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Abstract
strategy could be used in the transcriptional regulatory network. A collaboration network of target genes (TGs) was constructed based

Collaboration networks have proven informative when used to describe various kinds of human relationships. Similar

on common transcription factors (TFs), and similarly, a smaller network of transcription factors was constructed based on their common
target genes. After clustering the target gene collaboration networks, genes in the same cluster were often enriched for one or more GO
terms. The results also showed that genes with specific GO terms tend to share similar regulatory mechanisms. It indicates that in a
collaboration network approach the relatively simple "regulatory mechanism" measure used here was able to extract considerable
biologically relevant information. Moreover, a definition of anomaly used before in a bipartite graph analysis method was applied into
the collaboration networks analysis. And the correlation between the anomalies and the essential genes was discovered. In a conclusion,

a collaboration network approach may be a valuable supplement to other analyses of transcriptional networks.
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To reveal the gene transcriptional regulations in a
cell is important for understanding the gene functions.
In the past years, many types of data sources which can
aid in detecting the transcriptional regulations were
rapidly
immunoprecipitation (ChIP) data which provides the

accumulated, such as the chromatin
protein-DNA interactions [ 2. Many of the previous
studies on gene transcriptional regulation networks
focus on the network topology analysis, for example,
the degree distribution, clustering coefficient, or
analyzing the motif P~ In the topology structure
analysis, the regulation network is conceptualized as a
directed network graph. Its analysis process is different
from the undirected graph such as protein-protein
interaction network. There were many other works
which aimed at discovering the correlations between
regulatory mechanisms and the gene functions. For
example, Yu et al’s study © indicated that genes
targeted by the same transcriptional factors are more
likely to share related functions than expected
randomly, and the more common TFs they shared, the
more pronounced the functional similarity they have.

In the transcriptional regulatory network, when

we considered the similarities of regulatory
mechanisms, two aspects of information should be
involved. One is the regulatory similarity between
transcription factors (TFs), which measures if they tend
to regulate the same target genes; the other is the
regulatory similarity between target genes (TGs),
which measures if they tend to be regulated by the
same TFs. However, the studies of the regulatory
mechanisms before usually took one aspect of
information into consideration at one time * 7, and
seldom paid attention to the correlation of them both.
If we transformed the regulatory network into two
networks which capture the mechanism similarities of
TFs and TGs separately, not only it could be clear and

convenient to apply the network analysis methods to
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investigate more and detailed correlations between
regulatory mechanism similarities and gene functions
in each network, but also it is possible to investigate
the gene properties which are correlated with both of
the two networks.

Collaboration networks have proven informative
when used to describe various kinds of human
relationships ® °. A collaboration network can be
established by connecting two elements with some
common features, e.g. two actors with a common
membership in a given organization or co-authors of a
published paper. Within a cell or an organism genes
can be linked in similar networks according to their
"membership" in a metabolic pathway or functional
structure, or by the transcription factors that control
their activity. We therefore used the protein-DNA
interaction (PDI) data underlying the transcriptional
regulatory network of Luscombe et al'¥ to construct a
collaboration network among TGs based on the TFs
they have in common, and similarly, a smaller network
of TFs linked by their common TGs. The weights of
links between nodes in the collaboration networks
represent the regulatory similarities between TFs or
TGs. Accordingly by this step we transformed the
transcriptional regulatory network into two undirected

networks, which capture the information of
mechanism similarities of TFs and TGs separately.
We adopt a statistical method based on

hypergeometric distribution to measure the similarities
of regulatory mechanism, which was applied before on
protein-protein interaction network to estimate the
probability of two proteins’ closeness in the
network ' and used in the transcriptional regulatory
network to assess the similarity of target sets between
two TFs!. This measurement has a prominent quality
that it shows considerable resistance to the noise in the
network. The relative order of most of the weights was
maintained even after disturbing the network by
adding up to 50% random connections™. As we know,
the current transcriptional regulatory network data is
noisy and incomplete; a weight measure strategy that
resists noise should induce more reliable analysis
results.

Here, we introduced the collaboration networks to
analyze yeast transcriptional regulatory network (PDI:
protein-DNA interaction) network. We clustered the
TG and TG collaboration networks separately and
correlations  between

recaptured the regulatory

mechanisms and gene functions. Moreover, we found

an interesting phenomenon that the anomalies in

collaboration networks have relations with the

essential genes.

