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Graphical abstract

Abstract　Objective  Traditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of 

antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in 
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Shennong's Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally 

recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits 

antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 

3β -acetyloxy-16α -hydroxy-lanosta-8, 24(31) -dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging 

evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. 

Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently 

requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its 

efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms 

underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of 

multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective 

on PA's antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions 

with biological assays. Methods  This study employed network pharmacology to identify potential targets of PA in NB, followed by 

validation using molecular docking, molecular dynamics simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot 

experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, 

SuperPred, and PharmMapper, Subsequently, potential targets were predicted by intersecting the results from these databases via 

Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. 

Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. Molecular 

dynamics (MD) simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding 

dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand 

complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. Results  The CCK-8 

assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB 

activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway 

enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/Akt, MAPK, and Ras signaling pathways. 

Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, 

SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA 

and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. Conclusion  It was 

suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/

Akt signaling pathway. These findings provide crucial evidence supporting PA's development as a therapeutic candidate for NB.

Key words　pachymic acid, network pharmacology, molecular dynamics simulation
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Neuroblastoma (NB), a malignant neoplasm 
originating from the sympathetic nervous system, 
predominantly occurs in the cervical region, 
mediastinum, adrenal glands, peritoneum, or presacral 
areas. As the second most prevalent extracranial 
malignancy in pediatric populations, it constitutes the 
most common solid tumor in infants, with 
approximately 75% of cases manifesting in children 
under 5 years of age, half of which are classified as 
high-risk[1-2]. Current clinical management relies 
primarily on surgical resection. However, the 
anatomical proximity of NB lesions to major vascular 
structures (e.g., the aorta and vena cava) often leads to 
tumor extension into the spinal canal via 
intervertebral foramina, resulting in spinal cord 
compression and increased surgical complexity. 

Consequently, the 5-year survival rate remains below 
30%[2-3], underscoring the urgent need for developing 
novel pharmacological interventions with improved 
safety and efficacy.

Traditional Chinese medicine (TCM), which is a 
valuable cultural heritage, has emerged as an 
important source of compounds for antitumor drug 
discovery. Poria (Poria cocos (Schw.) Wolf), the 
dried sclerotium of the polyporaceae fungus, was first 
documented in Shennong's Classic of Materia Medica 
and has been used for millennia in China for both 
therapeutic and dietary purposes. Poria is traditionally 
recognized for its diuretic, spleen-tonifying, and 
sedative properties, and modern pharmacological 
studies have demonstrated that it has exhibits 
antioxidant, anti-inflammatory, antibacterial, and 
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antitumor activities[4]. Pachymic acid (PA; 3β
-acetyloxy-16α -hydroxy-lanosta-8, 24(31) -dien-21-oic 
acid), a triterpenoid compound isolated from Poria, is 
considered one of its principal bioactive constituents.

Emerging evidence has demonstrated that PA has 
antitumor potential through multiple mechanisms: (1) 
induction of cell cycle arrest and apoptosis in gastric 
cancer cells[5]; (2) suppression of gallbladder cancer 
via modulation of the AKT and ERK signaling 
pathways[6]; (3) activation of Caspase 3/7 and 
regulation of the PTEN/AKT pathway in 
osteosarcoma cells[7]; and (4) inhibition of hypoxia/
HIF-1α -mediated Bax expression in gastric cancer[8]. 
These collective findings suggest that PA has broad-
spectrum antitumor activity. While our preliminary 
experiments revealed concentration-dependent anti-
NB effects on cell viability, the underlying 
mechanisms remain uncharacterized, necessitating 
further investigation.

With the gradual rise of interdisciplinary subjects 
such as computational biology, bioinformatics, 
artificial intelligence, and big data science, 
researchers have shifted studies of traditional 
medicine from a single and isolated mode to a multi-
faceted and systematic mode. One of the significant 
changes is understanding the mechanisms of drug 
action from the perspective of the biomolecular 
network[9-10]. Network pharmacology stems from 
several pioneering works. The holistic theory and 
practice of TCM play key roles in the origin and rapid 
development of network pharmacology. The original 
hypothesis referring to the biological associations 
between TCM syndromes, herbal formulas, and 
molecular networks was proposed in 1999 and 2002[9]. 
A milestone article proposed a new network-based 
TCM research paradigm in 2007[11]. The new term 
"network pharmacology" was introduced in Nature 
Biotechnology by Hopkins[12].

This approach integrates bioinformatics and 
computational biology to predict drug targets and 
pharmacodynamic processes, significantly 
accelerating drug development. Recent advancements 
in bioinformatics resources have expanded its 
applications in drug screening and mechanistic 
studies. For example, Liu et al. [13] successfully 
employed network pharmacology to identify the 
therapeutic potential of Astragalus flavonoids in 
diabetic nephropathy, which was subsequently 
validated through in vitro experiments. However, 

experimental validation remains crucial for ensuring 
the reliability of the results. In combination with 
network pharmacology, molecular docking predicts 
ligand-receptor interactions through spatial 
configuration and electrostatic analyses[14]. This 
technique enables presynthesis evaluation of bioactive 
compounds, reducing experimental costs and 
timelines. Xu et al. [15] demonstrated its utility by 
identifying the cis-isomer of the PI3K inhibitor 6g as 
having superior antitumor activity compared to its 
trans-isomer, a finding later confirmed by in vitro 
testing. Furthermore, molecular dynamics (MD) 
simulations address the static limitations of docking 
by modeling dynamic protein-ligand interactions 
under physiological conditions, allowing quantitative 
assessment of binding free energy and complex 
stability.

