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Abstract　 Objective  Inferring cancer driver genes, especially rare or sample-specific cancer driver genes, is crucial for 

precision oncology. Considering the high inter-tumor heterogeneity, a few recent methods attempt to reveal cancer driver genes at the 

individual level. However, most of these methods generally integrate multi-omics data into a single biomolecular network (e.g., gene 

regulatory network or protein-protein interaction network) to identify cancer driver genes, which results in missing important 

interactions highlighted in different networks. Thus, the development of a multiplex network method is imperative in order to 

integrate the interactions of different biomolecular networks and facilitate the identification of cancer driver genes. Methods  A 

multiplex network control method called Personalized cancer Driver Genes with Multiplex biomolecular Networks (PDGMN) was 

proposed. Firstly, the sample-specific multiplex network, which contains protein-protein interaction layer and gene-gene association 

layer, was constructed based on gene expression data. Subsequently, somatic mutation data was integrated to weight the nodes in the 
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sample-specific multiplex network. Finally, a weighted minimum vertex cover set identification algorithm was designed to find the 

optimal set of driver nodes, facilitating the identification of personalized cancer driver genes. Results  The results derived from 

three TCGA cancer datasets indicate that PDGMN outperforms other existing methods in identifying personalized cancer driver 

genes, and it can effectively identify the rare driver genes in individual patients. Particularly, the experimental results indicate that 

PDGMN can capture the unique characteristics of different biomolecular networks to improve cancer driver gene identification. 

Conclusion  PDGMN can effectively identify personalized cancer driver genes and broaden our understanding of cancer driver 

gene identification from a multiplex network perspective. The source code and datasets used in this work are available at https://

github.com/NWPU-903PR/PDGMN.

Key words　 multiplex biomolecular networks, multiplex network control, personalized cancer driver genes, sample-specific 

multiplex network, minimum vertex cover set
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Cancer is characterized by the acquisition of 
genetic mutations, some of which, termed as driver 
mutations, confer a selective growth advantage to the 
mutated cells and lead to abnormal and uncontrolled 
cellular growth[1-2]. Identifying the cancer driver genes 
that harbor driver mutations has been one of the main 
goals in cancer research since the establishment of 
cancer genomics[3-4].

In recent years, considerable efforts have been 
dedicated to identify the cancer driver genes within a 
cohort of patients[5]. For example, the mutation 
frequency-based methods commonly identify the 
genes that harbor higher statistical significance than 
the background mutation rate as cancer driver 
genes[6-8]. The network-based methods incorporate 
knowledge of pathways, protein-protein or gene-gene 
interactions to elucidate tumor initiation and 
progression for identifying the cancer driver 
genes[9-12]. These methods mainly focus on identifying 
the cancer driver genes in specific populations of 
different types or subtypes of cancer. Although the 
cohort-level methods have successfully identified 
well-established and potential cancer driver 
genes[13-14], they are not well-suited for detecting rare 
or patient-specific driver genes that occur in small 
cohorts or even single patients due to low statistical 
power. Moreover, the high heterogeneity of cancer 
may result in different driver genes in individual 
patients[15-16]. Hence, the identification of personalized 
driver genes (PDGs) plays a crucial role in the 
development of precision oncology and cancer 
therapeutics.

Recently, some methods have been proposed to 
identify cancer driver genes at the individual 
resolution, i. e., identifying the PDGs in cancers. On 
one hand, a few methods use machine learning 
algorithms to identify PDGs. For example, sysSVM[17] 

and sysSVM2[18] utilized the discriminate features of 
both somatic alterations and gene properties of well-
established driver genes and adopted the support 
vector machine (SVM) to predict the driver genes that 
best resemble these features for individual patients. 
IMCDriver[19] introduced inductive matrix completion 
to identify the mutated genes that are most 
functionally similar to the well-established driver 
genes as PDGs in individual patients. On the other 
hand, some network-based methods attempt to 
identify PDGs by elucidating the tumor initiation and 
progression at the network- or system-level. These 
methods commonly integrate multi-omics data into a 
single biomolecular network, such as gene regulatory 
network or protein-protein interaction (PPI) network, 
to identify PDGs. For example, some of these 
methods such as DawnRank[20], OncoIMPACT[21], 
PRODIGY[22], and PersonaDrive[23] integrated the 
personalized transcriptomic and genomic data to 
measure deregulations in a biomolecular network for 
prioritizing or identifying PDGs. Other methods such 
as SCS[24], PNC[25] and pDriver[26] adopted the 
network structural controllability theory[27-28] to 
identify coding and non-coding driver genes for 
individual patients. Generally, these methods 
combined the gene expression and somatic mutation 
data with a gene regulatory network or PPI network to 
construct the sample-specific network and then 
identified driver nodes from the sample-specific 
network by network control methods. From the 
perspective of system control, driver nodes are 
considered as key components in the sample-specific 
network, which can significantly influence the overall 
state of the network system, such as driving the state 
of patient-specific gene networks from a normal 
attractor to a disease attractor. Thus, in the context of 
cancer biology, driver nodes often correspond to 
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genes that play curial roles in cancer development and 
progression[29], providing us a valuable resource to 
identify personalized cancer driver genes.