1 Materials and methods

1.1 Dataset

To build collaboration networks, we used the data
from transcriptional regulatory network  of
S. cerevisiae . This network integrated data from
genetic, biochemical and ChIP-chip experiments,
which comprised 3 459 genes, including 142 TFs.
Most of TFs directly acted on more than 30 target
genes, and totally there were 2 444 directed links from
TFs to TGs.
1.2 Construction of transcriptional collaboration
networks

Genes in the transcriptional regulatory network
were divided into two groups, TFs and TGs. The TF
group consisted of 142 genes, and the TG group
consisted of 3 420 genes. There were 103 overlapping
genes, which were found in both TF and TG groups.
Applying the definition of Newman ™ * collaboration
networks were constructed for each group separately.
Any two TFs targeting the same gene were connected
by an undirected edge; similarly, any two TGs targeted
linked, thereby

transforming the directed PDI network into two

by a common TF were also

undirected collaboration networks.
1.3 Definition of the weights in collaboration
networks
We measure the weight of links (that is, the
similarity between the regulatory mechanisms
involving any two TFs or TGs) in collaboration
networks from a statistical method which already used
in Protein-Protein network [ and transcriptional
regulatory network .
(N) (N—m) (N—m)
P(N,np,no,m)="4 \n}\;m'N\nz_m'
o
_ (N=-n)'(N-n2)'ni!n,!
N'm!(ni-m)(no—m)(N-n—ny+m)!
For the measuring of link weight between TF1
and TF2, as showed in the formula, ;V denoted the total

number of genes in TG network, n, and n, denoted the

numbers of target genes in TG network of TF1 and
TF2 respectively. m denoted the number of common
target genes shared by TF1 and TF2. This formula
calculated the probability of sharing m common target
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genes for the two TFs. Weights of two genes in TG
collaboration network were calculated by similar
strategies. For the clustering calculation conveniently,
the probabilities were transformed as In(probabilities)x
(=1) to be the final weight value.
1.4 Clustering of collaboration network

We applied the agglomerative hierarchical
clustering algorithm in R package with average
distance setting to cluster the vertices in the TG
network according to weight values!™" ', As TG pairs
with at least two TFs in common intuitively appear as
the most interesting part of the dataset, we used a
threshold of Weight = 5 to cut the hierarchical
clustering tree for most analyses; however, also other
thresholds were tested for comparison. Clusters with
more than two genes with GO annotations were
selected (called "valid clusters") for further analyses.
All clusters were examined for significant enrichment
of genes with similar GO annotations (SGD Gene
Ontology Slim Mapper ¥) with respect to "process",
"function”, and '"component" terms (the terms
"unannotated" and "process /function /component
unknown" were not included). Enrichment of a cluster
in some GO terms was evaluated statistically by a
P-value based on the "Hypergeometric distribution",
and P < 0.05 was set as the threshold to evaluate the
significance. Benjamini and Hochberg’s False
Discovery Rate approach ¥ was applied to adjust
P-values for multiple testing problems.
1.5 GO terms distribution in enrichment clusters

To check genes with which terms were also with
similar regulatory mechanisms, and with which terms
were with not so similar regulatory mechanisms, we
collected the genes which in enrichment clusters (thus
with similar regulatory mechanism) and with same GO
terms (thus with functional relations), then compared
the gene numbers distribution of these GO terms to the
background (the gene numbers of the GO terms in all
the clusters). Apply the "Hypergeometric distribution”
a P-value which depicted the probability for observing
the certain number of genes with certain term in
enriched clusters from the background was calculated
for each term. If the P-value is below 0.01, we said
genes with this term were significant enriched in
enrichment clusters, greater than 0.99, means genes
with this term were significant absent in enrichment
clusters. Because the GO terms have three types
(process, function, component terms), we must test

them separately. The threshold 5 is taken (The

threshold determines how to cut off the hierarchy tree
to get the clusters).
1.6 Anomaly analysis

To get more regulatory data for improving the
reliability of this analysis, we integrated two sets
of ChIP-on-chip data™ '™ and calculated the two
collaboration networks separately again. First we
calculated the anomaly score of each TG according to
the average link weigh of its TFs in the TF
collaboration network. Then we sorted all TGs with
their anomaly score from small to big. The yeast
essential gene data were downloaded from DEG
database™. We counted the number of essential genes
per 100 TGs which had already sorting with anomaly
score.

