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Abstract Objective Inferring cancer driver genes, especially rare or sample-specific cancer driver genes, is crucial for
precision oncology. Considering the high inter-tumor heterogeneity, a few recent methods attempt to reveal cancer driver genes at the
individual level. However, most of these methods generally integrate multi-omics data into a single biomolecular network (e.g., gene
regulatory network or protein-protein interaction network) to identify cancer driver genes, which results in missing important
interactions highlighted in different networks. Thus, the development of a multiplex network method is imperative in order to
integrate the interactions of different biomolecular networks and facilitate the identification of cancer driver genes. Methods A
multiplex network control method called Personalized cancer Driver Genes with Multiplex biomolecular Networks (PDGMN) was
proposed. Firstly, the sample-specific multiplex network, which contains protein-protein interaction layer and gene-gene association

layer, was constructed based on gene expression data. Subsequently, somatic mutation data was integrated to weight the nodes in the
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sample-specific multiplex network. Finally, a weighted minimum vertex cover set identification algorithm was designed to find the

optimal set of driver nodes, facilitating the identification of personalized cancer driver genes. Results

The results derived from

three TCGA cancer datasets indicate that PDGMN outperforms other existing methods in identifying personalized cancer driver

genes, and it can effectively identify the rare driver genes in individual patients. Particularly, the experimental results indicate that

PDGMN can capture the unique characteristics of different biomolecular networks to improve cancer driver gene identification.

Conclusion PDGMN can effectively identify personalized cancer driver genes and broaden our understanding of cancer driver

gene identification from a multiplex network perspective. The source code and datasets used in this work are available at https://

github.com/NWPU-903PR/PDGMN.
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Cancer is characterized by the acquisition of
genetic mutations, some of which, termed as driver
mutations, confer a selective growth advantage to the
mutated cells and lead to abnormal and uncontrolled
cellular growth!'. Identifying the cancer driver genes
that harbor driver mutations has been one of the main
goals in cancer research since the establishment of
cancer genomics®™,

In recent years, considerable efforts have been
dedicated to identify the cancer driver genes within a
cohort of patients”. For example, the mutation
frequency-based methods commonly identify the
genes that harbor higher statistical significance than
the background mutation rate as cancer driver
genes®®. The network-based methods incorporate
knowledge of pathways, protein-protein or gene-gene
tumor initiation and

interactions to elucidate

progression for identifying the cancer driver
genes” ', These methods mainly focus on identifying
the cancer driver genes in specific populations of
different types or subtypes of cancer. Although the
cohort-level methods have successfully identified
well-established  and

genes!*!¥ they are not well-suited for detecting rare

potential  cancer  driver
or patient-specific driver genes that occur in small
cohorts or even single patients due to low statistical
power. Moreover, the high heterogeneity of cancer
may result in different driver genes in individual
patients!"'. Hence, the identification of personalized
driver genes (PDGs) plays a crucial role in the
development of precision oncology and cancer
therapeutics.

Recently, some methods have been proposed to
genes at the
resolution, i. e., identifying the PDGs in cancers. On

identify cancer driver individual

one hand, a few methods use machine learning
algorithms to identify PDGs. For example, sysSVM!'7)

multiplex biomolecular networks, multiplex network control, personalized cancer driver genes, sample-specific

and sysSVM2!'"® utilized the discriminate features of
both somatic alterations and gene properties of well-
established driver genes and adopted the support
vector machine (SVM) to predict the driver genes that
best resemble these features for individual patients.
IMCDriver!" introduced inductive matrix completion
to identify the mutated genes that
functionally similar to the well-established driver
genes as PDGs in individual patients. On the other
hand, attempt  to
identify PDGs by elucidating the tumor initiation and
progression at the network- or system-level. These
methods commonly integrate multi-omics data into a
single biomolecular network, such as gene regulatory
network or protein-protein interaction (PPI) network,

are most

some network-based methods

to identify PDGs. For example, some of these
methods such as DawnRank™®”, OncoIMPACTPY,
PRODIGY"™, and PersonaDrive!* integrated the
personalized transcriptomic and genomic data to
measure deregulations in a biomolecular network for
prioritizing or identifying PDGs. Other methods such
as SCSP, PNC™! and pDriver® adopted the
theory72%
identify coding and non-coding driver genes for

network structural controllability to

individual patients. Generally, these methods
combined the gene expression and somatic mutation
data with a gene regulatory network or PPI network to
construct the sample-specific network and then
identified driver nodes from the sample-specific
network by network control methods. From the
perspective of system control, driver nodes are
considered as key components in the sample-specific
network, which can significantly influence the overall
state of the network system, such as driving the state
of patient-specific gene networks from a normal
attractor to a disease attractor. Thus, in the context of

cancer biology, driver nodes often correspond to
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genes that play curial roles in cancer development and
progression®), providing us a valuable resource to
identify personalized cancer driver genes.

