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Abstract 茁-Turn is a secondary protein structure type that is important in protein folding, protein stability and molecular recognition
processes. To date, various methods have been put forward to predict 茁-turns, but none of them have tried directly to map the structures
of pre-existing homologues from structural databases like RCSB PDB to the protein to be predicted. Given the large size of PDB
(>70 000 structures), it is actually of high possibility to find a structural homologue for a newly identified sequence. In this work, we
present a new method that predicts 茁-turns by combining homology information extracted from PDB with the results predicted by
NetTurnP. Two datasets, the golden set BT426 and the self-constructed dataset EVA937, are used to assess our method. For each
sequence in both datasets, only homologues deposited earlier than the sequence in PDB are employed. We have achieved Matthews
correlation coefficients (MCCs) of 0.56, 0.52 respectively, which are higher than those obtained by NetTurnP alone of 0.50, 0.46, and
the prediction accuracies (Qtotal) obtained using our method are 81.4% and 80.4% separately, while NetTurnP alone achieves 78.2% and
77.3% . The results confirm that combining the homology information with state-of-the-art 茁-turn predictors like NetTurnP can
significantly improve the prediction accuracy. A Java program called BTMapping has been written to implement our method, which is
freely available at http://www.bio530.weebly.com together with the related datasets.
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Information about secondary protein structures is
useful for a wide range of applications including
prediction of solvent accessibility[1], fold type[2], folding
rate [3], 茁-turns [4], 琢-turns [5], contact order [6], tertiary
structure [7], and fold recognition [8]. Therefore, its
prediction has been an area of intense research over
the past three decades. The secondary structure of a
protein can be classified as local structural elements of
琢-helices, 茁-strands and coil regions. 茁-Turns are
actually ordered local structures of coil regions. On
average, about 25% of residues in protein structures
form 茁-turns [9], so they are one of the most abundant
secondary structures. A 茁-turn consists of four
consecutive residue which are not in an 琢-helix, and
the distance between the C琢-atoms i, i+3 is less than 7 魡.

茁-Turns can be further classified into nine subtypes [10],
according to the dihedral angles between amino acid
residues i+1 and i+2.

茁-Turns play many significant roles in the
structure and function of protein and peptide. Because
of their four-residue reversals in protein, 茁-turn
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formation is an important step in the process of
protein folding [11], while improved 茁-turn sequences
can improve protein stability[12-13]. Additionally, 茁-turns
are crucial components of 茁-hairpins and anti-parallel
茁-sheets, whose prediction has recently attracted
interest[14-15]. Moreover, 茁-turns tend to be more solvent
exposed than buried and thus they are often related to
molecular recognition and modeling interactions
between peptide substrates and receptors [16]. In recent
years, research interest has been aroused in
mimicking 茁-turns for the synthesis of medicines [17-18]

and nucleating 茁-sheet folding[19].
Due to the importance of 茁-turns in biology,

many 茁-turn prediction methods have been proposed
so far. They can be divided into statistical methods and
machine learning techniques. Table 1 lists main 茁-turn
prediction methods and their performance of 7-fold
cross-validation on the golden dataset BT426.
Statistical methods utilize probabilities computed
using information concerning preferences of individual
amino acid types at each position in 茁 -turns. It is
shown in Table 1 that the statistical methods have
poorer performance, and among them only a recent
method called COUDES [4] obtains a MCC of 0.42,
while others [20-24] only obtain MCCs in the range of
0.17 ～0.33. Compared with statistical methods,
machine learning methods have better performance.
The most accurate 茁-turn predictors today utilize
machine learning techniques. Neural network was the
first used to predict 茁-turns as a machine learning
method though the first version only reached MCC
accurary of 0.2 [25]. Since then, neural networks have
been frequently used and improved for 茁-turn
prediction[26-30]. NetTurnP[30] is the latest neural network
茁-turn predictor that uses two layers of neural
networks and achieves a MCC of 0.49, which is the
highest reported performance as a de novo (sequence-
based) predictor on a two-class prediction of 茁-turn
and non-茁-turn. Other machine learning techniques
introduced to 茁-turn prediction include k-nearst-
neighbor [31] that reached a MCC of 0.40 and support
vector machines [8, 32-37] (SVM) achieving MCCs in the
range of 0.44～0.48. Different from earlier versions
of SVM predictors is a recent two-layer SVM
predictor ShapeString_Pred[38], which utilizes predicted
secondary structures and predicted shape strings as
input features. September 2010 release of PDB
homologue information was indirectly used in