2 Results and discussion

2.1 Constructions of collaboration networks

We used the protein-DNA interaction (PDI) data
from Luscombe et al ¥ to construct a collaboration
network among target genes, and also a smaller
network among the transcription factors (See
Materials and methods). The TG collaboration
network (TG network) was constructed by linking any
two TGs, which were controlled by common TFs and
comprised 3 420 genes and 466 175 links. Similarly,
the TFs were linked into a collaboration network (TF
network) by their common target genes, resulting a
network of 142 genes and 2 444 links. To capture the
generic features of the two networks, some commonly
used network measurement parameters ~were
calculated!'”. The average node degree was 32 for the
TF network and 263 for the TG network, indicating
that both networks are very dense, especially the TG
network. Since each node has so many links to other
nodes, it takes only few links to travel from one node
to any other node, thus the average shortest path
between two nodes for the two networks is quite small,
2 for the TF network and 1.8 for the TG network. The
average clustering coefficient, characterizing the
overall tendency of the nodes to cluster, was 0.8 and
0.6 for the TF and TG networks, respectively. Such
high wvalues indicate that the two collaboration
networks (especially the TG network) are dense not
only on the whole but also on the local scale. Overall,
these network topology measurement parameters
suggests that the collaboration networks are much
denser than the most other biological networks, e.g.
protein-protein interaction networks!"*.
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For the TG network, the weights range from 0.9
to 43.5 (Figure 1a); with the weight value is higher, the
regulatory pattern of the two linked TGs is more
similar. A few regulatory patterns were more common
than others, for instance, two TGs regulated by the
same single TF (W= 4.95) or two TGs regulated by one
shared TF, but one had been regulated by another TF
(W= 4.26). Links of these two patterns made up more
than half of all TG links, and about 95% of the gene
pairs shared only one TF (W < 4.95). Pairs sharing at
least two TFs (W > 4.95) comprised only 5% of the
whole TG network (Figure 1a). So the weight of 5 was
set as a default threshold to produce valid data for
further analysis.

In the same fashion as for the TG network, we
used common target genes to construct a collaboration
network between the 142 TFs in the PDI data. The TF
network contained 2 444 links with weights ranging
from 0.94 to 241.80. However, different from the
unbalanced discrete distribution of the weights in the
TG network, the number of links decreased gradually
(in a non-linear fashion) with increasing weights
(Figure 1b). The difference of weight distributions
might be caused by the unbalanced scale of the two
collaboration networks. For one TF, its average TG
number was around 24 while for one TG its average
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Fig. 1 Weight distribution of collaboration networks
(a)Weight distribution of the TG collaboration network. Approximately
95% of the links has weight smaller than 5. The distribution of links with
weights greater than 5 is shown in the insert. (b) The weight distribution
of the TF collaboration network.

TF was only about 0.04. Therefore for TG network the
TF sharing patterns were relatively fewer and simple,
for example most TG pairs only share one TF, whereas
for TF network the TG sharing patterns were more
complicated, that they shared more and variant number
of TGs. It caused relative more smooth weight
distribution of TF collaboration network than that of
TG collaboration network.

Testing the robustness of weight measurement
method against network noise showed that even after
insertion of up to 50 % false links, of the top 5% links
of the corresponding collaboration networks, about
85% and 70% were still retained in the TF and TG
networks, respectively, indicating the robustness of the
weight calculation ' also applies to this type of
network. For currently PDI data were noisy and
uncompleted, a robustness method was necessary for
generating credibility resulting.

2.2 TG collaboration network analysis

To test for possible correlations
regulatory mechanism and biological functions of the

between

target genes, clustering vertices with at least two
common TFs (i.e. threshold W =5) according to
similarities in regulatory mechanism produced 215
clusters (See Materials and methods). Of these 52%
were significantly enriched for one or more GO terms,
comprising 69% of all TGs genes, showing that in a
collaboration network approach the relatively simple
"regulatory mechanism" measure used here is able to
extract considerable biologically relevant information.
We called clusters that were significantly enriched for
one or more GO terms "enrichment clusters", the
others that were not enriched for any GO term are
With more
the percentage decreased (Table 1),

"non-enrichment clusters".

thresholds

stringent

Table 1 Proportion of clusters enriched in GO terms”