Although the above methods can be used to 
identify rare or patient-specific driver genes and 
further facilitate the combinatorial drug discovery for 
individual patients[30], the common limitation of these 
methods is that they are designed for investigating 
only one single biomolecular network (e. g., gene 
regulatory network or PPI network) to identify PDGs. 
However, cellular processes are not driven by a single 
type of biomolecule. In fact, one cellular process 
generally can span multiple biomolecular networks[31]. 
Thus, separately investigating different single 
biomolecular network naturally leads to a great 
discount in understanding of intricate interaction 
patterns during tumor initiation and progression, and 
eventually it will compromise the performance for 
identifying PDGs. Recently, the rapidly increasing of 
available genomic and proteomic data enables 
researchers to study the complex biological 
mechanisms on a systematic scale. For example, Liu 
et al. [32] designed a perturbation process to effectively 
identify essential genes and cancer genes that 
contribute most to the robustness of a multilayer 
network, which consists of a gene regulatory network, 
a PPI network and a metabolic network. Klosik et al.
[33] applied a framework of interdependent networks of 
three biological molecule types (i. e., genes, proteins 
and metabolites) to systematically investigate the 
model organism Escherichia coli. Valdeolivas et al.[34] 
extended the random walk with restart (RWR) 
algorithm to a multilayer network where different 
layers represent different types of interactions (i. e., 
gene-gene or protein-protein associations) to explore 
the disease-related genes. These efforts generally 
integrate different biomolecular networks into a 
multilayer network to investigate the biological 
processes, which can deepen our understanding of the 
complexity of biological systems. Therefore, it is 
urgent to develop a computational method that can 
integrate different types of biomolecular networks to 
facilitate the identification of PDGs.

In this work, we propose a multiplex network 
control method namely Personalized cancer Driver 
Genes with Multiplex biomolecular Networks 
(PDGMN). The innovations of our PDGMN mainly 
lie in two aspects. (1) PDGMN is designed based on 
the control of multiplex networks, which integrate 

different types of biomolecular networks, such as the 
PPI network and gene-gene association (GGA) 
network. This integration ability of multiplex 
networks enable them to contain more informative 
interactions/associations than a single network, thus 
facilitating the PDG identification. (2) A weighted 
minimum vertex cover set identification algorithm is 
proposed, which not only resolves the difficulty of 
finding the optimal driver genes among multiple 
driver gene sets based on network control but also 
utilizes omics data to score the importance of network 
nodes, thereby enhancing the accuracy of PDG 
identification.

We evaluated the performance of our PDGMN 
on three cancer datasets from The Cancer Genome 
Consortium (TCGA) [35], and compared it with other 
PDG identification methods that only use a single 
biomolecular network. The experimental results show 
that PDGMN outperforms other existing methods in 
terms of Precision, Recall and F1-Score, and it also 
effectively infers the rare driver genes for individual 
patients. The results on different biomolecular 
networks show that even though different 
biomolecular networks may have their unique 
characteristics, PDGMN can effectively capture these 
characteristics to improve the identification of PDGs. 
In summary, PDGMN can identify sample-specific 
driver genes and broaden our understanding of driver 
gene identification from the perspective of multiplex 
networks.

1　Materials and methods

1.1　Datasets
The datasets used in this work contain two parts. 

The first part comprises the multi-omics data of three 
cancer types: breast invasive carcinoma (BRCA), lung 
adenocarcinoma (LUAD), and prostate 
adenocarcinoma (PRAD). This omics data can be 
downloaded from the TCGA data portal[35] via the 
Xena platform[36]. The multi-omics data of each 
cancer dataset contains the somatic mutation (i. e., 
SNP and INDEL) data, copy number variants (CNVs), 
and the corresponding gene expression data of tumor 
samples from different patients. Our study is restricted 
to those samples for which that somatic mutation, 
CNVs, and gene expression data are all available. As 
a result, we obtained 789 samples of BRCA, 509 
samples of LUAD, and 494 samples of PRAD.
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The second part is the prior-known biomolecular 
interaction data, which is used as the reference 
network to construct the sample-specific multiplex 
network. The prior-known biomolecular interaction 
data contains a PPI network and a GGA network. The 
PPI network, originally constructed by Cheng            
et al. [37], integrates multiple databases of protein-
protein interactome with experimental evidence. To 
adapt this PPI network for our work, we mapped the 
protein Entrez IDs of the PPI network into human 
Gene Symbols using the tool of package 
clusterProfiler[38], and removed the duplicate edges. 
Consequently, the PPI network (named as PPI-cheng) 
consisting of 15 903 nodes (i.e., proteins) and 213 809 
interaction edges was obtained. The GGA network, 
initially constructed based on the repository of 

RegNetwork[39], collects and integrates various 
genetic regulation relationships from different 
databases. We removed the miRNAs and their 
interaction edges from the repository of RegNetwork, 
and filtered out the duplicate edges. As a result, an 
undirected GGA network (named as RegNet) 
consisting of 20 250 nodes (i. e., genes) and 151 215 
linking edges was constructed.
1.2　PDGMN

The overview of PDGMN is shown in Figure 1. 
PDGMN contains two main steps to identify PDGs: 
(1) constructing the weighted sample-specific 
multiplex network; (2) identifying driver nodes from 
the weighted sample-specific multiplex network based 
on multiplex network control, and then identifying 
PDGs from the driver nodes.

1.2.1　 Constructing the weighted sample-specific 

multiplex network

In this work, the gene expression data, somatic 
mutation data, and biomolecular networks (i. e., the 

PPI network and the GGA network) are utilized to 
construct the weighted sample-specific multiplex 
networks. Firstly, the proteins and genes that are both 
available in the PPI network and the GGA network 
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Fig. 1　Overview of PDGMN
(a) Data collection. The gene expression and somatic mutation data of three cancers (BRCA, LUAD and PRAD) are collected from TCGA; the PPI 

network and GGA network are used to construct the multiplex reference network in which the gene nodes in GGA layer correspond one-to-one with 

the protein nodes in the PPI layer, but the edges in each layer of the multiplex network is different. (b) Constructing the weighted sample-specific 

multiplex network. The cell-specific network (CSN) method is adopted to generate the sample-specific multiplex network (SSMN) for each cancer 

patient based on the gene expression data of each patient. Subsequently, the somatic mutation data is used to measure the importance of nodes in 

SSMN. (c) Identifying personalized driver genes (PGDs). We identify driver nodes from the weighted SSMN using our multiplex network control 

method, and use these driver nodes to generate a personalized driver gene ranking list for each sample based on the node’s importance score in 

network control.
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are selected. Then, the PPI and GGA are employed to 
construct a two-layer reference network M =
(V1,V2,E1,E2,E3 ). In the reference network M, V1 
denotes the gene node set, V2 denotes the protein node 
set, E1 and E2 denote the PPI edge set and GGA edge 
set, respectively, and E3 denotes the edge set 
connecting gene nodes and protein nodes. The node 
number in V1 is equal to that in V2, and the gene node 
is linked to its unique corresponding protein node.