Although the above methods can be used to
identify rare or patient-specific driver genes and
further facilitate the combinatorial drug discovery for
individual patients””), the common limitation of these
methods is that they are designed for investigating
only one single biomolecular network (e. g., gene
regulatory network or PPI network) to identify PDGs.
However, cellular processes are not driven by a single
type of biomolecule. In fact, one cellular process
generally can span multiple biomolecular networks"".
Thus,

biomolecular network naturally leads to a great

separately investigating different single
discount in understanding of intricate interaction
patterns during tumor initiation and progression, and
eventually it will compromise the performance for
identifying PDGs. Recently, the rapidly increasing of
available genomic and proteomic data enables
study the

mechanisms on a systematic scale. For example, Liu

researchers  to complex Dbiological
et al.®?? designed a perturbation process to effectively
identify essential genes and cancer genes that
contribute most to the robustness of a multilayer
network, which consists of a gene regulatory network,
a PPI network and a metabolic network. Klosik et al.
B33 applied a framework of interdependent networks of
three biological molecule types (i. e., genes, proteins
and metabolites) to systematically investigate the
model organism Escherichia coli. Valdeolivas et al.?"
extended the random walk with restart (RWR)
algorithm to a multilayer network where different
layers represent different types of interactions (i. e.,
gene-gene or protein-protein associations) to explore
the disease-related genes. These efforts generally
integrate different biomolecular networks into a
multilayer network to investigate the biological
processes, which can deepen our understanding of the
complexity of biological systems. Therefore, it is
urgent to develop a computational method that can
integrate different types of biomolecular networks to
facilitate the identification of PDGs.

In this work, we propose a multiplex network
control method namely Personalized cancer Driver
Genes with Multiplex biomolecular Networks
(PDGMN). The innovations of our PDGMN mainly
lie in two aspects. (1) PDGMN is designed based on

the control of multiplex networks, which integrate

different types of biomolecular networks, such as the
PPI network and gene-gene association (GGA)
network. This integration ability of multiplex
networks enable them to contain more informative
interactions/associations than a single network, thus
facilitating the PDG identification. (2) A weighted
minimum vertex cover set identification algorithm is
proposed, which not only resolves the difficulty of
finding the optimal driver genes among multiple
driver gene sets based on network control but also
utilizes omics data to score the importance of network
nodes, thereby enhancing the accuracy of PDG
identification.

We evaluated the performance of our PDGMN
on three cancer datasets from The Cancer Genome
Consortium (TCGA) P, and compared it with other
PDG identification methods that only use a single
biomolecular network. The experimental results show
that PDGMN outperforms other existing methods in
terms of Precision, Recall and F1-Score, and it also
effectively infers the rare driver genes for individual
on different biomolecular
though  different
may have their

patients. The results

networks show that even

biomolecular networks unique
characteristics, PDGMN can effectively capture these
characteristics to improve the identification of PDGs.
In summary, PDGMN can identify sample-specific
driver genes and broaden our understanding of driver
gene identification from the perspective of multiplex

networks.
1 Materials and methods

1.1 Datasets

The datasets used in this work contain two parts.
The first part comprises the multi-omics data of three
cancer types: breast invasive carcinoma (BRCA), lung
(LUAD), and prostate
adenocarcinoma (PRAD). This omics data can be
downloaded from the TCGA data portal® via the
Xena platform”®. The multi-omics data of each

adenocarcinoma

cancer dataset contains the somatic mutation (i. e.,
SNP and INDEL) data, copy number variants (CNVs),
and the corresponding gene expression data of tumor
samples from different patients. Our study is restricted
to those samples for which that somatic mutation,
CNVs, and gene expression data are all available. As
a result, we obtained 789 samples of BRCA, 509
samples of LUAD, and 494 samples of PRAD.
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The second part is the prior-known biomolecular ~ RegNetwork™, collects and integrates various
interaction data, which is used as the reference genetic regulation relationships from different

network to construct the sample-specific multiplex
network. The prior-known biomolecular interaction
data contains a PPI network and a GGA network. The
PPI network, constructed by Cheng
et al. P" integrates multiple databases of protein-

originally

protein interactome with experimental evidence. To
adapt this PPI network for our work, we mapped the
protein Entrez IDs of the PPI network into human
Gene Symbols using the tool of package
clusterProfiler™, and removed the duplicate edges.
Consequently, the PPI network (named as PPI-cheng)
consisting of 15 903 nodes (i.e., proteins) and 213 809
interaction edges was obtained. The GGA network,

initially constructed based on the repository of
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databases. We removed the miRNAs and their
interaction edges from the repository of RegNetwork,
and filtered out the duplicate edges. As a result, an
undirected GGA RegNet)
consisting of 20 250 nodes (i.e., genes) and 151 215
linking edges was constructed.
1.2 PDGMN

The overview of PDGMN is shown in Figure 1.
PDGMN contains two main steps to identify PDGs:
(1) constructing the

network (named as

weighted sample-specific
multiplex network; (2) identifying driver nodes from
the weighted sample-specific multiplex network based
on multiplex network control, and then identifying

PDGs from the driver nodes.

(c) Identifying driver genes based on
multiplex network control
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Fig.1 Overview of PDGMN
(a) Data collection. The gene expression and somatic mutation data of three cancers (BRCA, LUAD and PRAD) are collected from TCGA; the PPI

network and GGA network are used to construct the multiplex reference network in which the gene nodes in GGA layer correspond one-to-one with

the protein nodes in the PPI layer, but the edges in each layer of the multiplex network is different. (b) Constructing the weighted sample-specific

multiplex network. The cell-specific network (CSN) method is adopted to generate the sample-specific multiplex network (SSMN) for each cancer

patient based on the gene expression data of each patient. Subsequently, the somatic mutation data is used to measure the importance of nodes in

SSMN. (c) Identifying personalized driver genes (PGDs). We identify driver nodes from the weighted SSMN using our multiplex network control

method, and use these driver nodes to generate a personalized driver gene ranking list for each sample based on the node’s importance score in

network control.

