-based methods, such as
LRLSLDA[12], LDAP[26], LDNFSGB[27] and
LDASR[28], usually used lncRNA similarities, disease
similarities, known lncRNA-disease associations and
other information to represent lncRNA-disease pairs,
then used the machine learning algorithms, such as
Laplacian Regularized Least Squares, Bagging SVM,
gradient boosting and rotation forest, to predict the
lncRNA-disease associations. For example,
LRLSLDA[12] adopted the Laplacian Regularized
Least Squares to predict the lncRNA-disease

associations in the semi-supervised learning
framework by using the information of lncRNA
expression profiles and known lncRNA-disease
associations. LDAP[26] employed 2 lncRNA similarity
methods to calculate the similarities between
lncRNAs, 5 disease similarity methods to calculate
the similarities between diseases, and then utilized the
Karcher mean of matrices to fuse similarity matrices
of lncRNA and disease, respectively, and finally used
the bagging SVM classifier to predict the potential
lncRNA-disease associations. However, these two
methods ignore the deep embedding features.
LDNFSGB[27] and LDASR[28] built an auto-encoder
model to learn the hidden abstract representation for
lncRNA-disease pairs based on lncRNA and disease
similarities, then adopted the rotation forest and
gradient boosting algorithm to predict the potential
lncRNA-disease associations, respectively. Although
these two methods learn the hidden abstract
representation for lncRNA-disease pairs, they also
ignore the deep embedding features which preserve
the network structures.

In this work, we proposed a novel machine
learning-based method (called NELDA) to predict the
potential lncRNA-disease associations. Based on the
known lncRNA-disease associations, lncRNA
expression profiles and disease ontology, NELDA
first constructs 3 networks of the lncRNA-disease
association network, the lncRNA similarity network
and the disease similarity network. Then, 4 deep auto-
encoder models are built to extract the lncRNA
similarity network embedding, disease similarity
network embedding, lncRNA association network
embedding, and disease association network
embedding from lncRNA similarity network, disease
similarity network, and lncRNA-disease association
network, respectively. Based on the lncRNA-disease
similarity network embedding (i. e., concatenating
lncRNA similarity network embedding and disease
similarity network embedding) and lncRNA-disease
association network embedding (i. e., concatenating
lncRNA association network embedding and disease
association network embedding), NELDA designs 2
support vector machine (SVM) classifiers to
separately predict the lncRNA-disease associations.
The final prediction result of NELDA is obtained by
fusing the results of 2 SVM classifiers with the
weighted average strategy. In order to generate the
robust prediction results, we also set up a higher



李维娜，等：NELDA：基于网络嵌入的lncRNA-疾病关联关系预测2022；49（7） ·1371·

quality dataset by choosing the higher quality non
lncRNA-disease association samples instead of
randomly selecting the non lncRNA-disease
association samples. The performance of NELDA in
10-fold cross validation (10 CV) test shows that
NELDA is superior to other 2 methods of LDASR and
LDNFSGB for predicting the lncRNA-disease
associations. The case studies of stomach and breast
cancers indicate that NELDA has the power to predict
the novel lncRNA-disease associations, and it can
provide the candidates for further biological
experimental validations.

1 Methods

1.1 Datasets
To effectively validate the performance of

NELDA, we first set up a higher quality lncRNA-
disease association dataset Drel = D+ ∪ D-rel. For
constructing the lncRNA-disease association sample
set (i. e., D+), we downloaded the known lncRNA-
disease associations from the previous work[16], which
collected the known lncRNA-disease associations
from LncRNAdisease[32], Lnc2Cancer[33] and
GeneRIF[34], then deleted the lncRNAs/diseases with
less than two associations. We finally obtained 1 824
known lncRNA-disease associations to form the
positive sample set D+, which contains 151 lncRNAs
and 233 diseases. For constructing the high-quality
non lncRNA-disease association sample set (i.e.,D-rel),
instead of randomly pairing the lncRNAs and
diseases, we took the idea from literature[35] to select
the high-quality non lncRNA-disease association
samples (i. e., negative samples). The procedures of
constructing D-rel are as follows:

(1) Randomly pairing the lncRNAs and diseases
in the 1 824 known lncRNA-disease associations.
Then, based on the known lncRNA-disease
associations and the disease semantic similarity,
calculating the association score S for each randomly
paired lncRNA-disease pair without any association
evidence.