Network Threshold Process  Function Component  Any
3 0.38 0.29 0.35 0.63

5 0.35 0.26 0.22 0.52

TG 9 0.24 0.20 0.19 0.36
12 0.23 0.26 0.24 0.42

15 0.23 0.20 0.23 0.38

5 0.56 0.04 0.04 0.59

9 0.24 0.20 0.19 0.36

TF 15 0.57 0.04 0 0.61
54 0.47 0 0 0.47

UClusters were produced with different thresholds (the second column).
The proportion of clusters enriched in the GO terms "process",
"function" and "component” (third to fifth column, respectively), or in
any of the three terms (the sixth column) are listed.
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however, more than one-third of the clusters were still
significantly enriched for one or more GO terms even
at W =15. When the threshold was relaxed from 5 to 3
(meaning that some gene pairs sharing only one TF are
included), the number of valid clusters also decreased
as each cluster contained more members, but the
percentage of enrichment clusters increased to 62%,
which reflects the observation that genes sharing only
one TF may also be functional related®.

If genes sharing the same GO terms also with
similar regulatory mechanisms, they would be more
possible to cluster together so as to be enriched in

clusters, otherwise they would dispersed into different
clusters, with the result that their GO terms would be
hardly over represent in clusters. Based on the
assumption, after comparing the GO terms distribution
of the enrichment and non-enrichment clusters (The
GO terms distribution was defined as how many genes
were involved in each GO term), we found a minority
of all possible GO terms were actually enriched in
enrichment clusters, (find the methods in Materials
and methods). Of 31 GO process terms, six terms
were significantly over-represented in one or more
clusters (Figure 2a). These terms were protein
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Fig. 2 GO term distribution of enrichment clusters

Gene number frequencies of each GO term in enrichment clusters (Enrich) compared to the background, which were genes proportions with each GO

term in all clusters(Total). Threshold 5 was taken to cut 215 clusters. With each term a P-value was calculated to depict the probability for observing this

number of genes with this term in enrichment clusters from the background. If the P-value was below 0.01(marked by star), it indicated that genes with

this term were significant enriched in enrichment clusters, greater than 0.99 (marked by hat), means genes with this term were significant absent in

enrichment clusters (See Materials and methods). Three types of GO terms had corresponding three figures, and they were the GO process terms (a),

the GO function terms (b), and the GO component terms(c). The x-axis denoted the serial number of each GO term, please see supplementary for

descriptions of each GO term. [___J: Total; __: Enrich.
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biosynthesis (term 2), cell cycle (term 6), generation of
energy (term 10),
12), cellular
respiration (term 26), and electron transport (term 31).

precursor metabolites and

carbohydrate  metabolism  (term
Similarly, of the 20 GO function terms, only three
terms were significantly over represented in any cluster
(Figure 2b); these were the terms "structural molecule
activity (term 4)", "oxidoreductase activity (term 6)",
and "helicase activity (term 14)". Of the 22 GO
component terms, "ribosome (term 4)" was the most
prominent (P-value 4.1 x107%) of six significantly
enriched terms (Figure 2c).

Taken together, the clustering data had recaptured
some central components of the cellular. The most
enrichment term of the process, function and
synthesis", "structural

molecule activity" and "ribosome", respectively, all

component terms "protein

demonstrated  the  coordinated  transcriptional
regulation of genes involved in the ribosome itself or
in ribosomal activity. Actually, of total 134 genes with
one of the three terms in the enrichment clusters, 100
genes were with the three terms both. Among them,
majority are ribosome components, the left genes are
related to telomere maintenance. Another particular
case was process term 31 ("electron transport"). Only
15 yeast genes had been annotated with this term, out
of which 10 were significantly enriched in clusters,
showing that these genes had very similar regulatory
mechanisms. All of those genes take part in
oxidation-reductionreactionof the cytochrome C.