In this study, we integrate network 
pharmacology, molecular docking, and MD 
simulations to systematically investigate the anti-NB 
mechanisms of PA. This multimodal approach aims to 
identify potential therapeutic targets and establish a 
theoretical foundation for the development of novel 
NB treatments.

1　Methods

1.1　Databases and software
This study utilized the following databases for 

data collection and analysis: SwissTargetPrediction 
(http://swisstargetprediction. ch/), Genecards (https://
www.genecards.org), OMIM (https://omim.org), TTD 
(https://db. idrblab. net/ttd/), PharmGkb (https://www.
pharmgkb.org/), Drugbank (http://www.drugbank.ca/), 
SuperPRED (https://prediction. charite. de/), PubChem 
(https://pubchem. ncbi. nlm. nih. gov), DAVID (https://
david.ncifcrf. gov), and PDB (https://www. rcsb. org/). 
Software tools included Cytoscape 3.7.2, Pymol 2.5, 
and AutoDock 1.5.7.
1.2　Drug target prediction

PA's chemical formula was input into the 
SwissTargetPrediction, SuperPred, and PharmMapper 
databases for target prediction. SwissTargetPrediction 
predicts drug targets based on known chemical 
structures of drug molecules, covering targets across 
human, mouse, and rat species, with over 300 000 
known compounds and 3 000 targets. SuperPred 
predicts drug targets by extracting drug-target 
interaction data from BindingDB, SuperTarget, and 
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ChEMBL, encompassing approximately 340 000 
compounds and thousands of targets. PharmMapper 
uses pharmacophore models to predict target proteins, 
containing over 50 000 unique pharmacophore 
models. The database was used in September 2024.
1.3　Neuroblastoma target retrieval

Using the keyword "neuroblastoma" relevant 
therapeutic targets were identified from TTD, 
PharmGKB, OMIM, Genecards, and Drugbank 
databases. TTD contains over 5 000 drug targets and 
hundreds of targets for approved drugs. PharmGKB, a 
leading pharmacogenomics resource supported by the 
National Institutes of Health (NIH), provides 
comprehensive pharmacogenomics data. OMIM is an 
evolving human genetic information database with 
over 16 000 gene entries. GeneCards is a 
comprehensive database integrating transcriptomics, 
genomics, and proteomics information, while 
Drugbank is a reliable bioinformatics database of 
experimentally validated drug data. The retrieval time 
of the database was all in September 2024.
1.4　GO and KEGG enrichment analyses

Genes meeting the P.adjust<0.001 criterion were 
used for enrichment analysis. Gene ontology (GO) 
functional enrichment analysis was performed using 
the DAVID database (https://davidbioinformatics. nih.
gov/) [16], while pathway enrichment analysis was 
conducted using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway database[17]. GO 
functional annotation graphics were generated via the 
Bioinformatics website (https://www. bioinformatics.
com.cn/). The database was used in September 2024. 
Firstly, GO terms that were preliminarily considered 
to be significantly enriched in the gene set enrichment 
analysis were screened out with a P-value<0.05. 
Then, the original P-values were corrected using the 
Bonferroni correction method to obtain the P. adjust 
values or q-values. These corrected P-values were 
used to control the proportion of false positive 
discoveries.
1.5　PPI network construction

Using the STRING database (https://cn.string-db.
org/) for protein-protein interaction (PPI) network 
analysis, important nodes within the target proteins 
were identified by constructing the PPI network[18]. 
The database was used in September 2024.
1.6　Molecular docking for PA target validation

Molecular docking was performed to validate 

network pharmacology results by predicting the 
binding interactions between PA and relevant target 
proteins. Structures of small-molecule ligands and 
target protein receptors were obtained from the 
PubChem and PDB databases. Preprocessing and 
identification of active pockets were done using 
Pymol and AutoDock software, with binding modes 
assessed based on binding energy. The database was 
used in September 2024.
1.7　Molecular docking

Molecular docking was used to study the 
molecular affinity of the small molecule PA to core 
target protein. The protein crystal structures were 
downloaded from the PDB database, and 3D 
structures of small molecules were downloaded from 
the PUBCHEM database. We performed the 
molecular docking work by employing AutoDock 
Vina 1.1.2 software[19]. Prior to docking, PyMol 2.5 
was used to process all receptor proteins (including 
removal of water molecules, salt ions and small 
molecules). ADFRsuite 1.0 was used to convert all 
processed small molecules and receptor proteins into 
the PDBQT format required for docking with 
AutoDock Vina 1.1.2[20]. The docked conformation 
with the highest molecular docking score was 
considered to be the binding conformation for 
subsequent molecular dynamics simulations. We 
analyzed and compared the binding site poses, 
chemical bond lengths and chemical bond angles of 
the original crystal ligand to the protein by re-docking 
the original crystal ligand and the protein using the 
original crystal ligand of the protein target as a 
positive reference. Finally, the consistency of the 
binding mode can indicate the correctness of the 
molecular docking scheme.
1.8　Molecular dynamics simulations