S ( li,dj ) = S′( )li,dj - S'min
S'max - S'min (1)

S′( li,dj ) =∑
k = 1

Nd

ALD(i,k) SD1( )j,k (2)

where, ALD ∈ RNl × Nd is the adjacency matrix of the
known lncRNA-disease associations; Nl and Nd are
the number of lncRNAs and diseases in D+,

respectively; if the pair of the lncRNA li and the
disease dk belongs to D+, ALD (i,k) = 1; otherwise,
ALD (i,k) = 0. SD1 ( j,k) is the disease semantic

similarity between j-th disease dj and k-th disease dk,
which can be calculated by “doSim” function from R
package “DOSE” according to the structure of the
directed acyclic graph in Disease Ontology[36-37]. S′max
and S′min are the maximum and minimum S' of all
randomly paired lncRNA-disease pairs without
association evidences, respectively.

(2) According to the association scores S, ranking
all randomly paired lncRNA-disease pairs without
association evidences (i. e., unconfirmed lncRNA-
disease pairs) in ascending order.

(3) Randomly selecting a certain number of
unconfirmed lncRNA-disease pairs with association
score S less than 0.02 to form the non lncRNA-disease
association set D-rel, in which the number of non
lncRNA-disease association pairs is same as the
number of lncRNA-disease association pairs in D+. So
far, we build a higher quality lncRNA-disease
association dataset Drel = D+ ∪ D-rel with 1 824 known
lncRNA-disease associations and 1 824 high-quality
non lncRNA-disease association pairs.

In addition, to verify the strategy effectiveness of
constructing the high-quality non lncRNA-disease
association pairs, we also constructed another dataset
Dran = D+ ∪ D-ran by randomly pairing the lncRNAs
and diseases in D+, removing the known lncRNA-
disease association pairs and selecting the same
number of the non lncRNA-disease association pairs
as D+ to form the non lncRNA-disease association set
D-ran. The distributions of the association score of
positive samples in D+, the high-quality non lncRNA-
disease association samples in D-rel and the non
lncRNA-disease association samples in D-ran are
shown in Figure S1 in Supplementary.
1.2 Overview of NELDA algorithm

NELDA algorithm mainly consists of the
following 3 phases: (1) Constructing 3 networks of
the lncRNA similarity network, the disease similarity
network and the lncRNA-disease association network
based on the lncRNA expression similarity, lncRNA
Gaussian interaction profile kernel similarity, disease
semantic similarity, disease Gaussian interaction
profile kernel similarity, and known the lncRNA-
disease associations. (2) Building the deep auto-
encoder models to extract lncRNA similarity network
embedding, disease similarity network embedding,
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lncRNA association network embedding, disease
association network embedding, respectively. (3)
Generating two representation vectors for each
lncRNA-disease pair by concatenating the lncRNA
similarity network embedding features and the disease
similarity network embedding features, concatenating
the lncRNA association network embedding features

and the disease association network embedding
features, respectively. Then 2 representation vectors
are inputted into 2 SVM classifiers for predicting the
lncRNA-disease associations, respectively. In the end,
the outputs of 2 SVM classifiers are fused by the
weighted average strategy to get the final prediction
results. Figure 1 is the flowchart of our NELDA.
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Fig. 1 Flowchart of NELDA
(a) Constructing the lncRNA similarity network, the disease similarity network and the lncRNA-disease association network. (b) Extracting the

lncRNA similarity network embedding and disease similarity network embedding based on lncRNA expression profile, known lncRNA-disease

associations and Disease Ontology by building 2 deep auto-encoder models. (c) Extracting lncRNA association network embedding and disease

association network embedding from lncRNA-disease association network by building 2 deep auto-encoder models. (d) Constructing 2 support vector

machine classifiers, and using the weighted average strategy to get the final prediction results.
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1.3 LncRNA/disease similarity networks
We generated 2 lncRNA similarity matrices SL1

and SL2. SL1 ∈ RNl × Nl is a lncRNA expression
similarity matrix generated by calculating the absolute
value of Spearman correlation coefficient of any
lncRNA pair from their expression profiles, which
were downloaded from the previous work[16].