1.2.1

multiplex network

Constructing the weighted sample-specific

In this work, the gene expression data, somatic
mutation data, and biomolecular networks (i. e., the

PPI network and the GGA network) are utilized to
construct the weighted sample-specific multiplex
networks. Firstly, the proteins and genes that are both
available in the PPI network and the GGA network
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are selected. Then, the PPI and GGA are employed to
construct a two-layer reference network M =
(VI,VZ,E l,Ez,E3). In the reference network M, V,

denotes the gene node set, V, denotes the protein node
set, £, and F, denote the PPI edge set and GGA edge
set, respectively, and FE, denotes the edge set
connecting gene nodes and protein nodes. The node
number in V, is equal to that in V,, and the gene node
is linked to its unique corresponding protein node.
Secondly, due to high heterogeneities among
tumor samples, two proteins/genes in the reference
network M may have interactions/associations in
some samples while not in other samples, resulting in
the differences of sample-specific multiplex networks
(SSMNs) among different samples. Thus, SSMNs are
constructed based on the prior-known interaction/
association in M and the statistical independency of
gene
Specifically, assuming gene x and gene y are two

expression data in individual samples.

independent variables, there is p( x,y) =p(x) p(y)
based on probability theory, where p(x) and p(y) are
the marginal probability distribution of x and y,
respectively, and p(x,y) is the joint probability
Then, the
between gene x and gene y in sample k is measured by
pt, = p"x,) = p(x,) p*)(y, ), following the idea
of cell-specific network (CSN) method™”.. To estimate
the values of p*)(x, ), p'*)(v,) and p*(x,.y, ), a scatter

distribution. degree of independence

diagram based on gene expression data of gene x and
gene y is created, in which each dot represents a
sample, as shown in Figure 1. Around sample &, four
boundary lines are drawn, where two lines parallel to
x axis and the other two lines parallel to y axis, to
generate three boxes containing n’, nf, and nfy dots,
respectively (Figure 1). Then, p(k)(xk), p“")(yk) and
p"(x,.y,) can be estimated by n‘/n, n'/n and u! /n
where 7 is the number of samples in a cancer dataset,
and pf;), can be estimated by Equation (1).
; ;

k
n n. n,

Xy X,

po=—— (D
n n n
Dai et al."*" demonstrated that if gene x and gene
y are independent of each other, no matter which
distributions the genes follow, the statistic pﬁy

approximates to a normal distribution, and its mean
value ! and standard deviation O'i), are defined as

follows:

my =0 )
o [mni(n - n')(n - nt)
N n‘(n—-1)
The normalization of p*  is performed as follows:
bk _—
pr =l 3)
g

If gene x and gene y are independent of each
other, ﬁiy follows standard normal distribution. Then,
the one-sided hypothesis test for each interaction/
association edge in M is conducted. The null
hypothesis (#,) is that genes x and y are independent
in sample &, while the alternative hypothesis (/) is
that gene x and gene y are interacted with each other
in sample k. If pAfﬂ is larger than the o quantile of the
standard normal distribution, where « is a significant
level (e. g., 0.01), H, will be rejected, and the edge
between gene x and gene y in the SSMN of sample &
is retained; otherwise, the edge is removed. The
hypothesis test is repeated for each edge in £, and E,,
and the edges between independent pairs of genes are
removed. The resulting £} and E} are then used to
M’ =
(Vl, V,, E* EE, E3). This process is repeated for every

construct the SSMN of sample 4, i e,

sample in each cancer dataset to build the SSMNs.

Thirdly, as driver genes tend to be mutated in a
relatively large number of samples in a cancer
dataset® %, a score function S(i) is introduced to
measure the importance of different proteins/genes in
M* based on somatic mutation data. Specifically,
given a cancer dataset which consists of m genes and
n samples, its somatic mutation data is stored in a
binary matrix M e R"*". If gene i is mutated in
sample j, we set M, = 1, otherwise M; = 0. Thus, the
score function S (i) for gene i is defined as:

1
zjex,ﬁj7 Ki # @
I/N,,., k,=J

max 9

S(i) = 4)

where «; is the set of samples in which gene i is
mutated, /V; is the number of mutated genes in sample

j, and N
across all the samples in a cancer dataset. As defined

oy 18 the maximum number of mutated genes
in Equation (4), proteins/genes with high mutation
frequencies are assigned relatively large values by
S(i). Meanwhile, a background score 1/N, . is

assigned to genes without mutations in any samples in
a cancer dataset. In this way, S(i) not only help to
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identify driver genes with high mutation frequencies
but also make it possible to identify driver genes with
low mutation rate that nonetheless play important
roles (e. g., high-degree hubs) in SSMNs. Here, to
facilitate the computation of minimum optimization in
Equation (5), the weight of each vertex in M* is
represented by 1/S(7). Finally, the weighted SSMN
M is constructed for sample k.
1.2.2
vertex set control method

To identify PDGs within the SSMN, the first step
is to apply the network structural control method to

Identifying driver genes based on feedback

find a minimum set of driver nodes from the SSMN.
In the viewpoint of network control, driver nodes
typically play crucial roles in governing the overall
state of the network system, such as steering the
network state from a normal state (initiation attractor)
to a disease state (dynamical attractor). Thus, in the
context of cancer biology, driver nodes often
correspond to genes that play important roles in
cancer development and progression®”, which
provide us a valuable resource to assist cancer driver
gene identification!**¥. The second step is to identify
PGDs

importance in network control.