Secondly, due to high heterogeneities among 
tumor samples, two proteins/genes in the reference 
network M may have interactions/associations in 
some samples while not in other samples, resulting in 
the differences of sample-specific multiplex networks 
(SSMNs) among different samples. Thus, SSMNs are 
constructed based on the prior-known interaction/
association in M and the statistical independency of 
gene expression data in individual samples. 
Specifically, assuming gene x and gene y are two 

independent variables, there is p (x,y ) = p (x) p (y ) 
based on probability theory, where p (x) and p (y ) are 

the marginal probability distribution of x and y, 

respectively, and p (x,y ) is the joint probability 

distribution. Then, the degree of independence 
between gene x and gene y in sample k is measured by 

ρk
xy = p( )k (xk,yk ) - p( )k (xk ) p( )k (yk ), following the idea 

of cell-specific network (CSN) method[40]. To estimate 

the values of p( )k (xk ), p( )k (yk ) and p( )k (xk,yk ), a scatter 

diagram based on gene expression data of gene x and 
gene y is created, in which each dot represents a 
sample, as shown in Figure 1. Around sample k, four 
boundary lines are drawn, where two lines parallel to 
x axis and the other two lines parallel to y axis, to 
generate three boxes containing nk

x, nk
y and nk

xy dots, 

respectively (Figure 1). Then, p( )k (xk ), p( )k (yk ) and 

p( )k (xk,yk ) can be estimated by nk
x /n, nk

y /n and nk
xy /n 

where n is the number of samples in a cancer dataset, 
and ρk

xy can be estimated by Equation (1).

ρk
xy = nk

xy

n
- nk

x

n
∙nk

y

n
(1)

Dai et al.[40] demonstrated that if gene x and gene 
y are independent of each other, no matter which 
distributions the genes follow, the statistic ρk

xy 

approximates to a normal distribution, and its mean 
value μk

xy and standard deviation σk
xy are defined as 

follows:

μk
xy = 0 (2)

σk
xy = nk

xnk
y( )n - nk

x ( )n - nk
y

n4( )n - 1
The normalization of ρk

xy is performed as follows:

ρ̂k
xy = ρk

xy - μk
xy

σk
xy

(3)

If gene x and gene y are independent of each 
other, ρ̂k

xy follows standard normal distribution. Then, 

the one-sided hypothesis test for each interaction/
association edge in M is conducted. The null 
hypothesis (H0) is that genes x and y are independent 
in sample k, while the alternative hypothesis (H1) is 
that gene x and gene y are interacted with each other 
in sample k. If ρ̂k

xy is larger than the α quantile of the 

standard normal distribution, where α is a significant 
level (e. g., 0.01), H0 will be rejected, and the edge 
between gene x and gene y in the SSMN of sample k 
is retained; otherwise, the edge is removed. The 
hypothesis test is repeated for each edge in E1 and E2, 
and the edges between independent pairs of genes are 
removed. The resulting Ek1 and Ek2 are then used to 
construct the SSMN of sample k, i. e., Mk =
(V1, V2, Ek1, Ek2, E3 ). This process is repeated for every 

sample in each cancer dataset to build the SSMNs.
Thirdly, as driver genes tend to be mutated in a 

relatively large number of samples in a cancer 
dataset[41-42], a score function S (i) is introduced to 

measure the importance of different proteins/genes in 
Mk based on somatic mutation data. Specifically, 
given a cancer dataset which consists of m genes and 
n samples, its somatic mutation data is stored in a 
binary matrix M ∈ Rm × n. If gene i is mutated in 
sample j, we set Mij = 1, otherwise Mij = 0. Thus, the 
score function S (i) for gene i is defined as:

S (i) =
ì

í

î

ïïïï

ïïïï

∑j ∈ κi

1
Nj

,  κi ≠ ∅
1/Nmax,  κi = ∅

(4)

where κi is the set of samples in which gene i is 
mutated, Nj is the number of mutated genes in sample 
j, and Nmax is the maximum number of mutated genes 
across all the samples in a cancer dataset. As defined 
in Equation (4), proteins/genes with high mutation 
frequencies are assigned relatively large values by 
S (i). Meanwhile, a background score 1/Nmax is 

assigned to genes without mutations in any samples in 
a cancer dataset. In this way, S (i) not only help to 
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identify driver genes with high mutation frequencies 
but also make it possible to identify driver genes with 
low mutation rate that nonetheless play important 
roles (e. g., high-degree hubs) in SSMNs. Here, to 
facilitate the computation of minimum optimization in 
Equation (5), the weight of each vertex in Mk is 
represented by 1/S ( )i . Finally, the weighted SSMN 

Mk is constructed for sample k.
1.2.2　 Identifying driver genes based on feedback 

vertex set control method

To identify PDGs within the SSMN, the first step 
is to apply the network structural control method to 
find a minimum set of driver nodes from the SSMN. 
In the viewpoint of network control, driver nodes 
typically play crucial roles in governing the overall 
state of the network system, such as steering the 
network state from a normal state (initiation attractor) 
to a disease state (dynamical attractor). Thus, in the 
context of cancer biology, driver nodes often 
correspond to genes that play important roles in 
cancer development and progression[29], which 
provide us a valuable resource to assist cancer driver 
gene identification[43-44]. The second step is to identify 
PGDs from the driver nodes based on their 
importance in network control.