SL2 ∈ RNl × Nl is a lncRNA Gaussian interaction profile

kernel similarity matrix [12] (calculated with Equation
(1) in Supplementary). Two lncRNA similarity
matrices of SL1 and SL2 are combined to generate the

lncRNA integrated similarity matrixSL ∈ RNl × Nl for
constructing the lncRNA similarity network. The
integrated similarity between lncRNA li and lncRNA
lj is defined as:

SL (i,j ) =
ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

SL1 (i,j ) + SL2 (i,j )
2 if li and lj have the expression profiles and SL2 (i,j ) ≠ 0

SL1 (i,j ) if li and lj have the expression profiles and SL2 (i,j ) = 0
SL2( )i,j otherwise

(3)

where, SL1(i,j ) and SL2(i,j ) are the expression

similarity and the Gaussian interaction profile kernel
similarity between lncRNA li and lncRNA lj,
respectively.

In addition, we also generated the disease
semantic similarity matrix SD1 and the disease
Gaussian interaction profile kernel similarity matrix

SD2 ∈ RNd × Nd[12] (Equation (3) in Supplementary).
Two disease similarity matrixes SD1 and SD2 are

combined to generate the disease integrated similarity

matrixSD ∈ RNd × Nd for constructing the disease
similarity network. Considering that there is semantic
similarity between any two diseases in the known
lncRNA-disease associations, the integrated similarity
between disease di and disease dj is defined as:

SD (i,j ) =
ì

í

î

ïïïï

ïïïï

SD1 (i,j ) + SD2 (i,j )
2 if SD2 (i,j ) ≠ 0

SD1 (i,j ) if SD2 (i,j ) = 0
(4)

1.4 LncRNA/disease embedding features
1.4.1 Extracting the lncRNA/disease similarity

network embedding

Network embedding can learn the low-
dimensional representations of vertexes in networks,
aiming to capture and preserve the network structure.
For example, the structural deep network embedding
(SDNE) is able to capture the highly non-linear
network structure[38]. Inspired by SDNE in which the
deep auto-encoder model is used to preserve the
global network structure, we first built a deep auto-
encoder model to extract the lncRNA similarity
network embedding matrix ESNL from the lncRNA
similarity network. In deep auto-encoder model, the
encoder consists of multiple non-linear functions that
map the input data to the representation space, and the
decoder consists of multiple non-linear functions that

map the representations in representation space to
reconstruction space[38].

We inputted the lncRNA integrated similarity
matrix SL to the deep auto-encoder model, that is to
say, for every lncRNA li, the i-th row SL (i,:) in
lncRNA integrated similarity matrix SL is used as the
input vector. The output of encoder, hKi , is the final
low-dimensional representation of lncRNA li, that is,

the lncRNA similarity network embedding ESNL( li,:)
of lncRNA li. The decoder is built to reconstruct the
input. The detail of the deep auto-encoder model[38] is
shown in the supplementary file and the loss function
is shown as follows:

L = Lcon + αLreg (5)

Lcon =∑
i = 1

Nl

 SL( )i,: - ŜL (i,:) 2
2
=  SL - ŜL 2

F
(6)

where Lreg is a L2-norm regularization term, which is
used to prevent overfitting[38].