Based on the docking results, the best-posed 
complex was subjected to MD simulation studies 
using the Groningen Machine for Chemicals 
Simulations (GROMACS) 5.0 package with a 
CHARMM36 force field[21] under periodic boundary 
conditions for molecules. Ligand topology files were 
generated using the CHARMM General Force 
Field[22]. The charge of the system was neutralized by 
the addition of the ions. The energy was minimized 
using a steepest-gradient method to remove any close 
contacts. The particle mesh Ewald (PME) method was 
employed for energy calculation and for electrostatic 
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and van der Waals interactions. The systems were 
equilibrated in the NVT ensemble for 50 000 steps, 
followed by equilibration in the NPT ensemble for an 
additional 50 000 steps. Finally, 100 ns molecular 
dynamics simulations were performed at 26.85℃ with 
a 2.0 fs time step, and coordinates were saved every 
picosecond for analysis[23-24].
1.9　 Molecular Mechanics/Poisson Boltzmann 
（Generalized Born）  Surface Area binding free 
energy calculation

The Molecular Mechanics/Poisson Boltzmann 
(GeneralizedBorn) Surface Area (MM-PBSA) method 
was used to calculatethe free energy of binding 
between proteins and ligands[25]. We used 100 ns 
molecular dynamics simulations forthe calculation. 
The calculation equation is as follows:

∆Gbind = ∆Gcomplex - (∆Greceptor + ∆G ligand) = ∆E internal +
∆Evdw + ∆Eelec + ∆GPB + ∆GSA

ΔGbind is the binding free energy, which serves as 
a key parameter for evaluating the stability and 
affinity of the interaction between the ligand and the 
target protein. A more negative value indicates a more 
favorable binding interaction. ΔGcomplex, ΔGreceptor, 
ΔGligand are the total free energies of the ligand-
receptor complex, the unbound receptor, and the 
unbound ligand, respectively. The difference between 
these terms is used to estimate the energy change 
during the binding process. ΔEinternal is the internal 
energy of the molecule, including bond, angle, and 
dihedral energies. This term reflects the extent of 
conformational changes induced by binding. ΔEvdw 
(van der Waals energy) represents van der Waals 
interactions, describing non-specific interactions 
between molecules, particularly those associated with 
hydrophobic contacts. ΔEelec (electrostatic energy) 
refers to the electrostatic (coulombic) interactions 
between charged atoms within the system, which are 

critical for determining the specificity and strength of 
the binding. ΔGPB is the polar solvation free energy, 
calculated using the Poisson–Boltzmann (PB) model. 
It accounts for the electrostatic interactions between 
the solute's charged groups and the surrounding polar 
solvent, such as water.ΔGSA is the nonpolar solvation 
free energy, usually estimated based on the solvent-
accessible surface area (SASA). This term reflects the 
contribution of hydrophobic effects to the overall 
binding process.
1.10　CCK-8 assay for assessing cell viability

Neuro-2a (N2a) neuroblastoma cells were seeded 
at a density of 1×104 cells per well in 96-well plates. 
After exposure to varying concentrations of PA for a 
duration of 24 h, 100 μl of the Cell Counting Kit-8 
(CCK-8) reagent was added to each well. The plates 
were then incubated at 37° C for 2 h. Absorbance 
readings were obtained at a wavelength of 450 nm 
using a microplate reader. Cell viability was 
subsequently determined using the formula: 
(absorbance of experimental group)/(absorbance of 
control group)×100%.
1.11　RT‒qPCR for core gene expression analysis

Total RNA was isolated from cells using Trizol 
reagent and quantified with a Nanodrop 2000 
spectrophotometer. Reverse transcription was 
conducted using a reverse transcription kit, and 
quantitative PCR (RT-PCR) was performed with 
SYBR-Green reagent. The reaction conditions were as 
follows: the qPCR procedure consisted of an initial 
uracil-DNA glycosylase (UDG) reaction at 37°C for 2 
min, followed by pre-denaturation at 95°C for 3 min. 
The amplification was carried out for 40 cycles, with 
each cycle comprising denaturation at 95° C for 5 s 
and annealing/extension at 60° C for 30 s. Relative 
gene expression was calculated using the 2−ΔΔCt 
method, with P<0.05 considered statistically 
significant. Primer sequences are listed in Table 1.

Table 1　Primer sequences for RT‒qPCR

Gene

AKT1

EGFR

SRC

HSP90AA1

β-actin

Forward

5’-CCTCTGCTTTGTCATGGAGTACG-3’

5’-ACAGCATAGACGACACCTTCCTC-3’

5’-TGGTTTCAGAGGAGCCCATTTAC-3’

5’-CACGTCTCTGCATTCCCTGTCAC-3’

5’-GTGCTATGTTGCTCTAGACTTCG-3’

Reverse

5’-AGCCCGAAGTCTGTGATCTTAAT-3’

5’-TGGCTTGGACACTGGAGACTG-3’

5’-CACTTTGCACACCAGGTTCTCTC-3’

5’-GTCTCAACCTCCTCCTCCTCCATC-3’

5’-ATGCCACAGGATTCCATACC-3’
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1.12　Western blot
Total protein was extracted from cells using 