Before solving the problem of finding minimum 
driver node set of the multilayer network Mk, the 
algorithm to find the minimum driver node set of a 

single layer G k
l (V k

l ,Ek
l ) in Mk is introduced. Based on 

the framework of feedback vertex set control (FC), 
which has been used to large biological networks with 
nonlinear dynamics to identify driver nodes, the 
problem of finding the minimum driver node set can 
be solved by finding the feedback vertex set (FVS) of 
G k

l
[45]. Under the framework of FC, the minimum 

driver node set of G k
l  is equal to the minimum FVS 

whose removal leaves the network without cycles. 
Here, PDGMN adopts the approach of nonlinear 
control of undirected network algorithm (NCUA) [25], 
which treats all undirected edges as bi-directional 
edges, allowing the state of nodes in G k

l  to be 

characterized by dxi /dt = Fi(xi,Ii ), where xi is the 

state of node i at time t, Ii is the neighboring nodes of 

node i, and Fi(xi,Ii ) represents the nonlinear response 

of node i to its neighboring nodes. By considering 
each bi-directional edge in G k

l  as a feedback loop, the 
minimum FVS is equal to the minimum node set 
covering all the edges in G k

l , which is fundamentally 

the minimum vertex cover (MVC) problem. In this 
way, the minimum driver node set identification with 
FC is transformed into the MVC problem. Although 
NCUA uses a simple integer linear programming 
(ILP) formulation to get the optimal solution of this 
MVC problem, it ignores the weights of nodes. To 
incorporate the weights of vertices, a weighted MVC 
set identification algorithm is proposed to find the 
minimum weighted driver node set of G k

l . Specifically, 

for one single layer G k
l (V k

l ,Ek
l ) in Mk, the MVC set in 

G k
l  is determined by solving the following ILP:

min f = ∑i ∈ V k
xi + λ∑i ∈ V k

w (i) xi (5)

s.t.  xi + xj ≥ 1, ∀e (i,j ) ∈ Ek
l (6)

xi ∈ {0,1},∀i ∈ V k
l (7)

where the binary variable xi indicates whether the 
node i is selected (xi = 1) or not (xi = 0), w (i) is 

weight of node i (i. e., 1/S ( )i ), and λ is a penalty 

parameter to adjust the importance of node weights. 
In this work, the value of parameter λ is set to 0.1, 
and the effect of λ on PDGMN is detailed in 
Document S1 and Figure S1. Equations (6) and (7) 
guarantee that each edge in G k

l  is covered by at least 
one selected node. The objective function of ILP is to 
obtain the minimal number of selected nodes as well 
as the sum of selected nodes’  weights. Compared 
with NCUA, our algorithm incorporates the node 
weight w (i) to facilitate the identification of the 

optimal driver node set from multiple MVC sets and 
the penalty parameter λ to balance the importance of 
node weights and the size of identified driver node 
set. After solving the optimization problem (Equations 
(5)-(7)) by adopting the LP-based classic branch and 
bound method[46], the optimal driver node set Dk

l  for 
the one-layer network G k

l  is obtained.

Considering the SSMN Mk = (V1,V2,Ek1,Ek2,E3 ) as 

a multilayer networked system, where each layer is an 
undirected network with the nonlinear dynamical 
process, the objective of control network Mk is to find 
the minimum driver node set Dk of Mk. To ensure that 
Dk can control all layers of Mk, it is assumed that each 
node in a multiplex network is either a driver node in 
each layer or it is not a driver node in any layer[44, 47]. 
In other words, if a node belongs to the minimum 
driver node set of any single layer of Mk, it must 
belongs to Dk. A simple algorithm to get Dk is to 
merge the minimum driver node set of each single 
layer to get Dk, i. e., Dk = Dk1 ∪ Dk2. However, this 
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simple algorithm ignores the interlayer edges in the 
multiplex network, resulting in a suboptimal driver 
node set for Mk.

An improved algorithm is proposed herein to get 
the optimal Dk by the following steps. Step 1: for a 
two-layer multiplex network Mk, Equations (5) - (7) 
are applied to find the minimum driver node set Dk1 for 
the first layer G k1. Step 2: as nodes in each layer of Mk 
are linked by one-to-one interlayer edges, driver 
nodes in the first layer G k1 can pass control signals to 
their equivalent nodes in the second layer G k2 through 
interlayer edges. Thus, in the second layer G k2, the 
equivalent nodes of Dk1 and edges can also be 
controlled by Dk1. After removing the equivalent nodes 
of Dk1 and their edges from G k2, the remaining nodes 

and edges in G k2 denoted as V̂ k2  and Êk2 are still 
uncontrolled. Step 3: Equations (5)-(7) are applied to 

find the minimum driver node set D̂k2 to control the 

remaining network Ĝ k2(V̂ k2 ,Êk2 ). Then, the union of Dk1 
and D̂k2, denoted as Dk = Dk1 ∪ D̂k2, is capable of 
controlling all nodes in Mk. This union set Dk is 
considered as the optimal driver node set for the two-
layer multiplex network Mk.