Moreover, some terms were significantly absent
from enrichment clusters (Find the methods in
Materials and methods, Figure 2), suggested that the
regulatory mechanisms of the genes with these terms
are relatively not so similar. For the process terms,
they were transport (term 0), organelle organization
and biogenesis (term 1), transcription (term 4), protein
modification (term 8), vesicle-mediated transport (term
9). For the function terms, hydrolase activity (term 0)
inclined to be absent from significant clusters. Similar
conclusions were also obtained with other thresholds
(data not shown). It might be for that these kinds of
terms contained genes involved in variant roles, or
long range pathways.
2.3 TF network analysis

The TF network was clustered in the same way as
the TG network. Although the GO term "transcription
process" was common to all TFs, some clusters also

shared other GO process terms. At threshold 5, nearly

60% TF clusters were significantly enriched in some
GO term. For example, HSF1, YAP1, CAD1, MSN4
and MSN2 shared the GO terms "response to abiotic
stimulus" and "response to stimulus", and PUTS3,
ARG80, GCN4, and ARGS81 shared GO term of
With more
thresholds, the proportions were slightly reduced
(Table
enriched in GO process terms than those in function or
probably because the poor
annotation of TFs for GO function and component

"amino acid metabolism". stringent

1), More TF clusters were significantly

component terms,

terms (including only terms like "transcription

regulator activity", "DNA binding", "nucleus" and so
on).
2.4 Anomalies in the collaboration networks

Since we have transferred the PDI from a directed
network into two collaboration networks, more
sophisticate network properties which are correlated
with both of the two networks can be analyzed.

Discovering the anomalies from data sources is a
challenge in the data mining fields. Anomaly usually
means the "non-normal" observation in the data. Its
definition is complex because the definition of
"normality" is various depending on the data sources!"”.
Here we applied a definition of anomaly in a bipartite
graph analysis method® into the collaboration networks.
And tried to detect the biology meanings of these
anomalies.

For each gene in the TG collaboration network,
we extracted its corresponding TFs from the TF
collaboration network. Then we calculated the average
link weight among these TFs, and took this average
weight as a score to evaluate the anomaly degree of
this TG. We denoted this score as "anomaly score" of
this TG. Because the link weight between TFs in the
TF collaboration network measures the similarity of
their target gene sets, to some degree it reflects the
similarity of the "regulatory behavior" between TFs.
Thus for each TG, its anomaly score reflects the
"behavior similarity" among its corresponding TFs.
Less the anomaly score of a TG is, more dissimilar are
the behaviors among its TFs. Now we are interested in
what is the biology property of a TG if it tends to be an
anomaly.

We test the correlation between the anomaly
score of TGs and the essentiality of them. We found
that, with the anomaly score increasing, the proportion
of essential genes within the TGs has a tendency to
decrease (See Materials and methods). In other
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words, when the TG is more likely an anomaly, it
seems that it is more probably the essential gene
(Figure 3). It can be explained as that: If the weight
between two TFs in the TF collaboration network is
strong, it means the two TFs may regulate the similar
target genes, and it implies that they probably tend to
participate in the similar biology processes. A gene
tends to be an anomaly means than this gene is
regulated by several TFs which are probably involved
in different biology processes, to some extend it means
this gene might also be necessary in different biology
processes. Therefore it might be an important gene
because deletion of it will affect the running of
multiple pathways. That’s probably the reason why the
anomaly score of TG has the correlation with the
"essential genes".
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Fig. 3 The correlation between the essential genes and the
anomaly scores

The x axis denotes the In value of the average anomaly score for each

100 TGs; y axis denotes the number of essential genes per 100 TGs. This

picture shows that with the anomaly scores of TGs decreasing, the gene

tend to be more likely an essential gene.

The anomaly scores were also calculated for each
TF by the average link weight of their target genes in
the TG network. However, with too few essential
genes within these TFs, we did not find any significant
correlation between the anomaly score and the
essentiality of genes.

This result the topology of
regulatory network implies the information of the

indicates that,

importance of the genes. After we transfer the
regulatory network into two collaboration networks,
this information could be more easily to be dug out.

3 Conclusions

In this study, we introduced the concepts of
collaboration networks to study gene regulatory
network. Applying this strategy, yeast transcription

regulatory
collaboration

network was transferred into two

networks. Gene pairs in each
collaboration network were assigned weights of
regulation similarity by a statistical model. Through
the known

and gene

the collaboration network approach,
correlation of regulatory similarities
functions are discovered again. And more importantly,
new properties related to both of the networks could be
investigated. We applied a definition of anomaly in an
bipartite  graph method 7 into the
collaboration networks analysis. And found the

correlation between the anomalies and the essential

analysis

genes. In conclusion, a collaboration network approach
may be a valuable supplement to other analyses of
transcriptional networks.
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