from the driver nodes based on their

Before solving the problem of finding minimum
driver node set of the multilayer network M*, the
algorithm to find the minimum driver node set of a
single layer G/(V/.E}) in M* is introduced. Based on
the framework of feedback vertex set control (FC),
which has been used to large biological networks with
nonlinear dynamics to identify driver nodes, the
problem of finding the minimum driver node set can
be solved by finding the feedback vertex set (FVS) of
G;™). Under the framework of FC, the minimum
driver node set of G is equal to the minimum FVS
whose removal leaves the network without cycles.
Here, PDGMN adopts the approach of nonlinear
control of undirected network algorithm (NCUA) !,
which treats all undirected edges as bi-directional
edges, allowing the state of nodes in G, to be
characterized by dx,/df = F i(xi,li), where «x, is the
state of node i at time ¢, /; is the neighboring nodes of
node i, and F ,.(x Wl L.) represents the nonlinear response

of node i to its neighboring nodes. By considering
each bi-directional edge in G, as a feedback loop, the
minimum FVS is equal to the minimum node set
covering all the edges in G, which is fundamentally

the minimum vertex cover (MVC) problem. In this
way, the minimum driver node set identification with
FC is transformed into the MVC problem. Although
NCUA uses a simple integer linear programming
(ILP) formulation to get the optimal solution of this
MVC problem, it ignores the weights of nodes. To
incorporate the weights of vertices, a weighted MVC
set identification algorithm is proposed to find the
minimum weighted driver node set of G;. Specifically,
for one single layer Gf(V/.E}) in M, the MVC set in
G/ is determined by solving the following ILP:
minf = Z,'wai + )‘ngww(i)xi (5)
sidox; + o2 Ve(i,j) ekl (6)
e {0,1}.Yie V} (7)
where the binary variable x; indicates whether the
node i is selected (x; = 1) or not (v, =0), w(i) is
weight of node i (i. e., 1/S(i)), and A is a penalty
parameter to adjust the importance of node weights.
In this work, the value of parameter A is set to 0.1,
and the effect of A on PDGMN is detailed in
Document S1 and Figure S1. Equations (6) and (7)
guarantee that each edge in G/ is covered by at least
one selected node. The objective function of ILP is to
obtain the minimal number of selected nodes as well
as the sum of selected nodes’ weights. Compared
with NCUA, our algorithm incorporates the node
weight w(i) to facilitate the identification of the
optimal driver node set from multiple MVC sets and
the penalty parameter A to balance the importance of
node weights and the size of identified driver node
set. After solving the optimization problem (Equations
(5)-(7)) by adopting the LP-based classic branch and
bound method*, the optimal driver node set D} for
the one-layer network G, is obtained.
Considering the SSMN M" = (V,,V,.EX ELE, ) as
a multilayer networked system, where each layer is an
undirected network with the nonlinear dynamical
process, the objective of control network M* is to find
the minimum driver node set D* of M. To ensure that
D" can control all layers of M*, it is assumed that each
node in a multiplex network is either a driver node in
each layer or it is not a driver node in any layer!***"),
In other words, if a node belongs to the minimum
driver node set of any single layer of M*, it must
belongs to D*. A simple algorithm to get D' is to
merge the minimum driver node set of each single
layer to get D, i. e, D" = D" U D However, this
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simple algorithm ignores the interlayer edges in the
multiplex network, resulting in a suboptimal driver
node set for M*,

An improved algorithm is proposed herein to get
the optimal D* by the following steps. Step 1: for a
two-layer multiplex network M*, Equations (5) - (7)
are applied to find the minimum driver node set D* for
the first layer G*. Step 2: as nodes in each layer of M*
are linked by one-to-one interlayer edges, driver
nodes in the first layer G/ can pass control signals to
their equivalent nodes in the second layer G% through
interlayer edges. Thus, in the second layer G%, the
equivalent nodes of D! and edges can also be
controlled by D*. After removing the equivalent nodes
of D} and their edges from Gj, the remaining nodes
and edges in G} denoted as V! and K are still
uncontrolled. Step 3: Equations (5)—(7) are applied to
find the minimum driver node set ﬁ’; to control the
remaining network éé‘(ﬁé‘,EAé ) Then, the union of D}

and D!, denoted as D'=D'U D% is capable of
controlling all nodes in M*. This union set D" is
considered as the optimal driver node set for the two-
layer multiplex network M".

Finally, the PGDs are identified from the driver
nodes based on their importance in network control.
Concretely, under the framework of FC, driver nodes
with larger network degrees can send control signals
to more neighboring nodes, and driver nodes with
smaller weights (i. e., 1/S(i)) receive less penalties
the ILP (Equations (5) - (7).
Accordingly, to measure the importance of each driver

when solving

node in network control, Score(di) is defined as
follows:

Score(di) = Norm(deg(di)) + Norm(S(di) )(8)
where d, is the i-th driver node in D", deg(di) is the
sum of network degree of driver node d, in G¥ and G%,
and Norm(+) represents the min-max normalization
function. Then, mutated driver nodes are prioritized
based on the values of Score(di) to generate a PDGs

ranking list of sample k. The mutated driver nodes
represent driver nodes whose corresponding genes
carry somatic mutations or CNVs.

2 Results

2.1 Performance comparison

In this section, we compared the performance of

our PDGMN against four existing PDG identification
DawnRank®, PRODIGY™,
PersonaDrive!®!, and SCSP¥, and one baseline
method SSMN These
integrate multi-omics data

methods, i e,

methods commonly

dearce-
" into a biomolecular
network and employ various algorithms to identify
PDGs. Bellow is the brief description of each method:

(1) DawnRank® evaluates the impact of each
personalized mutated gene on  downstream
differentially expressed genes (DEGs) by applying the
PageRank algorithm to a gene network, thereby
identifying the most influential mutated genes as
PDGs.

(2) PRODIGY"™ employs a prize-collecting
Steiner tree model to evaluate the influence of
personalized mutated genes on perturbed signaling
pathways and identifies the most influential mutated
genes as PDGs.