Finally, the PGDs are identified from the driver 
nodes based on their importance in network control. 
Concretely, under the framework of FC, driver nodes 
with larger network degrees can send control signals 
to more neighboring nodes, and driver nodes with 
smaller weights (i. e., 1/S ( )i ) receive less penalties 

when solving the ILP (Equations (5) - (7)). 
Accordingly, to measure the importance of each driver 

node in network control, Score (di ) is defined as 

follows:

Score (di ) = Norm (deg (di ) ) + Norm (S (di ) )(8)

where di is the i-th driver node in Dk, deg (di ) is the 

sum of network degree of driver node di in G k1 and G k2, 
and Norm (∙) represents the min-max normalization 

function. Then, mutated driver nodes are prioritized 

based on the values of Score (di ) to generate a PDGs 

ranking list of sample k. The mutated driver nodes 
represent driver nodes whose corresponding genes 
carry somatic mutations or CNVs.

2　Results

2.1　Performance comparison
In this section, we compared the performance of 

our PDGMN against four existing PDG identification 
methods, i. e., DawnRank[20], PRODIGY[22], 
PersonaDrive[23], and SCS[24], and one baseline 
method SSMNdegree. These methods commonly 
integrate multi-omics data into a biomolecular 
network and employ various algorithms to identify 
PDGs. Bellow is the brief description of each method:

(1) DawnRank[20] evaluates the impact of each 
personalized mutated gene on downstream 
differentially expressed genes (DEGs) by applying the 
PageRank algorithm to a gene network, thereby 
identifying the most influential mutated genes as 
PDGs.

(2) PRODIGY[22] employs a prize-collecting 
Steiner tree model to evaluate the influence of 
personalized mutated genes on perturbed signaling 
pathways and identifies the most influential mutated 
genes as PDGs.

(3) PersonaDrive[23] constructs the bipartite 
network to model the relationship between 
personalized mutated genes and DEGs in similar 
patients. Then, it identifies PDGs based on the co-
occurrence frequency of mutated genes and DEGs 
within the same signaling pathways.

(4) SCS[24] utilizes a network structural control 
method to measure the influence of a personalized 
mutated gene on downstream DEGs in a network and 
identifies the most influential mutated genes as PDGs.

(5) SSMNdegree, the baseline method, identifies 
high-degree hubs as PDGs by ranking personalized 
mutated genes based on their degrees in SSMNs.

Each method was applied to the same samples of 
BRCA, LUAD, and PRAD datasets obtained from 
TCGA data portal, which include somatic mutation 
data, gene expression data, and CNVs. In addition to 
the PPI-cheng network used in each method, 
PersonaDrive and PRODIGY need the pathway data 
to extract pathway information, and PDGMN requires 
the GGA network (RegNet) to construct SSMNs.

Here, the performances of different methods in 
identifying PDGs were evaluated at the individual 
level. Firstly, 711 well-established cancer driver genes 
from the Network of Cancer Genes (NCG 6.0)[13] were 
used as the ground truth, which includes 708 cancer 
driver genes in the Cancer Gene Census (CGC)[48] and 
125 cancer driver genes in the manually curated 
list[49]. Secondly, following the assumption that a 
tumor generally needs 5 driver genes to fully explain 
its cancer development[18, 50-51], the top 5 genes from 
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the PDGs ranking list of each sample were considered 
as predicted PDGs by each method for the following 
analysis. The genes in the intersection set of predicted 
PDGs and the ground truth were considered as true 
PDGs in a tumor sample. Finally, to measure the 
performance of each method, we calculated the 
average Precision, Recall, and F1-score with respect 
to true PDGs across the cancer-specific dataset 
(Document S1). Here, we do not compare with 
PNC[25] and pDriver[26], which are two network 
control-based methods to identify PDGs, since they 
output the unranking set of drivers for each sample, 
while our performance measures rely on the 
personalized ranking list of driver genes.

The F1-scores on cancer BRCA, LUAD, and 
PRAD are shown in Figure 2, and the corresponding 
Precision and Recall are shown in Figure S2. As 
shown in Figure 2 and Figure S2, we can see that 
PDGMN performs better than other five methods on 

three cancer datasets in terms of F1-score, Precision, 
and Recall. These results show that PDGMN owns the 
advantages over other methods in identifying PDGs. It 
is worth noting that the results of SSMNdegree are 
competitive with those of DawnRank on PRAD 
dataset and better than those of SCS and PRODIGY 
on BRCA, LUAD, and PRAD datasets. SSMNdegree 
simply ranks personalized mutated genes by their 
network degrees of the SSMN, and identifies high-
degrees hubs as PDGs for each sample. The results 
indicate that driver genes are closely related to high-
degree hubs in biomolecular networks, and the high-
degree property of driver genes is helpful to identify 
cancer driver genes, which are consistent with the 
previous research findings[22, 52]. PDGMN combines 
the high-degree property with the mutation score to 
assist finding driver nodes in the SSMNs, resulting in 
its better results in identifying PDGs.

In addition to the driver genes from NCG 6.0, 
two other lists of well-known driver genes from the 
OncoKB[53] and CancerMine[54] databases were also 
used as ground truth driver genes to evaluate PDGMN 
and other methods. The results are shown in Figure 
S3, S4. We can see that PDGMN consistently 
outperforms other methods across three cancer 
datasets, regardless of using ground truth driver genes 
from OncoKB or CancerMine databases. The 
consistent performance across different sources of 
ground truth demonstrates the robustness of PDGMN 

and confirms that its effectiveness is not biased 
toward to a specific cancer gene database.
2.2　 Ablation experiments of two strategies in 
PDGMN