ShapeString_Pred since the predicted shape strings
were actually derived from PDB homologues using a
web server and part of the secondary structures
were predicted by Proteus which also used PDB
homologues. The dataset BT426, however, was created
in 2000[39]. As PDB database from a later date contains
more homologues to a query sequence that can be
found through BLAST, it is of higher possibility to
find optimal homologues for structure mapping to
reach a better prediction accuracy. ShapeString_Pred
achieved a MCC of 0.66 for the BT426. With the same
release of the PDB information, the method in this
article had a MCC of 0.7152. Further discuss of how
the prediction accuracy changes with the date of PDB
release is deferred to Section 2.4.

For a newly identified protein sequence, however,
only structures deposited earlier in the PDB can
actually be employed for structure mapping. Though
quite a few methods are available to predict 茁-turns,
none of them are able to directly assign the structures
of deposited homologues in structural databases to the
target protein sequence. However, similar strategy has
been used for the prediction of protein secondary
structure and improved the classification accuracy of
the basic local structural elements of 琢-helices,
茁-strands and coil regions [40]. It has been reported that
less than 3% of new protein structures deposited into
the PDB have a totally novel fold[41], and nearly 3/4 of
newly deposited PDB structures have sequence
identities greater than 25% to a pre-existing structure[40].
In this work, we developed a method to improve
茁-turn prediction by combining the direct homology
information extracted from PDB with NetTurnP[30]. For
each query sequence to be predicted, its homologues
were obtained by using BLAST [42] against a recent
release of PDB sequences. Then a multiple sequence
alignment was conducted by ClustalW[43-44] to align the
query sequence with all its homologues. Finally, a
mapping technique was used to map the structure
(茁-turn or not 茁-turn) of the optimal homologue to the
query sequence for each position in the alignment. The
prediction accuracy of the new method under different
sequence identity levels from BLAST hits of the query
sequences was investigated. A Java program called
BTMapping was written to complete all the above
mentioned processes, which is accessible at http://
www.bio530.weebly.com.
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Type 茁-Turn predictor
Measure

MCC Qtotal/% Qpre /% Qobs /%

SVM ShapeString_Pred[38] 0.66 87.2 73.8 75.9

DEBT[37] 0.48 79.2 54.8 70.1

Zheng and Kurgan[34] 0.47 80.9 62.7 55.6

Hu and Li[35] 0.47 79.8 55.6 68.9

Zhang et al.[33] 0.45 77.3 53.1 67.0

BTSVM[32] 0.45 78.7 56.0 62.0

Liu et al.[36] 0.44 80.9 63.6 49.2

NN MOLEBRNN[28] 0.45 77.9 53.9 66.0

BETAPRED2[27] 0.43 75.5 49.8 72.3

BTPRED[26] 0.35 74.4 48.3 57.3

NetTurnP[30] 0.50 78.2 54.4 75.6

NetTurnP-tweak[30] 0.48 82.1 68.8 50.9

NetTurnP 7-fold[30] 0.49 78.1 54.4 74.2

KNN Kim[31] 0.40 75.0 46.5 66.7

ST 1-4&2-3 correlation model[21, 45] 0.17 59.1 32.4 61.9

GORBTURN[20, 45] 0.19 70.5 39.3 37.3

Chou-Fasman[22, 45] 0.26 65.2 37.6 63.5

Thornton[23, 45] 0.23 68.0 38.6 52.4

Sequence coupled model[24, 45] 0.33 72.2 45.0 60.0

COUDES[4] 0.42 74.8 48.8 69.9

SVM: support vector machine; NN: neural network; KNN: k-nearest neighbor; ST: statistical. In the table, there are three rows for NetTurnP.
From the top down, NetTurnP is referring to the performace of direct prediction on BT426 that was treated as an independent test set,
NetTurnP-tweak is the approach that was tweaked for best Qtotal performance, and NetTurnP 7-fold is referring to a 7-fold cross-validation
performed on the BT426 dataset.