RIPA lysis buffer supplemented with protease and 
phosphatase inhibitors and quantified via BCA assay. 
Proteins (30 μg per sample) were separated by 12% 
SDS-PAGE and transferred to PVDF membranes 
using a wet transfer system at 200 mA for 2 h. 
Membranes were blocked with 5% non-fat milk in 
TBST for 1 h at room temperature, followed by 
incubation with primary antibodies (diluted 1:1 000 in 
blocking buffer) overnight at 4° C. After 3 washes 
with TBST, membranes were incubated with HRP-
conjugated secondary antibodies (1:5 000 dilution) for 
1 h at room temperature. Protein bands were 
visualized using an ECL chemiluminescence detection 
system, and band intensities were quantified using 
ImageJ software. β -actin was used as a loading 
control, and relative protein expression levels were 
normalized to β -actin. Statistical significance was 
defined as P<0.05.
1.13　Statistical analysis

Data were statistically analyzed using GraphPad 
Prism 8. 3. 0 software. All data are represented by 
mean±SD. Analysis of multiple groups was performed 
by one-way analysis of variance (one-way ANOVA) 
followed by the Tukey's post hoc tests. If only 2 
groups were being compared, the Student's t test was 
used. P<0.05 was considered statistically significant.

2　Results

2.1　Effect of PA on NB cell viability via the CCK-
8 assay

To evaluate the effect of PA on the viability of 
NB cells, CCK-8 assay was performed with the N2a 
cell line as a model system. This assay was conducted 
to quantify cell viability following a 24-hour exposure 
to PA. As shown in Figure 1a, PA reduced the viability 
of N2a cells in a concentration-dependent manner, 
with a statistically significant decrease observed at 
concentrations of 10 μmol/L and 20 μmol/L after the 
24-hour treatment period.
2.2　 Screening and prediction of PA and NB 
targets

A comprehensive analysis identified 1 557 genes 
associated with NB from databases such as TTD, 
PharmGKB, OMIM, GeneCards, and DrugBank. 
Subsequently, predictive tools including 
SwissTargetPrediction, PharmMapper, and 
SuperPRED were utilized to forecast 471 potential PA 
targets. Through Venn analysis, the intersection of 
these datasets revealed 142 common genes, which 
were identified as potential PA targets for NB (Figure 
1b, Table 2).
2.3　GO enrichment analysis

GO enrichment analysis was conducted on 142 
PA-NB target genes, employing a selection criterion 
of P.adjust < 0.01 across the biological process (BP), 
cellular component (CC), and molecular function 

Table 2　142 common genes identified as potential PA targets for NB

142 possible target genes for NB

MMP2

PTPN11

ARF4

FGF1

NFE2L2

FNTB

PTGS2

MME

GSR

GSTM1

GRIN1

SRC

ADAM17

CHRM3

MMP9

ERBB4

PLK1

THRB

CHRM1

AURKB

EDNRB

ARG1

NTRK3

KDR

MAPK1

TOP2A

CDK2

AKT1

DDX39B

EGFR

IGF1

PLA2G2A

KCNH2

PPARG

MTOR

FHIT

ADAM10

CCNA2

HMOX1

PLAT

MAPK8

PDE4B

PIK3R1

ALB

TGFB2

MAOA

ESRRA

CACNA1B

KDM1A

JAK2

TGFBR1

GSK3B

RARA

PIK3CG

BCL2L1

CHRM2

PDGFRA

PTGS1

RAC1

GRB2

TACR1

HSPA8

MAPK14

NR1H2

CDC42

STAT1

CRABP2

MDM2

HPRT1

OPRM1

IDH1

EPAS1

NOS2

MAPK12

CAPN1

RARB

CDK6

STAT3

BMP2

ANXA5

FAP

AKT2

ABL1

TLR4

HDAC10

YARS1

SOD2

CDK1

CASP8

PRKCD

CTSB

CASP1

ESR1

RAN

TTR

NQO1

AKR1B1

RARG

MIF

P2RX7

FGFR1

PREP

MAPK10

GSTP1

LCK

SPHK1

CASP7

HSP90AA1

MAOB

NR4A1

TERT

INSR

MAP2K1

ESR2

MET

CHEK1

SCN4A

AURKA

FGFR2

XIAP

HRAS

CASP3

BACE1

IL2

HIF1A

CDKN1A

NFKB1

BRAF

ALOX5

BCHE

OPRK1

ABCB1

KIT

APAF1

CTSD

PARP1

NME2

LGALS3

METAP2

CDK5

ABCC1

CYP3A4
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(MF) categories. This analysis revealed 312 biological 
processes, 65 cellular components, and 75 molecular 
functions. All significant GO enrichment results 
passed false discovery rate (FDR) <0.05 significance 
threshold. The top 10 results for each category were 
visualized, with bubble size denoting the number of 
differential proteins and color representing the 
adjusted P-value. A more intense red color indicates a 
lower P-value, signifying a stronger association. GO 

enrichment analysis was conducted on 142 PA-NB 
target genes, employing a selection criterion of P.
adjust < 0.001 across the BP, CC, and MF categories. 
This analysis revealed 312 biological processes, 65 
cellular components, and 75 molecular functions. The 
top 10 results for each category were visualized, with 
bubble size denoting the number of differential 
proteins and color representing the adjusted P value. A 
more intense red color indicates a lower P value, 
signifying a stronger association (Figure 1c–f).
2.4　KEGG enrichment analysis