In this section, the influence of two strategies in 
PDGMN was evaluated. The first strategy is the 
integration of the PPI and GGA networks into a 
multiplex network, which contains more informative 
interactions/associations than a single network. The 
second strategy is the application of the weighted 
MVC set identification algorithm, which considers 
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PRAD cancers benchmarked on NCG 6.0
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both network topological properties of genes (e. g, 
high degrees) and biological omics data of genes (e.g, 
somatic mutation frequency) for the identification of 
driver node set. The following ablation study was 
carried out to investigate the effectiveness of these 
two strategies in improving the performance of 
PDGMN. For the first strategy, the performance of 
PDGMN was tested without the multiplex network 
integration. PDGMN-PPI and PDGMN-GGA were 
employed to denote that PDGMN was tested solely on 
the PPI network and the GGA network, respectively. 
For the second strategy, each node was assigned an 

equal weight of 1, and the item (i.e., λ∑i ∈ V k
w (i) xi) 

was omitted from Equation (5) when running 
PDGMN (referred to as Unweighted-PDGMN). We 
performed PDGMN, Unweighted-PDGMN, PDGMN-
PPI, and PDGMN-GGA on 1 792 samples from 
BRCA, LUAD, and PRAD datasets. Following the 
above section, the top 5 genes from the PDGs ranking 
list of each sample were considered as predicted 
PDGs, and the genes in the intersection set of 
predicted PDGs and the ground truth were considered 
as true PDGs. The results of PDGMN, Unweighted-
PDGMN, PDGMN-PPI, and PDGMN-GGA in term 
of average Precision, Recall, and F1-score across all 
samples are shown in Figure 3.

The result in Figure 3 indicates that PDGMN 
performs better than Unweighted-PDGMN, PDGMN-
PPI, and PDGMN-GGA in terms of average 
Precision, Recall, and F1-score, with statistical 
significance (P<0.05). Firstly, the average Precision, 
Recall, and F1-score of PDGMN are 0.639 0, 0.413 9, 
and 0.421 3, which are 0.032 8, 0.022 4, and 0.024 1 
higher than that of PDGMN-PPI, respectively, and 
0.024 4, 0.017 9, and 0.020 3 higher than that of 
PDGMN-GGA, respectively. Compared with 
PDGMN-PPI and PDGMN-GGA, PDGMN identifies 
PDGs using the two-layer SSMN that incorporates 
more informative interactions/associations than the 
one-layer PPI or GGA network. The result suggests 
that the first strategy of using the multiplex network 
to integrate the PPI and GGA networks is effective to 
improve the identification of PDGs. Secondly, the 
result in Figure 3 reveals that Unweighted-PDGMN 
generates much worse results than other methods. 
Concretely, the average Precision, Recall, and F1-
score of Unweighted-PDGMN are 0.244 1, 0.115 1, 
and 0.139 7 lower than that of PDGMN, respectively. 

Compared with PDGMN, Unweighted-PDGMN 
ignores the node weight and solely relies on the 
network topology properties of nodes to identify 
driver nodes, resulting in its poor performance. The 
results demonstrate that using the weighted MVC set 
identification algorithm to integrate both network 
topology properties and biological omics data of 
genes is an effective way to improve the identification 
of PDGs.

2.3　 Analysis of personalized driver genes 
identified by PDGMN

Here, we conducted the following analysis of 
PDGs predicted by PDGMN. Firstly, the ability of 
PDGMN in identifying rare driver genes (i. e., driver 
genes mutated in only few patients) was assessed. The 
predicted PDGs of each sample were divided into 
three groups according to the frequency that a gene is 
mutated among a cancer-specific cohort: rare-
frequency PDGs (mutated in less than 1% patients, 
denoted as mf < 1%), medium-frequency PDGs (1% ≤
mf < 10%), and high-frequency PDGs (mf ≥ 10%). 

The average proportion of each group was calculated 
for BRCA, LUAD, and PRAD cancers, respectively, 
as illustrated in Figure 4a. The predicted PDGs 
represent the top 5 genes in the personaliezed ranking 
list generated by PDGMN, as described in 3.1. As 
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layer and the GGA layer of SSMN, respectively. The numbers above 

the brackets represent the P-values of Wilcoxon signed-rank test 

between pairs of methods.
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shown in Figure 4a, the proportions of rare-frequency 
PDGs in BRCA, LUAD, and PRAD datasets are 52%, 
39%, 67%, which are higher than the proportions of 
medium-frequency and high-frequency PDGs. 
Although the rare-frequency PDGs have small values 
of somatic mutation score S (i) (as defined in 

Equation (4)), they commonly have relatively high 

network degrees in the PPI or GGA network (Table 
S1). Thus, PDGMN can identify these rare-frequency 
PDGs through their high network degrees, as high-
degree nodes play important roles in identifying the 
minimum driver node set. The lists of rare-frequency 
PDGs and their network degrees for BRCA, LUAD, 
and PRAD datasets are provided in Table S1.

Moreover, to investigate the association between 
the rare-frequency PDGs with the cancer 
development, the functional enrichment analysis for 
KEGG pathway was performed on the rare-frequency 
PDGs identified by PDGMN. The top 20 enriched 
KEGG pathways of rare-frequency PDGs from all the 
patients in BRCA, LUAD, and PRAD datasets are 
shown in Figure 4b-d. We can see that these rare-
frequency PDGs are significantly enriched in some 

cancer pathways, such as Pathways in cancer, viral 
carcinogenesis, chemical carcinogenesis-receptor 
activation, breast cancer, prostate cancer, 
transcriptional misregulation in cancer, and so on.

In addition, to assess whether the PDGs 
predicted by PDGMN can provide helpful information 
to precision ontology for each single patient, we 
collected the actionable genes from TARGET 
database[55], which refer to the genes that are directly 
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linked to a clinical action, and the druggable genes 
from the Drug-Gene Interaction Database (DGIdb)[56]. 
It was observed that the PDGs of each patient across 
three cancer datasets harbored at least one druggable 
target. Moreover, 1 568 out of 1 792 (87.5%) patients 
across three cancer datasets carried at least one 
actionable gene within their PDGs (Figure 5). These 
results indicate that the PDGs identified by PDGMN 
can provide assistance for developing therapeutic 
plans for individual patients.