231 constructs

(3) PersonaDrive
model the
personalized mutated genes and DEGs in similar
patients. Then, it identifies PDGs based on the co-

occurrence frequency of mutated genes and DEGs

the bipartite

network to relationship  between

within the same signaling pathways.

(4) SCSP* utilizes a network structural control
method to measure the influence of a personalized
mutated gene on downstream DEGs in a network and
identifies the most influential mutated genes as PDGs.

(5) SSMN,
high-degree hubs as PDGs by ranking personalized
mutated genes based on their degrees in SSMNs.

Each method was applied to the same samples of
BRCA, LUAD, and PRAD datasets obtained from
TCGA data portal, which include somatic mutation
data, gene expression data, and CNVs. In addition to
the PPI-cheng network used in each method,
PersonaDrive and PRODIGY need the pathway data
to extract pathway information, and PDGMN requires
the GGA network (RegNet) to construct SSMNs.

Here, the performances of different methods in
identifying PDGs were evaluated at the individual

degree the baseline method, identifies

level. Firstly, 711 well-established cancer driver genes
from the Network of Cancer Genes (NCG 6.0)!"*! were
used as the ground truth, which includes 708 cancer
driver genes in the Cancer Gene Census (CGC)™ and
125 cancer driver genes in the manually curated
list'*”). Secondly, following the assumption that a
tumor generally needs 5 driver genes to fully explain
its cancer development!'®***! the top 5 genes from
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the PDGs ranking list of each sample were considered
as predicted PDGs by each method for the following
analysis. The genes in the intersection set of predicted
PDGs and the ground truth were considered as true
PDGs in a tumor sample. Finally, to measure the
performance of each method, we calculated the
average Precision, Recall, and F1-score with respect
to true PDGs across the cancer-specific dataset
(Document S1). Here, we do not compare with
PNC™! and pDriver®), which are two network
control-based methods to identify PDGs, since they
output the unranking set of drivers for each sample,
while our performance measures rely on the
personalized ranking list of driver genes.

The Fl-scores on cancer BRCA, LUAD, and
PRAD are shown in Figure 2, and the corresponding
Precision and Recall are shown in Figure S2. As
shown in Figure 2 and Figure S2, we can see that

PDGMN performs better than other five methods on

BRCA

F1-score
Fl1-score

LUAD

three cancer datasets in terms of Fl-score, Precision,
and Recall. These results show that PDGMN owns the
advantages over other methods in identifying PDGs. It
is worth noting that the results of SSMN
competitive with those of DawnRank on PRAD
dataset and better than those of SCS and PRODIGY
on BRCA, LUAD, and PRAD datasets. SSMN
simply ranks personalized mutated genes by their
network degrees of the SSMN, and identifies high-
degrees hubs as PDGs for each sample. The results
indicate that driver genes are closely related to high-

degree are

degree

degree hubs in biomolecular networks, and the high-
degree property of driver genes is helpful to identify
cancer driver genes, which are consistent with the
previous research findings”>**. PDGMN combines
the high-degree property with the mutation score to
assist finding driver nodes in the SSMNs, resulting in
its better results in identifying PDGs.
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Fig. 2 Fl-scores (calculated according to the top 5 predicted PDGs) of PDGMN and other 5 methods for BRCA, LUAD and
PRAD cancers benchmarked on NCG 6.0

In addition to the driver genes from NCG 6.0,
two other lists of well-known driver genes from the
OncoKBP! and CancerMinel®™ databases were also
used as ground truth driver genes to evaluate PDGMN
and other methods. The results are shown in Figure
S3, S4. We can see that PDGMN consistently
outperforms other methods across three cancer
datasets, regardless of using ground truth driver genes
from OncoKB or databases. The
consistent performance across different sources of

ground truth demonstrates the robustness of PDGMN

CancerMine

and confirms that its effectiveness is not biased
toward to a specific cancer gene database.
2.2 Ablation experiments of two strategies in
PDGMN

In this section, the influence of two strategies in
PDGMN was evaluated. The first strategy is the
integration of the PPI and GGA networks into a
multiplex network, which contains more informative
interactions/associations than a single network. The
second strategy is the application of the weighted
MVC set identification algorithm, which considers



2024; 51 (D

AR, & BT EEMGEHEN ML EERNERIRA %

<1719

both network topological properties of genes (e. g,
high degrees) and biological omics data of genes (e.g,
somatic mutation frequency) for the identification of
driver node set. The following ablation study was
carried out to investigate the effectiveness of these
two strategies in improving the performance of
PDGMN. For the first strategy, the performance of
PDGMN was tested without the multiplex network
integration. PDGMN-PPI and PDGMN-GGA were
employed to denote that PDGMN was tested solely on
the PPI network and the GGA network, respectively.
For the second strategy, each node was assigned an
equal weight of 1, and the item (i.e., /\zie ww(i)xi)

was omitted from Equation (5) when running
PDGMN (referred to as Unweighted-PDGMN). We
performed PDGMN, Unweighted-PDGMN, PDGMN-
PPI, and PDGMN-GGA on 1 792 samples from
BRCA, LUAD, and PRAD datasets. Following the
above section, the top 5 genes from the PDGs ranking
list of each sample were considered as predicted
PDGs, and the genes in the intersection set of
predicted PDGs and the ground truth were considered
as true PDGs. The results of PDGMN, Unweighted-
PDGMN, PDGMN-PPI, and PDGMN-GGA in term
of average Precision, Recall, and Fl-score across all
samples are shown in Figure 3.