KEGG pathway analysis was performed on the 
142 PA-NB target genes, applying a significance 
threshold of P. adjust<0.01. All significant GO 
enrichment results passed FDR<0.05 significance 
threshold. The results were visualized according to 
target count and P-value, as illustrated in Figure 1h. 
Notably, pathways such as phosphoinositide 3-kinase-
protein kinase B (PI3K-Akt), mitogen-activated 
protein kinase (MAPK), and Ras signaling pathways 
potentially significantly affected the anti-NB activity 
of PA (Figure 1g). Current research indicates that 
signaling pathways such as PI3K-Akt and MAPK are 
closely associated with the occurrence and 
progression of NB, suggesting that PA may exert its 
anti-NB effects through these pathways[26].
2.5　 PPI network construction and core gene 
screening

The intersecting 142 PA-NB targets were 
subsequently imported into the STRING database to 
construct a PPI network, which was visualized using 
Cytoscape (Figure 1g). Core proteins with a degree 
value exceeding 60 were identified, leading to the 
selection of 14 high-interaction proteins, as detailed in 
Table 3 and Figure 1h.
2.6　Molecular docking validation of PA and key 
target proteins

Proteins with a degree greater than 80, including 
RAC-alpha serine/threonine-protein kinase (AKT1), 
epithelial growth factor receptor (EGFR), proto-
oncogene tyrosine-protein kinase Src (SRC), and heat 
shock protein 90 alpha family class A member 1 
(HSP90AA1), were identified as core targets. The 
binding affinity between a ligand and a receptor is 
inversely related to the binding energy; thus, a more 
negative binding energy denotes stronger binding. 
Typically, a binding energy below – 4.25 kcal/mol 
signifies a certain degree of binding activity, whereas 

Fig. 1　 Network pharmacology-based exploration of PA 
targets and pathways in NB
（a）  CCK-8 assay results showing the viability of N2a cells treated 

with different concentrations of PA. （b）  Venn diagram illustrating 

the overlapping potential targets of PA for the treatment of NB. （c–

f）  Gene ontology （GO）  analysis of the potential targets， 

including biological process （BP）， molecular function （MF）， 

and cellular component （CC）  categories. （g）  KEGG pathway 

enrichment analysis of the potential targets， highlighting the most 

significantly enriched pathways. （h）  Protein-protein interaction 

（PPI）  network of the identified targets.

PIBB Onlin
e Firs

t 

PIBB Onlin
e Firs

t 

PIBB Onlin
e Firs

t



·8· XXXX; XX (XX)生物化学与生物物理进展  Prog. Biochem. Biophys.

values below – 5.00 kcal/mol indicate good binding 
activity, and those below – 7.00 kcal/mol reflect 
strong binding activity. As demonstrated in Table 4 
and Figure 2, PA exhibited strong binding affinity 
with AKT1, EGFR, SRC and HSP90AA1. These 
findings imply that all four core proteins could 
contribute to the therapeutic effects of PA against NB. 
These results suggest that PA effectively binds to 
these four protein targets.
2.7　Molecular dynamics simulation of PA-target 
protein complexes

To further validate the stability and dynamic 
behavior of PA binding to core target proteins, 
molecular dynamics (MD) simulations were 
performed for the PA-AKT1, PA-EGFR, PA-SRC, and 
PA-HSP90AA1 complexes over 100 ns.
2.7.1　RMSD and RMSF analysis

To assess the structural stability of the protein-
ligand complexes during molecular dynamics 
simulations, the root mean square deviation (RMSD) 
values of both the protein backbone and the ligand 
relative to their initial conformations were calculated 
(Figure 3a, b). All the complexes reached equilibrium 
within 10 – 20 ns, followed by relatively minor 
fluctuations, indicating stable and reliable 
simulations. Notably, the PA-HSP90AA1 and PA-
SRC complexes presented lower RMSD values for 
both the backbone and ligand, suggesting stable 
binding conformations. In contrast, the PA-EGFR 
complex showed slightly greater RMSD fluctuations, 
indicating potential conformational flexibility (Figure 

3b). To further investigate local flexibility and 
dynamic behavior, the RMSF of individual residues 
was computed for each complex (Figure 3c–f). In the 
PA-AKT1 complex (Figure 3c), most residues 
presented root mean square fluctuation (RMSF) values 
below 0.2 nm, with only minor fluctuations at the N- 
and C-terminal regions. This indicates a stable core 
domain and minimal structural perturbation upon 
ligand binding. In the PA-EGFR complex (Figure 3d), 
moderate fluctuations were observed at several 
residue positions, especially in loop regions and the C-
terminal domain, suggesting localized conformational 
adaptability upon ligand interaction. The PA-
HSP90AA1 complex (Figure 3e) presented the 
highest RMSF values, exceeding 1.2 nm at the N-
terminal region, indicating substantial flexibility, 
which may be functionally relevant to its chaperone 
activity. In contrast, the PA-SRC complex (Figure 3f) 
showed consistently low fluctuations across most 
residues, indicating a stable conformation with only 
slight flexibility at terminal regions. Taken together, 
the RMSD and RMSF analyses revealed that the PA-
SRC and PA-AKT1 complexes exhibit both global 
and local structural stability, whereas the PA-EGFR 
and PA-HSP90AA1 complexes demonstrate greater 
flexibility, which may play a role in their interaction 
mechanisms with PA.
2.7.2　 Radius of gyration （Rg）  and solvent 

accessible surface area （SASA）

The Rg values (Figure 4e) indicated that all 4 
protein-ligand complexes maintained relatively stable 