Similarly, we also built another deep auto-
encoder model to extract the disease similarity
network embedding matrix ESND from the disease
integrated similarity network.
1.4.2 Extracting the lncRNA/disease association

network embedding

According to the process of extracting the
lncRNA/disease similarity network embedding, we
built other 2 deep auto-encoder models to extract the
lncRNA association network embedding matrix EANL
and the disease association network embedding matrix
EAND from the lncRNA-disease association network
ALD, respectively. Considering that the lncRNA-
disease association network is sparse, we redefined
the reconstruction loss function to alleviate the sparse
issue by imposing more penalty to the reconstruction
error of the non-zero elements[38]. For examples, the
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reconstruction loss function for extracting lncRNA
association network embedding is defined as
follow[38]:

Lcon =∑
i = 1

Nl




( )ALD( )i,: - ÂLD( )i,: ⊙bi 2

2
=





( )ALD - ÂLD ⊙B 2

F
(7)

where ALD(i,:) is the i-th row of lncRNA-disease

association matrix, ÂLD(i,:) is the i-th row of

reconstruction matrix of lncRNA-disease association

by decoder. If ALD(i,j ) = 0, then b (i,j ) = 1, else b (i,j ) =
β > 1, B = { b (i,j ) } ∈ RNl × Nd. ⊙represents Hadamard

product.
Referring to SDNE method, we used the Deep

Belief Network model to pretrain the parameters of
deep auto-encoder models for extracting lncRNA
association network embedding and disease
association network embedding.
1.5 Network embedding feature combination and
decision-level weighted fusion

For each lncRNA-disease pair li - dj, we
generated 2 embedding vectors to represent it. One is

the similarity network embedding vector ESLD( li,dj )
formed by concatenating the lncRNA similarity

network embedding vector ESNL( li,:) and disease

similarity network embedding vector ESND(dj,:).
Another is the association network embedding vector

EALD( li,dj ) formed by concatenating the lncRNA

association network embedding vector EANL( li,:) and

disease association network embedding vector

EAND(dj,:).
ESLD ( li,dj ) = [ ESNL ( li,:),ESND (dj,:) ] (8)

EALD ( li,dj ) = [ EANL ( li,:),EAND (dj,:) ] (9)

ESLD( li,dj ) and EALD( li,dj ) are inputted into 2

SVM classifiers to output the prediction results of psim
and pass, respectively. Thus, the results of psim and pass
are fused to get the final prediction results by using
the following weighted average strategy.

p ( li,dj ) = w ⋅ psim( li,dj ) + (1 - w) ⋅ pass( li,dj ) (10)

where w is the weight.
1.6 Assessment of the prediction system

The 10-fold cross-validation (10-CV) test is used
to evaluate the performance of NELDA. In 10-CV

test, the positive sample set and negative sample set
are randomly divided into 10 subsets with the almost
equal size, respectively. For each fold in 10-CV test, 9
subsets are used as the training samples, and the
remaining 1 subset are used as the testing samples.
For all the following 10-CV test experiments, all the
known lncRNA-disease associations to be used as the
testing samples in each fold testing subset were
removed, and then we recalculated the lncRNA
similarities, disease similarities and lncRNA-disease
association network by using the remaining known
lncRNA-disease associations.

Accuracy (ACC), F1-score and Matthew’s
correlation coefficient (MCC) are used as the
evaluation metrics to assess the prediction system. We
also use AUC and AUPR to evaluate the prediction
system. AUC is the area under the receiver operating
characteristic (ROC) curve, and AUPR is the area
under the precision-recall curve.

2 Results and discussion

2.1 Comparison with other methods
We compared our NELDA method with the state-

of-the-art methods of LDASR[28] and LDNFSGB[27] on
Drel dataset in 10-CV test (Table S1 lists the main
parameters of NELDA in Supplementary), and all
experiments are implemented on Ubuntu system with
a NVIDIA TITAN V GV100. The prediction results of
NELDA, LDASR and LDNFSGB are shown in Table
1, from which we can see that the AUC of NELDA is
0.982 7, which is 0.062 7 and 0.020 7 higher than that
of LDASR and LDNFSGB, respectively. The AUPR
of NELDA is 0.987 4, which is 0.044 9 and 0.014 6
higher than that of LDASR and LDNFSGB,
respectively. The ACC, F1 and MCC of NELDA are
0.950 6, 0.948 5 and 0.904 0, which are 0.055 2,
0.055 9 and 0.111 9 higher than that of LDASR, and
0.029 7, 0.031 1 and 0.059 1 higher than that of
LDNFSGB, respectively. These results show that
NELDA can effectively predict the lncRNA-disease