The result in Figure 3 indicates that PDGMN
performs better than Unweighted-PDGMN, PDGMN-
PPI, and PDGMN-GGA
Recall,
significance (P<0.05). Firstly, the average Precision,
Recall, and F1-score of PDGMN are 0.639 0, 0.413 9,
and 0.421 3, which are 0.032 8, 0.022 4, and 0.024 1
higher than that of PDGMN-PPI, respectively, and
0.024 4, 0.017 9, and 0.020 3 higher than that of
PDGMN-GGA,  respectively.  Compared  with
PDGMN-PPI and PDGMN-GGA, PDGMN identifies
PDGs using the two-layer SSMN that incorporates

in terms of average

Precision, and Fl-score, with statistical

more informative interactions/associations than the
one-layer PPI or GGA network. The result suggests
that the first strategy of using the multiplex network
to integrate the PPI and GGA networks is effective to
improve the identification of PDGs. Secondly, the
result in Figure 3 reveals that Unweighted-PDGMN
generates much worse results than other methods.
Concretely, the average Precision, Recall, and F1-
score of Unweighted-PDGMN are 0.244 1, 0.115 1,
and 0.139 7 lower than that of PDGMN, respectively.

Compared with PDGMN, Unweighted-PDGMN
ignores the node weight and solely relies on the
network topology properties of nodes to identify
driver nodes, resulting in its poor performance. The
results demonstrate that using the weighted MVC set
identification algorithm to integrate both network
topology properties and biological omics data of
genes is an effective way to improve the identification
of PDGs.

1.0

I - PDGMN
[ :PDGMN-PPI
1.69e-163 =1:PDGMN-GGA
gl 797e11 [ :Unweighted-PDGMN
. —
6.23¢e-13
g T 1.24¢756 4.81e-93
2 5.27e-11 -
5 0or 1.10e-10 2
5] .10e- -
3; — 2.14e-12
<
0.4
0.2 =
Precision Recall Fl-score

Fig.3 Results of PDGMN (red), PDGMN-PPI (orange),
PDGMN-GGA (green) and Unweighted—PDGMN (blue) in
terms of average F1-score, Recall and Precision across
1792 samples from BRCA, LUAD and PRAD datasets
PDGMN and Unweighted-PDGMN were performed on the two-layer
SSMN. PDGMN-PPI and PDGMN-GGA were performed on the PPI
layer and the GGA layer of SSMN, respectively. The numbers above
the brackets represent the P-values of Wilcoxon signed-rank test

between pairs of methods.

2.3  Analysis of personalized driver genes
identified by PDGMN

Here, we conducted the following analysis of
PDGs predicted by PDGMN. Firstly, the ability of
PDGMN in identifying rare driver genes (i. e., driver
genes mutated in only few patients) was assessed. The
predicted PDGs of each sample were divided into
three groups according to the frequency that a gene is
mutated among a cancer-specific cohort: rare-
frequency PDGs (mutated in less than 1% patients,
denoted as mf < 1%), medium-frequency PDGs (1% <
mf < 10%), and high-frequency PDGs (mf = 10%).
The average proportion of each group was calculated
for BRCA, LUAD, and PRAD cancers, respectively,
as illustrated in Figure 4a. The predicted PDGs
represent the top 5 genes in the personaliezed ranking
list generated by PDGMN, as described in 3.1. As
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shown in Figure 4a, the proportions of rare-frequency
PDGs in BRCA, LUAD, and PRAD datasets are 52%,
39%, 67%, which are higher than the proportions of
PDGs.
Although the rare-frequency PDGs have small values
of somatic mutation score S(i) (as defined in

medium-frequency and  high-frequency

Equation (4)), they commonly have relatively high

(a)
100+
80
S 60 Mutated frequency
E: [ <1%
‘g B :1%-10%
g 40 1 >10%
o
20F
BRCA LUAD PRAD
Cancer
© LUAD enriched pathways
Human T-cell leukemia virus 1 infection

Hepatitis B

Pathways in cancer

Viral carcinogenesis

Kaposi sarcoma-associated herpesvirus infection
Epstein-Barr virus infection

Chemical carcinogenesis-receptor activation
Prostate cancer

Human cytomegalovirus infection

Acute myeloid leukemia

Cushing syndrome

Cellular senescence

Hepatitis C

Cell cycle

Chronic myeloid leukemia

Measles

Breast cancer

Small cell lung cancer

Th17 cell differentiation

Growth hormone synthesis, secretion and action

5 10 15 20
-lg (P-value)

AGE-RAGE signaling pathway in diabetic complications

network degrees in the PPl or GGA network (Table
S1). Thus, PDGMN can identify these rare-frequency
PDGs through their high network degrees, as high-
degree nodes play important roles in identifying the
minimum driver node set. The lists of rare-frequency
PDGs and their network degrees for BRCA, LUAD,
and PRAD datasets are provided in Table S1.

(b) BRCA enriched pathways
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Fig. 4 Analysis of PDGs identified by PDGMN
(a) Average proportions of three groups of PDGs across samples in BRCA, LUAD, and PRAD datasets. Rare-frequency PDGs (orange), medium-

frequency PDGs (blue), and high-frequency PDGs (green). (b—d) Top 20 enriched KEGG pathways of rare-frequency PDGs from all the samples in

BRCA (b), LUAD (c), and PRAD (d), respectively.

Moreover, to investigate the association between
the rare-frequency PDGs with the
development, the functional enrichment analysis for
KEGG pathway was performed on the rare-frequency
PDGs identified by PDGMN. The top 20 enriched
KEGG pathways of rare-frequency PDGs from all the
patients in BRCA, LUAD, and PRAD datasets are
shown in Figure 4b—d. We can see that these rare-
frequency PDGs are significantly enriched in some

cancer

cancer pathways, such as Pathways in cancer, viral
carcinogenesis, chemical carcinogenesis-receptor
activation, prostate
transcriptional misregulation in cancer, and so on.