Table 3　Topological parameters related to the core targets of PA and NB

Name

AKT1

SRC

EGFR

HSP90AA1

ALB

HRAS

CASP3

STAT3

ESR1

MTOR

HIF1A

BCL2L1

MAPK1

MMP9

Protein name

RAC-alpha serine/threonine-protein kinase

Proto-oncogene tyrosine-protein kinase Src

Epithelial growth factor receptor

Heat shock protein 90 alpha family class A member 1

Albumin

HRas proto-oncogene， GTPase

Caspase 3

Signal transducer and activator of transcription 3

Estrogen receptor 1

Mechanistic target of rapamycin kinase

Hypoxia inducible factor 1 subunit alpha

BCL2 like 1

Mitogen-activated protein kinase 1

Matrix metallopeptidase 9

Betweenness

1 594.13

1 298.61

894.88

1 320.53

1 007.89

856.37

646.77

390.06

597.39

261.52

380.68

226.94

451.27

495.30

Degree

97

87

83

83

79

79

78

75

74

72

72

64

63

63

Closeness

0.74

0.71

0.69

0.69

0.69

0.68

0.67

0.66

0.66

0.65

0.65

0.62

0.63

0.62

Clustering coefficient

0.32

0.42

0.38

0.40

0.35

0.43

0.67

0.66

0.66

0.65

0.65

0.62

0.63

0.62
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conformations throughout the 100 ns molecular 
dynamics simulation. Similarly, the SASA analysis 
(Figure 4f) revealed minimal fluctuations in the 
solvent-accessible surface area, suggesting that ligand 
binding did not induce significant global 
conformational changes in the protein structures. The 
consistent SASA values imply that the surface 
exposure of residues remained stable, and that no 
significant unfolding or structural loosening occurred 

Table 4　Molecular docking results

Ligand

PA

PA

PA

PA

PDBID

6CCY

1XKK

2BDF

2BYH

Receptor

AKT1

EGFR

SRC

HSP90AA1

Binding energy/（kcal ‧

mol–1）

–8.2

–7.5

–7.4

–7.3

Fig. 2　Pictorial representation of the molecular interactions between cerevisterol and the top 4 targets
（a）  Molecular docking model of PA with AKT1. （b）  Molecular docking model of PA with SRC. （c）  Molecular docking model of PA with 

EGFR. （d）  Molecular docking model of PA with HSP90AA1.
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Fig. 3　Molecular dynamics simulation results of PA-target complex
（a）  Root-mean-square deviation （RMSD）  analysis of the backbone structures of AKT1， EGFR， HSP90AA1， and SRC complexes with PA 

over a 100 ns molecular dynamics （MD）  simulation. （b）  RMSD of PA as a ligand after alignment to the protein backbone in different 

complexes. （c–f）  Root-mean-square fluctuation （RMSF）  of protein residues in the AKT1/PA， EGFR/PA， HSP90AA1/PA， and SRC/PA 

complexes， respectively， indicating the flexibility of specific regions. The y-axis represents the RMSF values in nanometers （nm）， indicating 

the average atomic positional fluctuations of each residue over the course of the simulation. （g–j）  Number of hydrogen bonds formed between PA 

and AKT1， EGFR， SRC， and HSP90AA1 during the MD simulation， demonstrating the stability of the ligand-protein interactions. The y-axis 

represents the number of hydrogen bonds formed between the ligand and the protein over the course of the simulation.
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during ligand interactions. These findings suggest that 
the complexes retained their native-like structural 
integrity under dynamic equilibrium, which may 
contribute to reduced off-target interactions and lower 
toxicity risks, thereby supporting the potential of PA 
as a therapeutically favorable compound.
2.7.3　Hydrogen bond analysis

Hydrogen bonding plays a crucial role in ligand 
binding stability. The number of hydrogen bonds 
between PA and each target protein was monitored 
over time (Figure 3g – j). The PA-EGFR complex 
exhibited the greatest number of persistent hydrogen 
bonds, supporting the strong binding affinity observed 
in molecular docking. PA also formed stable hydrogen 
bonds with AKT1, HSP90AA1, and SRC, reinforcing 
the reliability of the docking results.
2.7.4　Gibbs free energy landscape

The Gibbs free energy landscape (Figure 4a–d) 
was constructed to analyze the conformational 
stability of the ligand-protein complexes. All the 
systems displayed a single deep energy basin, 
suggesting a stable binding mode with minimal 
conformational shifts. Notably, the PA-EGFR and PA-
SRC complexes had the deepest free energy wells, 
which aligns with the strong binding affinities of these 
complexes observed in docking studies. The MD 
simulation results confirmed the stable binding of PA 
to all four core target proteins. The lower RMSD, 
stable Rg, and persistent hydrogen bonds indicate 
favorable interactions, whereas the Gibbs free energy 
analysis further supports the strong binding of PA to 
EGFR and SRC. These findings reinforce the 
hypothesis that PA exerts its therapeutic effects on NB 
through interactions with these core proteins.
2.8　 MM/PBSA and per-residue decomposition 
analysis of four core proteins

In our study, the binding free energy and 
interaction energy components of the four 
compounds, AKT1, HSP90AA1, EGFR and SRC 
were analyzed using the MM-PBSA approach (Table 
5, Figure S1a–d).