2.4　 The influence of different biomolecular 
networks

To study the influence of different biomolecular 
networks on PDGMN, the following experiments 
were conducted on samples of BRCA cancer. Firstly, 

different biomolecular networks were collected from 
various sources, including three PPI networks of PPI-
cheng, STRING and BioGRID, and two GGA 
networks of RegNet and GGI-TS. The details of these 
five networks are provided in Table 1, and they are 
used as reference networks in the following 
experiments.

We selected one PPI network from three PPI 
netowrks and one GGA network from two GGA 
networks, respectively, to construct a two-layer 
reference network. As a result, six two-layer reference 
networks were established: PPI-cheng+RegNet, PPI-
cheng+GGA-TS, STRING+RegNet, STRING+GGA-
TS, BioGRID+RegNet, and BioGRID+GGA-TS 
networks. Then, PDGMN was applied on six 
reference networks to identify their minimum driver 
node sets. Additionally, for each two-layer reference 
network, PDGMN was utilized separately to find the 
minimum driver node set of its PPI layer and GGA 
layer. The 711 well-known driver genes from NCG 
6.0[13] were used as ground truth, and these well-
known driver genes included in the minimum driver 
node set were treated as true positives. The metrics in 
terms of F1-score, Recall, and Precision of PDGMN 
are shown in Figure 6 and Figure S5. It is can be seen 
that while the choice of networks affects the F1-score 
of PDGMN, the PDGMN with the two-layer network 
produces a higher F1-score than that with the one-
layer PPI or GGA network. The results indicate that 
the driver node set derived from the two-layer 
multiplex network can provide more informative 
candidate nodes for identifying PDGs than the one-
layer network, either the PPI or GGA network. Thus, 
we conclude that the integration of PPI and GGA 
networks into a multiplex network is an effective 
strategy for improving the identification of PDGs.
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Table 1　Details of five reference networks

Type

PPI

GGA

Name

PPI-cheng

STRING

BioGRID

RegNet

GGA-TS

Number of nodes/edges

15 903/213 809

12 385/311 434

23 814/499 363

20 250/151 215

15 440/276 092

Brief description

Integration of multiple databases of protein-protein interactome with experimental evidence

The most confident 5% of interactions from STRING v11

The human proteins and their interactions from BioGRID (version 4.3.195)

Obtained by removing the miRNAs and their interactions from the repository of 

RegNetwork, where the data is inferred based on the transcription factor binding sites. 

Transcription factor and microRNA which are the key regulators in gene regulations

Reconstruction of the tissue-specific gene regulatory networks by considering the cell types 

used to derive these tissue-specific gene regulatory networks (Document S1, Table S2)

Reference

［37］

［57］

［58］

［39］

［59］

All networks in this work are accessable at https://github.com/NWPU-903PR/PDGMN.
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To further investigate the relationships between 
different biomolecular networks, the edge 
intersections among six two-layer reference networks 
were illustrated in Figure 7a. On one hand, it can be 
seen that for two PPI networks, PPI-cheng are greatly 
intersected with STRING and BioGRID, which is 
consistent with the fact that PPI-cheng is derived by 
integrating multiple databases including STRING and 
BioGRID. In addition, when constructing PPI-cheng 
network, Cheng et al. [37] also excluded the unreliable 
interactions which were inferred from omics data (e.g. 
metabolic associations, evolutionary analysis and 
gene expression data). That is, the interactions of PPI-
cheng are not only comprehensive but also reliable. It 
elucidates to some extent that PDGMN performs 
better when combining PPI-cheng network with a 
GGA network into a two-layer network. For two GGA 
networks, the major associations in GGA-TS are also 
owned by RegNet, indicating that RegNet contains 
more comprehensive associations than GGA-TS. 
Thus, PDGMN performs better when combining 
RegNet with a PPI network into a two-layer reference 
network. On the other hand, the results show that the 
same type of biomolecular networks are greatly 
overlapped with each other but weakly intersected 
with the other type of biomolecular networks. For 

example, for GGA networks, the associations of GGA-
TS are greatly overlapped with RegNet but weakly 
overlapped with other PPI networks. For PPI 
networks, the majority of interactions in PPI-cheng, 
STRING and BioGRID networks are intersected with 
each other but only a small part of interactions are 
overlapped with other GGA networks. These results 
suggest that different types of biomolecular networks 
such as PPI and GGA network may carry 
complementary information for each other.

To study the topological characteristics of 
different biomolecular networks, the frequency of 
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vertices with different degrees in each biomolecular 
network was quantified, as shown in Figure 7b. The 
distributions of scatters for GGA networks (i. e., 
RegNet and GGA-TS) are distinct from that for PPI 
networks (i. e., PPI-cheng, STRING and BioGRID). 
The power law exponent γ of each network was 
calculated using the Powerlaw package tool[60] (as 
indicated in the legend of Figure 7b). As shown in 
Figure 7b, the power law exponent γ of GGA 
networks are larger than that of PPI networks, 
indicating that edges in GGA networks are more 
concentrated on a few nodes with biological meanings 
than that in PPI networks. Thus, the minimum driver 
node set in PPI networks requires more nodes than in 
GGA networks, thus leading to PDGMN high Recall 
scores in PPI networks and high Precision scores in 
GGA networks (Figure S5). The results indicate that 
the PPI networks and GGA networks have their 
unique topological characteristics. In our PDGMN, 
the PPI and GGA networks were integrated into the 
two-layer multiplex network, which captures both the 
complementary information and unique topological 
characteristics of the PPI and GGA networks, thereby 
improving the identification of PDGs.