In addition, whether the PDGs
predicted by PDGMN can provide helpful information
to precision ontology for each single patient, we
from TARGET

database®™, which refer to the genes that are directly

breast  cancer, cancer,

to assess

collected the actionable genes
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linked to a clinical action, and the druggable genes
from the Drug-Gene Interaction Database (DGIdb)"*°!.
It was observed that the PDGs of each patient across
three cancer datasets harbored at least one druggable
target. Moreover, 1 568 out of 1 792 (87.5%) patients
across three cancer datasets carried at least one
actionable gene within their PDGs (Figure 5). These
results indicate that the PDGs identified by PDGMN
can provide assistance for developing therapeutic
plans for individual patients.

1568 (87.5%)

800}

703

6001 580
=
2 400}
=M

224
200
0
0 1 2 3 4 5

Actionable genes ()
Fig. 5 Distribution of actionable genes per sample across
all samples in BRCA, LUAD, and PRAD datasets
The x-axis represents the number of actionable genes in PDGs per
sample, and the y-axis represents the number of samples harboring

different numbers of actionable genes in their PDGs.

24 The influence of different biomolecular
networks

To study the influence of different biomolecular
networks on PDGMN, the following experiments
were conducted on samples of BRCA cancer. Firstly,

different biomolecular networks were collected from
various sources, including three PPI networks of PPI-
cheng, STRING and BioGRID, and two GGA
networks of RegNet and GGI-TS. The details of these
five networks are provided in Table 1, and they are
used as reference networks in the following
experiments.

We selected one PPI network from three PPI
netowrks and one GGA network from two GGA
networks, respectively, to construct a two-layer
reference network. As a result, six two-layer reference
networks were established: PPI-cheng+RegNet, PPI-
cheng+GGA-TS, STRING+RegNet, STRING+GGA-
TS, BioGRID+RegNet, and BioGRID+GGA-TS
Then, PDGMN was applied on six

reference networks to identify their minimum driver

networks.

node sets. Additionally, for each two-layer reference
network, PDGMN was utilized separately to find the
minimum driver node set of its PPI layer and GGA
layer. The 711 well-known driver genes from NCG
6.0 were used as ground truth, and these well-
known driver genes included in the minimum driver
node set were treated as true positives. The metrics in
terms of Fl-score, Recall, and Precision of PDGMN
are shown in Figure 6 and Figure S5. It is can be seen
that while the choice of networks affects the F1-score
of PDGMN, the PDGMN with the two-layer network
produces a higher Fl-score than that with the one-
layer PPI or GGA network. The results indicate that
the driver node set derived from the two-layer
multiplex network can provide more informative
candidate nodes for identifying PDGs than the one-
layer network, either the PPI or GGA network. Thus,
we conclude that the integration of PPI and GGA
networks into a multiplex network is an effective
strategy for improving the identification of PDGs.

Table 1 Details of five reference networks

Type  Name Number of nodes/edges

Brief description Reference

PPI PPI-cheng 15 903/213 809

[37]

Integration of multiple databases of protein-protein interactome with experimental evidence

STRING 12 385/311 434 The most confident 5% of interactions from STRING v11 [57]
BioGRID 23 814/499 363 The human proteins and their interactions from BioGRID (version 4.3.195) [58]
GGA  RegNet 20 250/151 215 Obtained by removing the miRNAs and their interactions from the repository of [39]
RegNetwork, where the data is inferred based on the transcription factor binding sites.
Transcription factor and microRNA which are the key regulators in gene regulations
GGA-TS 15 440/276 092 Reconstruction of the tissue-specific gene regulatory networks by considering the cell types  [59]

used to derive these tissue-specific gene regulatory networks (Document S1, Table S2)

All networks in this work are accessable at https:/github.com/NWPU-903PR/PDGMN.
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Fig. 6 F1-scores of PDGMN with different multiplex
reference networks for BRCA dataset
The x-axis indicates six two-layer multiplex reference networks
constructed by different biomolecular networks. The y-axis indicates
the Fl-score of true positive driver genes in the driver node set
identified by PDGMN with different networks, i. e., PPI single-layer
network (orange), GGA single-layer network (blue), and two-layer

network (red).

To further investigate the relationships between
different networks, the edge
intersections among six two-layer reference networks
were illustrated in Figure 7a. On one hand, it can be
seen that for two PPI networks, PPI-cheng are greatly
intersected with STRING and BioGRID, which is
consistent with the fact that PPI-cheng is derived by

biomolecular

integrating multiple databases including STRING and
BioGRID. In addition, when constructing PPI-cheng
network, Cheng et al.*"" also excluded the unreliable
interactions which were inferred from omics data (e.g.
metabolic associations, evolutionary analysis and
gene expression data). That is, the interactions of PPI-
cheng are not only comprehensive but also reliable. It
clucidates to some extent that PDGMN performs
better when combining PPI-cheng network with a
GGA network into a two-layer network. For two GGA
networks, the major associations in GGA-TS are also
owned by RegNet, indicating that RegNet contains
more comprehensive associations than GGA-TS.
Thus, PDGMN performs better when combining
RegNet with a PPI network into a two-layer reference
network. On the other hand, the results show that the
same type of biomolecular networks are greatly
overlapped with each other but weakly intersected
with the other type of biomolecular networks. For

example, for GGA networks, the associations of GGA-
TS are greatly overlapped with RegNet but weakly
For PPI
networks, the majority of interactions in PPI-cheng,
STRING and BioGRID networks are intersected with
each other but only a small part of interactions are

overlapped with other PPI networks.