Binding energy decomposition analysis revealed 
that specific amino acid residues in AKT1, EGFR, 
SRC, and HSP90AA1 play crucial roles in PA 
binding. In the PA-AKT1 complex, residues such as 
ASP323, GLU328, and GLY178 exhibited notably 
strong binding affinities, contributing significantly to 
PA stabilization. Similarly, in the PA-EGFR complex, 

residues ASP855, GLU844, and GLU762 presented 
the strongest binding interactions, indicating key 
electrostatic and hydrogen bonding contributions. For 
the PA-HSP90AA1 complex, ASP93, GLU47, and 
GLY134 were the primary residues involved in 
stabilizing PA binding, further supporting the high 
binding affinity of PA to HSP90AA1 observed via 
RMSD analysis. Similarly, in the PA-SRC complex, 
ASP404, GLU310, and GLU329 play dominant roles 
in ligand binding, suggesting that these residues may 
be critical for PA-mediated modulation of SRC 
activity.
2.9　RT-qPCR validation of core gene expression

RT-qPCR analysis was conducted to assess the 
mRNA levels of these targets. Relative to the control 
group, PA treatment at concentrations of 10 μmol/L 
and 20 μmol/L for 24 h resulted in a significant 
decrease in the mRNA levels of AKT1, SRC, and 
EGFR. In contrast, the expression of HSP90AA1 was 
increased (Figure 5 a–d).
2.10　 Validation of core protein expression by 
Western blot

To further validate the regulatory effects of PA 
on core targets at the protein level, Western blot 
analysis was performed on PA-treated N2a cells. 
Following 24 h of treatment with PA at concentrations 
of 10 μmol/L and 20 μmol/L, the protein expression 
levels of AKT1, SRC, and EGFR were significantly 
decreased (Figure 5e). Conversely, under the same 
treatment conditions, the protein expression of 
HSP90AA1 was markedly increased (Figure 5e).

3　Discussion

In this study network pharmacology was utilized 
to predict the potential protein targets of PA in NB, 
and these targets were validated through 
multidimensional approaches, including molecular 
docking, RT-qPCR, Western blot, and molecular 
dynamics simulations. Comprehensive analysis 
demonstrated that PA exerts anti-NB effects by 
targeting AKT1, EGFR, SRC, and HSP90AA1, with 
consistent modulation across transcriptional, 
translational, and conformational levels.

KEGG pathway analysis revealed that PA-
targeted genes in NB are significantly enriched in the 
PI3K/AKT, MAPK, and Ras signaling pathways, 
supporting the hypothesis that PA exerts its 
antineuroblastoma effects via these pathways.
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Fig. 4　Molecular dynamics simulation results of PA-target complex
（a–d）  Gibbs free energy landscapes of AKT1， EGFR， HSP90AA1， and SRC in complex with PA. The three-dimensional energy landscapes 

（left）  and corresponding two-dimensional projections （right）  illustrate the conformational stability and energy minima of each protein-PA 

complex along principal component axes （PC1 and PC2） . Lower Gibbs energy regions （blue）  indicate more stable conformational states. （e）  

Radius of gyration （Rg）  analysis of AKT1， EGFR， HSP90AA1， and SRC complexes with PA over a 100 ns molecular dynamics （MD）  

simulation. Rg reflects the compactness and structural stability of the protein-ligand complexes. （f）  Solvent-accessible surface area （SASA）  of 

AKT1， EGFR， HSP90AA1， and SRC in complex with PA during the MD simulation， indicating changes in protein exposure to the solvent and 

potential binding stability.
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Western blot results indicated that PA treatment 
led to a concentration-dependent reduction in SRC, 
AKT1, and EGFR protein expression in N2a cells, 
which was consistent with the downregulation 
observed at the mRNA level via RT-qPCR. These 
results support the dual transcriptional-translational 
regulatory role of PA in modulating these targets. 
Integrating MD simulation data, this phenomenon can 
be mechanistically explained as follows: PA anchors 
to residues such as ASN391 and GLU310 through 
hydrogen bonding and hydrophobic interactions, 
stabilizing a closed SH2 domain conformation (RMSD
<1.5 Å, 3–4 hydrogen bonds), thereby inhibiting its 
autophosphorylation at Tyr416 and reducing kinase 
activity. This inhibition likely triggers E3 ubiquitin 
ligase (e.g., c-Cbl)-mediated proteasomal degradation, 
further downregulating transcription via negative 
feedback mechanisms (e.g., miR-34a regulation)[27-28]. 
PA binding to AKT1 may prevent its membrane 
translocation and phosphorylation at Ser473, leading 
to the accumulation of inactive AKT1 in the 
cytoplasm and the suppression of its gene expression 
via the mTORC1-FOXO pathway[29].

Current studies have demonstrated aberrant 
expression and functional dysregulation of EGFR in 
various human malignant tissues and tumor cells[30]. 
EGFR primarily exerts its oncogenic effects through 
dimerization-induced stimulation of the Ras protein, 
leading to phosphorylation cascades that activate the 
PI3K/Akt signaling pathway. Importantly, EGFR 
activation recruits and phosphorylates SRC, thereby 
amplifying downstream PI3K/AKT and MAPK 
signaling pathways, which may serve as a critical 
driver for NB cell survival and metastasis[31]. The 
findings of the present study are consistent with the 

KEGG and GO analysis results obtained in our study. 
Furthermore, accumulating evidence has revealed that 
the EGFR/SRC/AKT1 axis plays pivotal roles in 
regulating cellular proliferation, survival, 
differentiation, and apoptosis processes in 
neuroblastoma cells[27]. The dynamic binding pattern 
of PA (RMSD ~3.0 Å) suggests ATP-competitive 
inhibition, which promotes EGFR ubiquitination and 
degradation while concurrently suppressing the EGFR/
SRC/AKT1 signaling axis at both the transcriptional 
and translational levels[32].