Table 1 Results of NELDA，LDASR and LDNFSGB on
Drel dataset in 10-CV test

Method

LDASR

LDNFSGB

NELDA

ACC

0.895 4

0.920 9

0.950 6

F1

0.892 6

0.917 4

0.948 5

MCC

0.792 1

0.844 9

0.904 0

AUPR

0.942 5

0.972 8

0.987 4

AUC

0.920 0

0.962 0

0.982 7

Above results are the average results of running three 10-CV tests.
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associations.
To evaluate the effect of the strategy of selecting

high-quality non lncRNA-disease association pairs,
we compared the performance of NELDA, LDASR
and LDNFSGB on Drel dataset and Dran dataset in
10-CV test. The results of NELDA, LDASR and
LDNFSGB are shown in Table 2, from which we can
see that ACC, F1, MCC, AUPR and AUC of NELDA
on Drel dataset are 0.950 6, 0.948 5, 0.904 0, 0.987 4
and 0.982 7, respectively, which are higher than that
of NELDA on Dran dataset. In addition, the measure
metrics values of LDASR and LDNFSGB on the Drel
dataset are also higher than those on Dran dataset.
These results indicate that the strategy of selecting the
high-quality non lncRNA-disease association samples
to construct the training dataset indeed help to
improve the performance of predictors.

2.2 Influence of the decision-level weighted
fusion strategy

To evaluate the influence of decision-level
weighted fusion strategy, we also designed another
two predictors of NELDA-SIM and NELDA-ASS.
For one lncRNA-disease pair, NELDA-SIM inputs the
concatenating feature of its lncRNA similarity
network embedding feature and its disease similarity
network embedding feature to a SVM classifier, and
NELDA-ASS inputs the concatenating feature of its
lncRNA/disease embedding feature derived from the
known lncRNA-disease association network. The
results of NELDA, NELDA-SIM and NELDA-ASS
on Dran and Drel datasets in 10-CV test are shown in
Table 3, from which we can see that the AUC and
AUPR of NELDA on Drel dataset are 0.982 7 and
0.987 4, which are 0.004 7 and 0.003 9 higher than
that of NELDA-SIM, respectively, and 0.008 5 and
0.005 7 higher than that of NELDA-ASS,
respectively; the AUC and AUPR of NELDA on Dran

dataset are 0.923 4 and 0.924 6, which are 0.018 9 and
0.031 8 higher than that of NELDA-SIM, and 0.019 6
and 0.013 9 higher than that of NELDA-ASS,
respectively. These results show that the strategy of
decision-level weighted fusion can effectively
improve the performance of NELDA.

To analyze the effect of different fusion weight
used in the decision-level fusion strategy, we
implemented NELDA with different fusion weights
on Drel dataset in 10-CV test. As shown in Table 4, all
the measurement metrics first increase and then
decrease with the increase of w. When w = 0.5, the
performance of NELDA is optimal. Therefore, we set
w = 0.5 for NELDA on Drel dataset.

In addition, we also compared the performance
of using the similarity network raw features and its
embedding features, association network raw features
and its embedding features. By separately
concatenating the lncRNA similarity network raw
features and the disease similarity network raw
features, the lncRNA similarity network embedding
features and the disease similarity network embedding

Table 3 Results of NELDA，NELDA-SIM and NELDA-
ASS on Dran and Drel datasets in 10-CV test

Dataset

Dran

Drel

Predictor

NELDA-SIM

NELDA-ASS

NELDA

NELDA-SIM

NELDA-ASS

NELDA

ACC

0.838 4

0.786 2

0.842 2

0.944 4

0.942 6

0.950 6

F1

0.833 7

0.742 6

0.833 7

0.942 9

0.940 0

0.948 5

MCC

0.678 2

0.607 9

0.688 2

0.890 2

0.888 7

0.904 0

AUPR

0.892 8

0.910 7

0.924 6

0.983 5

0.981 7

0.987 4

AUC

0.904 5

0.903 8

0.923 4

0.978 0

0.974 2

0.982 7

Above results are the average results of running three 10-CV tests.