3　Discussion

Identifying and prioritizing driver genes for 
individual cancer patients is of great value in 
deciphering the complex mechanisms of cancer, 
helping to plan the personalized treatment. In this 
work, we develop a novel multiplex network control 
method (namely PDGMN) to identify the cancer 
driver genes for individual patients by integrating PPI 
network and GGA network into a multiplex network. 
While existing methods are all designed for 
identifying PDGs from one single biomolecular 
network, PDGMN uses the multiplex network to 
integrate different types of biomolecular networks to 
facilitate PDGs identification. Compared with some 
network control-based methods, such as SCS and 
PNC which require the matched omics data to 
construct sample-specific networks, PDGMN does not 
require pairwise gene expression data of tumor and 
normal samples from the same patient. Hence, 
PDGMN can be used for a more extensive range of 
cancer patients. Moreover, PDGMN utilizes somatic 
mutation data to generate biologically meaningful 
weights for genes/proteins in SSMNs. Compared with 

other network control-based methods that assign an 
identical value to each node in SSMNs, the weighted 
SSMNs can overcome the difficulty of finding the 
optimal driver gene set among multiple driver sets. 
Meanwhile, the weighted minimum vertex cover set 
identification algorithm considers both important 
topological properties of genes (e. g., high degrees) 
and biological omics data of genes (e. g., somatic 
mutation frequency) to improve the identification of 
PDGs.

We evaluated the performance of PDGMN on 
three cancer datasets (i.e., BRCA, LUAD and PRAD) 
from TCGA. The comparison of PDGMN with other 
existing methods, which only use one single 
biomolecular network, revealed that PDGMN 
outperformed other methods in identifying PDGs. 
Meanwhile, PDGMN can effectively identify rare 
driver genes, highlighting its potential value in 
precision oncology. We also analyzed five networks 
curated by different projects or constructed by 
different researchers (Table 1). The results suggest 
that PPI networks and GGA networks may carry 
complementary information and possess different 
topological characteristics. Moreover, PDGMN can 
effectively capture the complementary information 
and unique topological characteristics of multiple 
biomolecular networks to improve the identification 
of PDGs.

Despite these advantages, there are still some 
limitations in the current PDGMN. Firstly, PDGMN 
overlooks the weight information of edges between 
genes or proteins, whereas the weighted GGA or PPI 
networks provide a more precise description of the 
correlations or interactions between genes or proteins. 
Therefore, the development of control methods for 
edge weighted multiplex networks may contribute to 
improve the PDG identification. Secondly, the sample-
specific multiplex networks constructed by PDGMN 
simplify the interlayer connections by one-to-one 
edges, thus underestimating the complex interactions 
between different types of biomoleculars. For 
instance, a single transcription factor might regulate 
multiple genes, and a single gene may be regulated by 
multiple transcription factors. Therefore, the 
development of multilayer network methods that can 
handle the complex interlayer connections is another 
important direction for future research.
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4　Conclusion

In summary, this work introduces a novel 
multiplex network control method, named as 
PDGMN, for the identification of personalized cancer 
driver genes. PDGMN integrates the PPI network 
with the GGA network into a multiplex network and 
utilizes gene expression and somatic mutation data to 
construct sample-specific multiplex networks. Then, a 
weighted minimum vertex cover set identification 
algorithm is developed to find the optimal driver node 
set in the sample-specific multiplex network, 
facilitating the identification of personalized cancer 
driver genes. PDGMN not only outperforms existing 
methods but also effectively identifies rare cancer 
driver genes in individual patients. Furthermore, 
experimental results suggest that PDGMN leverages 
the unique properties of different biomolecular 
networks through the multiplex network, thereby 
improving the identification of personalized cancer 
driver genes.
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基于多层网络控制的个体化癌症驱动
基因识别方法*

张 桐 1，2） 张绍武 1）** 李 岩 1） 谢明宇 1）

（1）西北工业大学自动化学院，信息融合技术教育部重点实验室，西安 710072；
2）平顶山学院电气与机械工程学院，平顶山 467000）

摘要 目的　识别癌症驱动基因，特别是罕见或个体特异性癌症驱动基因，对精准肿瘤学至关重要。考虑到肿瘤间的高度

异质性，最近有一些方法尝试在个体水平上识别癌症驱动基因。然而，这些方法大多是将多组学数据整合到单一生物分子

网络（如基因调控网络或蛋白质相互作用网络）中来识别癌症驱动基因，容易忽略不同网络所特有的重要相互作用信息。

为了整合不同生物分子网络的相互作用数据，促进癌症驱动基因识别，迫切需要发展一种多层网络方法。方法　本文提出

了一种多层网络控制方法（PDGMN），利用多层网络识别个体化癌症驱动基因。首先，利用基因表达数据构建针对个体病

人的个体化多层网络，其中包括蛋白质相互作用层和基因相互关联层。然后，整合突变数据，对个体化多层网络中的节点

进行加权。最后，设计了一种加权最小顶点覆盖集识别算法，找到个体化多层网络中的最优驱动节点集，以提高个体化癌

症驱动基因的识别效果。结果　在三个TCGA癌症数据集上的实验结果表明，PDGMN在个体化驱动基因识别方面优于其

他现有方法，并能有效识别个体病人的罕见癌症驱动基因。特别是，在不同生物分子网络上的实验结果表明，PDGMN能

够捕获不同生物分子网络的独有特征，从而改进癌症驱动基因的识别结果。结论　PDGMN能有效识别个体化癌症驱动基

因，并从多层网络的视角，加深我们对癌症驱动基因识别的理解。本文所用的源代码和数据集可以从 https://github.com/

NWPU-903PR/PDGMN获取。

关键词 多层生物分子网络，多层网络控制，个体化癌症驱动基因，个体化多层网络，最小节点覆盖集
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