Unlike those of SRC, AKT1, and EGFR, the 
protein and mRNA expression of HSP90AA1 were 
significantly decreased in a PA concentration-
dependent manner. Previous studies have shown that 
under conditions of cellular stress, HSP90 stabilizes 
receptor proteins, preserving structural integrity and 
function. MD simulations revealed that PA interacts 
HSP90AA1 (backbone RMSD of ~3.5 Å, 1 – 3 
hydrogen bonds), in a highly dynamic way, 
suggesting that PA does not form a rigid complex but 
may induce localized or dynamic conformational 
changes that interfere with HSP90 function rather 
than act as a direct strong binder. Such interference 
could activate heat shock factor 1 (HSF1) -mediated 
stress responses, triggering compensatory HSP90AA1 
upregulation to maintain protein homeostasis[33]. 
However, the destabilization of client proteins by PA 
may counteract the prosurvival effects of HSP90 
upregulation, ultimately leading to tumor cell death.

Although this study provides preliminary 
conclusions, further investigations are needed. 
Specifically, the biological significance of HSP90 
compensation should be elucidated, including whether 
HSP90AA1 upregulation contributes to drug 
resistance and whether PA exhibits synergistic 
therapeutic effects with HSP90 inhibitors such as 17-
AAG. Moreover, as the current findings are based on 
cellular experiments, in vivo studies are necessary to 
validate the reproducibility of target modulation and 
assess the therapeutic potential in animal models.

4　Conclusion

This study elucidates the multitarget anti-NB 
mechanism of PA through a combination of network 
pharmacology, molecular docking, RT-qPCR, and 
molecular dynamics simulations. PA preferentially 
stabilizes the inactive conformations of SRC and 

Table 5　Binding free energy and detailed energy term con⁃
tributions calculated by MM-PBSA method （kcal/mol）

ΔGvdw

ΔGeel

ΔGsolv

ΔGTotal

AKT1

–36.15

146.70

–123.40

–12.86

HSP90AA1

–19.93

53.00

–46.36

–13.28

EGFR

3.04

–151.91

115.53

–33.34

SRC

–44.30

–31.88

55.94

–20.24

Notes: ΔGvdw： van der Waals interactions， critical for shape com‐

plementarity and hydrophobic packing； ΔGeel： electrostatic contri‐

butions， including hydrogen bonds and salt bridges； ΔGsolv： sol‐

vation effects， where polar/nonpolar terms balance desolvation pen‐

alties and hydrophobic gains； ΔGTotal： the sum of all terms， pre‐

dicting overall binding affinity.
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Fig. 5　Effects of PA on AKT1 ， SRC ， EGFR ， and HSP90AA1 expression at the mRNA and protein levels
Relative mRNA expression levels of AKT1， SRC， EGFR， and HSP90AA1 after treatment with different concentrations of PA. Changes in the 

mRNA expression of AKT1 （a）， SRC （b）， EGFR （c）， and HSP90AA1 （d）  following treatment with different concentrations of PA. 

（e）  Representative Western blot images and quantitative analysis showing dose-dependent downregulation of AKT1， SRC， and EGFR protein 

levels following 24 hours of treatment with PA （10 μmol/L and 20 μmol/L） . The data are presented as the mean±SD （n=3） . *P<0.05， **P<

0.01， ***P<0.001 vs. control group.
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AKT1 via high-affinity interactions, dynamically 
inhibits EGFR, and disrupts HSP90AA1-client protein 
interactions, collectively suppressing the PI3K/AKT, 
MAPK, and Ras signaling pathways. These findings 
not only advance our understanding of the 
polypharmacological effects of PA but also provide a 
structural foundation for rational drug design targeting 
NB.

Supplementary  Available online (http://www. pibb.
ac.cn, http://www.cnki.net ):
PIBB_20250154_Figure_S1.pdf
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摘要 目的　本研究旨在通过网络药理学、分子动力学与实验验证等方法，探究茯苓酸（pachymic acid，PA）在治疗神经

母细胞瘤（neuroblastoma，NB）中的潜在分子靶点及其作用机制。方法　本研究首先基于网络药理学方法筛选PA可能作

用于NB的靶点，随后结合分子对接、分子动力学（MD）模拟、MM/PBSA自由能计算及RT-qPCR、Western blot实验进行

多维度验证。结果　CCK-8实验显示，PA对NB细胞具有浓度依赖性的抑制作用。KEGG通路富集分析提示，PA的抗NB

作用可能通过调控 PI3K-Akt、MAPK 及 Ras 等信号通路实现。分子对接及分子动力学模拟结果表明，PA 可与 AKT1、

EGFR、SRC及HSP90AA1等核心靶蛋白稳定结合。RT-qPCR与Western blot分析进一步证实，PA处理可显著下调AKT1、

EGFR及SRC的mRNA和蛋白质表达水平，同时上调HSP90AA1的表达水平。结论　茯苓酸可能通过抑制AKT1、EGFR和

SRC的表达，调控PI3K/AKT信号通路，从而发挥其抗神经母细胞瘤作用。研究结果为PA在NB治疗中的潜在应用提供了

重要的实验依据。
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