Table 4 Results of NELDA using different fusion weights
on Drel dataset in 10-CV test

w

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ACC

0.946 9

0.947 5

0.949 0

0.950 3

0.950 6

0.949 2

0.946 6

0.944 6

0.943 7

F1

0.945 4

0.945 9

0.947 3

0.948 5

0.948 5

0.946 9

0.944 2

0.942 1

0.941 1

MCC

0.895 4

0.896 7

0.900 0

0.902 9

0.904 0

0.901 5

0.896 6

0.892 7

0.890 9

AUPR

0.985 5

0.986 4

0.986 9

0.987 2

0.987 4

0.987 3

0.987 1

0.986 6

0.985 7

AUC

0.980 6

0.981 6

0.982 3

0.982 6

0.982 7

0.982 6

0.982 4

0.981 9

0.980 8

Above results are the average results of running three 10-CV.

Table 2 Results of NELDA， LDASR and LDNFSGB
on Drel and Dran datasets in 10-CV test

Method

LDASR

LDNFSGB

NELDA

Dataset

Dran
Drel
Dran
Drel
Dran
Drel

ACC

0.755 4

0.895 4

0.809 4

0.920 9

0.842 2

0.950 6

F1

0.737 8

0.892 6

0.796 9

0.917 4

0.833 7

0.948 5

MCC

0.515 6

0.792 1

0.623 7

0.844 9

0.688 2

0.904 0

AUPR

0.829 9

0.942 5

0.900 5

0.972 8

0.924 6

0.987 4

AUC

0.794 1

0.920 0

0.894 7

0.962 0

0.923 4

0.982 7

Above results are the average results of running three 10-CV tests.
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features, the lncRNA association network raw features
and the disease association network raw features, the
lncRNA association network embedding features and
the disease association network embedding features to
generate 4 vectors for representing each lncRNA-
disease pair, then we input them into 4 SVM models
to predict the lncRNA-disease associations. The
comparison results of raw and embedding features are
shown in Table S2 in Supplementary, from which we
can see that association network embedding features
achieve a better performance than their corresponding
raw features, but the prediction results of similarity
network embedding features are slightly lower than
that of their corresponding raw features. The reason
may be that lncRNA/disease similarity networks do
not contain the label information of lncRNA-disease
associations, applying the unsupervised deep auto-
encoder model to dimension reduction will cause
information loss; while lncRNA/disease association
networks contain the label information of lncRNA-
disease associations, thus its lower dimension
embedding features preserve the class separability
information, which can improve the prediction
performance. Furthermore, we also built another
model of ANELDA (Figure S2 in Supplementary) by
fusing the similarity network raw features and

association network embedding features to predict the
lncRNA-disease associations. The results of
ANELDA and NELDA on Drel dataset in 10-CV test
are shown in Table S3 in Supplementary, from which
we can see that the performance of ANELDA is better
than that of NELDA.
2.3 Case studies

To evaluate the power of NELDA for predicting
the novel lncRNA-disease associations, we adopted
the stomach and breast cancers as the cases to
implement our NELDA to predict their potential
associated lncRNAs. Stomach cancer is the fifth
leading cancer and third most common cause of
cancer-related deaths worldwide[39]. For stomach
cancer, among all the 20 top lncRNAs (Table 5)
predicted by NELDA, 15 of them have the
corresponding evidences to verify the associations
with stomach cancer. For example, DANCR promotes
the progression of stomach cancer, and it has the
potential to act as a novel diagnostic biomarker[40].
ZEB1-AS1 acts as the oncogenic roles in the
regulation of stomach cancer cells migration, invasion
and EMT process via modulating ZEB1[10]. EGOT
serves as an oncogene in stomach cancer, and it could
be useful as a conceivable diagnostic and prognostic