overlapped with other GGA networks. These results
suggest that different types of biomolecular networks
such as PPI
complementary information for each other.

and GGA network may carry

To study the topological characteristics of
different biomolecular networks, the frequency of

(a) BioGRID

G
%“L\\A

(b)

= :RegNet y=2.91
‘GGA-TS y=2.29
= :PPI-cheng y=1.98
= :STRING y=1.67
LA = :BioGRID y=1.76

103 L : ] .'-
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Fig.7 Statistical results of different biomolecular
networks
(a) Chord diagram for different biomolecular networks. Arcs are
coloured by different networks, and thickness is proportional to the
number of interactions shared by two networks. (b) The frequency of
the vertex degree for different networks. Dots are coloured by different
networks, i. e., red for RegNet, orange for GGA-TS, blue for PPI-
cheng, green for STRING, and cyan for BioGRID. The power law

exponent y of each network is also showed in the legend.
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vertices with different degrees in each biomolecular
network was quantified, as shown in Figure 7b. The
distributions of scatters for GGA networks (i. e.,
RegNet and GGA-TS) are distinct from that for PPI
networks (i. e., PPI-cheng, STRING and BioGRID).
The power law exponent y of each network was
calculated using the Powerlaw package tool'® (as
indicated in the legend of Figure 7b). As shown in
Figure 7b, the power law exponent y of GGA
networks are larger than that of PPI networks,
indicating that edges in GGA networks are more
concentrated on a few nodes with biological meanings
than that in PPI networks. Thus, the minimum driver
node set in PPI networks requires more nodes than in
GGA networks, thus leading to PDGMN high Recall
scores in PPI networks and high Precision scores in
GGA networks (Figure S5). The results indicate that
the PPI networks and GGA networks have their
unique topological characteristics. In our PDGMN,
the PPI and GGA networks were integrated into the
two-layer multiplex network, which captures both the
complementary information and unique topological
characteristics of the PPl and GGA networks, thereby
improving the identification of PDGs.

3 Discussion

Identifying and prioritizing driver genes for
individual cancer patients is of great value in
deciphering the complex mechanisms of cancer,
helping to plan the personalized treatment. In this
work, we develop a novel multiplex network control
method (namely PDGMN) to identify the cancer
driver genes for individual patients by integrating PPI
network and GGA network into a multiplex network.
While
identifying PDGs from one single biomolecular
network, PDGMN uses the multiplex network to
integrate different types of biomolecular networks to
facilitate PDGs identification. Compared with some
network control-based methods, such as SCS and
PNC which require the matched omics data to
construct sample-specific networks, PDGMN does not
require pairwise gene expression data of tumor and
normal samples from the same patient. Hence,
PDGMN can be used for a more extensive range of
cancer patients. Moreover, PDGMN utilizes somatic
mutation data to generate biologically meaningful

existing methods are all designed for

weights for genes/proteins in SSMNs. Compared with

other network control-based methods that assign an
identical value to each node in SSMNs, the weighted
SSMNs can overcome the difficulty of finding the
optimal driver gene set among multiple driver sets.
Meanwhile, the weighted minimum vertex cover set
identification algorithm considers both important
topological properties of genes (e. g., high degrees)
and biological omics data of genes (e. g., somatic
mutation frequency) to improve the identification of
PDGs.

We evaluated the performance of PDGMN on
three cancer datasets (i.e., BRCA, LUAD and PRAD)
from TCGA. The comparison of PDGMN with other
existing methods, which only use one single
PDGMN
outperformed other methods in identifying PDGs.
Meanwhile, PDGMN can effectively identify rare
driver genes, highlighting its potential value in

biomolecular network, revealed that

precision oncology. We also analyzed five networks
curated by different projects or constructed by
different researchers (Table 1). The results suggest
that PPI networks and GGA networks may carry
complementary information and possess different
topological characteristics. Moreover, PDGMN can
effectively capture the complementary information
and unique topological characteristics of multiple
biomolecular networks to improve the identification
of PDGs.

Despite these advantages, there are still some
limitations in the current PDGMN. Firstly, PDGMN
overlooks the weight information of edges between
genes or proteins, whereas the weighted GGA or PPI
networks provide a more precise description of the
correlations or interactions between genes or proteins.
Therefore, the development of control methods for
edge weighted multiplex networks may contribute to
improve the PDG identification. Secondly, the sample-
specific multiplex networks constructed by PDGMN
simplify the interlayer connections by one-to-one
edges, thus underestimating the complex interactions
between different types
instance, a single transcription factor might regulate

of biomoleculars. For

multiple genes, and a single gene may be regulated by
Therefore, the
development of multilayer network methods that can

multiple  transcription  factors.
handle the complex interlayer connections is another

important direction for future research.
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4 Conclusion

In summary, this work introduces a novel
method,
PDGMN, for the identification of personalized cancer
driver genes. PDGMN integrates the PPI network
with the GGA network into a multiplex network and

multiplex network control named as

utilizes gene expression and somatic mutation data to
construct sample-specific multiplex networks. Then, a
weighted minimum vertex cover set identification
algorithm is developed to find the optimal driver node
set in the sample-specific multiplex network,
facilitating the identification of personalized cancer
driver genes. PDGMN not only outperforms existing
methods but also effectively identifies rare cancer
driver genes in individual patients. Furthermore,
experimental results suggest that PDGMN leverages
the unique properties of different biomolecular
networks through the multiplex network, thereby
improving the identification of personalized cancer

driver genes.
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