Table 5 Top 20 lncRNAs predicted with NELDA for stomach cancer

LncRNA

HOTAIRM1

DANCR

PCAT1

KCNQ1OT1

CRNDE

ZEB1-AS1

LINC00687

LINC00602

HCCAT5

SNHG1

SNHG12

EGOT

C5orf66-AS1

RMST

LINC00473

SOX2-OT

LUCAT1

HCG27

HCP5

CBR3-AS1

Evidences

MNDR v3.1, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

Unconfirmed

Unconfirmed

Unconfirmed

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

MNDR v3.1, Lnc2Cancer 3.0

Unconfirmed

MNDR v3.1, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0

MNDR v3.1, Lnc2Cancer 3.0

Unconfirmed

MNDR v3.1, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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biomarker for stomach cancer tumorigenesis[41].
Breast cancer is the most frequently diagnosed

cancer and leading cause of cancer death in women[42].
For breast cancer, among all the 20 top lncRNAs
(Table 6) predicted by NELDA, 14 of them have the
corresponding evidences to verify the associations
with breast cancer. For example, HULC is
overexpressed in breast cancer cell lines and tissues
compared with normal breast cell line and normal
healthy breast tissues[43]. In addition, HULC promotes

the development of breast cancer via regulating
LYPD1 expression through sponging miR-6754-5p.
Deletion of HNF1A-AS1 suppresses the malignant
phenotypes of breast cancer cells in vitro and in vivo
by targeting miRNA-20a-5p/TRIM32 axis[44]. HNF1A-
AS1 could be a promising treatment target for breast
cancer[44]. SNHG1 functions as a novel oncogene in
breast cancer through the SNHG/miR573/LMO4
axis [11].

In summary, 29 (14 for breast cancer, 15 for
stomach cancer) out of 40 predicted lncRNAs
associated with breast and stomach cancers have been
supported by recent literatures and public database.
Results of these 2 case studies show that our NELDA
can effectively predict the potential association
lncRNAs for a disease.

3 Conclusion

LncRNAs participate in a variety of vital
biological processes and closely relate with various
human diseases. The prediction of lncRNA-disease
association can help to understand the mechanisms of
human disease at the molecular level, and contribute

to diagnosis and treatment of diseases. Most existing
lncRNA-disease association prediction methods
ignored the deep embedding features hided in the
network topological structures. In this work, we
presented a novel method of NELDA to predict the
potential lncRNA-disease associations by extracting
the lncRNA/disease deep embedding features with 4
deep auto-encoder models. NELDA first constructs 3
networks of a lncRNA similarity network, a disease
similarity network and a lncRNA-disease association
network based on the lncRNA expression profiles,
disease ontology and the known lncRNA-disease
associations, then builds 4 deep auto-encoder models
to extract the lncRNA/disease similarity network
embedding features and the lncRNA/disease

Table 6 Top 20 lncRNAs predicted with NELDA for breast cancer

LncRNA

HULC

NPTN-IT1

WT1-AS

PCAT1

HNF1A-AS1

SNHG1

ZEB1-AS1

LINC00687

LINC00602

HCCAT5

TUSC7

CBR3-AS1

PCGEM1

CASC2

GHET1

DRAIC

MIR17HG

HCP5

HOTAIRM1

BANCR

Evidences

MNDR v3.1, Lnc2Cancer 3.0

MNDR v3.1

MNDR v3.1, LncRNADisease 2.0

MNDR v3.1, Lnc2Cancer 3.0

Reference[44]

MNDR v3.1, Lnc2Cancer 3.0

MNDR v3.1, Lnc2Cancer 3.0

Unconfirmed

Unconfirmed

Unconfirmed

MNDR v3.1

MNDR v3.1

Unconfirmed

MNDR v3.1, LncRNADisease 2.0, Lnc2Cancer 3.0

MNDR v3.1, Lnc2Cancer 3.0

MNDR v3.1, LncRNADisease 2.0

Unconfirmed

Unconfirmed

MNDR v3.1, Lnc2Cancer 3.0

MNDR v3.1, Lnc2Cancer 3.0

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
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association network embedding features, respectively.
In the end, NELDA adopts the weighted fusion
strategy to fuse the outputs of 2 SVM classifiers for
identifying whether a lncRNA is associated with a
disease. The experimental results on two datasets in
10-CV test show that the performance of our NELDA
is superior to other state-of-the-art methods of
LDASR and LDNFSGB. The strategies of the
weighted fusion in decision level and selecting the
higher quality non lncRNA-disease association pairs
for building the high-quality training set can
effectively improve the performance of predictors. In
addition, results of two cases studies on stomach and
breast cancers indicate that NELDA is powerful to
find the novel association lncRNAs for one disease,
which provides the candidates for further biological
experimental validation.

Although NELDA achieves good performance
for predicting the lncRNA-disease associations, there
are still some issues needing to be improved and
further studied in the future. On one hand, there are
many biological resources about lncRNAs and
diseases, but how to effectively integrate these
biological resources is a direction worthy to discuss
and further research in the future. On the other hand,
we expect to explore more effective strategies to
select higher quality non lncRNA-disease association
pairs for constructing high quality training dataset to
further enhance the accuracy of predicting the
lncRNA-disease associations.

Supplementary PIBB_20210132_S1. pdf is
available online (http://www.pibb.ac.cn or http://www.
cnki.net).
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NELDA：基于网络嵌入的lncRNA-疾病关联
关系预测*

李维娜 樊校楠 张绍武**

（西北工业大学自动化学院，信息融合技术教育部重点实验室，西安 710072）

摘要 目的 长非编码RNA（lncRNAs）参与多种重要的生物学过程并与各种人类疾病密切相关，因此，lncRNA-疾病关联

预测研究有助于疾病的诊断、治疗和在分子水平理解人类疾病的发生发展机制。目前，大多数 lncRNA-疾病关联预测方法

倾向于浅层整合 lncRNA和疾病的相关信息，忽略网络拓扑结构中的深层嵌入特征；另外通过随机选取 lncRNA-疾病非关联

对构建负样本训练集合，影响预测方法的鲁棒性。方法 本文提出一种基于网络嵌入的NELDA方法，预测潜在的 lncRNA-

疾病关联关系。NELDA首先利用 lncRNA 表达谱、疾病本体论和已知的 lncRNA-疾病关联关系，构建 lncRNA相似性网络、

疾病相似性网络和 lncRNA-疾病关联网络。然后，通过设计4个深度自编码器分别从 lncRNA/疾病的相似性网络、lncRNA-

疾病关联网络学习 lncRNA和疾病的低维网络嵌入特征。串联 lncRNA和疾病的相似性网络嵌入特征及 lncRNA和疾病的关

联网络嵌入特征，分别输入两个支持向量机分类器预测 lncRNA-疾病关联。最后，采用加权融合策略融合两个支持向量机

分类器的预测结果，给出 lncRNA-疾病关联关系的最终预测结果。另外，根据已知的 lncRNA-疾病关联对和疾病语义相似

性，设计一种负样本选取策略构建可信度相对较高的 lncRNA-疾病非关联对样本集，用以改善分类器的鲁棒性，该策略通

过设计一种打分函数为每对 lncRNA-疾病进行打分，选取得分较低的 lncRNA-疾病对作为 lncRNA-疾病非关联对样本（即负

样本）。结果 十折交叉验证实验结果表明：NELDA能够有效预测 lncRNA-疾病关联关系，其AUC达到 0.982 7，比现有

LDASR 和 LDNFSGB 方法分别提高了 0.062 7 和 0.020 7。另外，负样本选取策略与决策级加权融合策略能够有效改善

NELDA预测性能。胃癌和乳腺癌案例研究中，29/40（72.5%）预测的与胃癌和乳腺癌关联 lncRNAs，在近期文献和公共数

据库中能够发现相关的支撑证据。结论 这些实验结果表明，NELDA是一种有效的 lncRNA-疾病关联关系预测方法，具有

挖掘潜在 lncRNA-疾病关联关系的能力。

关键词 lncRNA-疾病关联，网络嵌入，深度自编码器，高质量负样本选取
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