Table 1 Summary of different 茁鄄turn prediction methods on BT426 dataset using a 7鄄fold cross鄄validation

1 Materials and methods
1.1 Datasets

Two datasets, BT426 and a newly-constructed
EVA937, were used to evaluate the performance of our
method, while the third new dataset EVA300 was used
for parameter optimization. BT426 was developed by
Guruprasad and Rajkumar in 2000 [39]. In BT426, there
are 426 protein sequences, with the average length
223.6 residues, the 茁-turns were assigned using
PROMOTIF[46]. The pairwise sequence identity between
any two protein chains is below 25% . The structure
was determined by X-ray crystallography with at least
2.0 魡 resolution, and each chain contains at least one
茁-turn. We downloaded the BT426 dataset following
the link given by one recent paper that introduces
predictior BTNpred [34]. In this version of BT426
dataset,one sequence named "1adoa" was corrected for
its inconsistency with the corresponding sequence in

PDB. EVA937 was newly constructed. Since 茁-turn
prediction is closely related to protein secondary
structure prediction, a dataset used to evaluate a
secondary structure predictor Proteus was revised to
make it suitable for 茁-turn prediction, and this dataset
was actually derived from EVA[47] that continously and
automatically analyses protein structure prediction
servers in "real time". The dataset downloaded from the
Proteus website initially have 1 774 PDB protein IDs.
According to the ID, the corresponding pdb file can
be downloaded, and then the 茁-turns can be assigned
by PROMOTIF [46]. For all 1 774 IDs, the sequence
represented by the ID that meets the following several
rules was then selected: (1) The amino acid sequence
contains at least 15 residues; (2) There are no residues
of unknown amino acid type in the sequence; (3) The
atom coordinates from the pdb file of the ID are
continuous and complete for every amino acid. Finally,
1 237 proteins were selected. No pair of these proteins
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has more than 33% identical residues over more than
100 residues aligned. 300 proteins were randomly
selected as EVA300 to optimize the parameters of our
method, and the remaining 937 proteins are the
EVA937 used to test the performance of our method.
The average length of sequences in EVA937 is 194.4
residues.
1.2 Using BLAST against PDB to find homologues

The latest 2.2.25 linux version of BLAST program
was downloaded from NCBI's ftp site at ftp://ftp.
ncbi.nlm.nih.gov/blast/executables/release/LATEST.
A FASTA file containing all PDB sequences by
April 5, 2011, was downloaded from PDB's structure
download page at http://www.pdb.org/pdb/download/
download.do. All proteins were selected and filtered
by CD-HIT[48] utility at 95% sequence identity threshold
to accelerate the BLAST process, which means all
sequences with > 95% sequence identity to any other
sequence were removed. When we were using any one
of the three datasets (BT426, EVA300, EVA937), all
sequences contained in the dataset were removed from
the filtered FASTA file. The formatdb tool in the
BLAST program was further used to format the file to
the database files recognized by BLAST. For each
query sequence of the three datasets, its homologues
were found by BLAST against the filtered set of PDB
sequences. The BLAST command we used is "blastall
-p blastp -d pdb -i queryFile -o outputFile -e 1e-3 -F F
-a 4", and the expectation value following the tag "-e"
is 10-3, which is enough to include all the hits we need.
Only hits with more than 25% sequence identity to the
query sequence were treated as homologues used for
structure mapping, and only hits deposited earlier in
the PDB than the query sequence were selected for
processing the three datasets used in this paper, which
is similar to the situation when we try to predict the
茁-turns of a newly identified sequence. A parameter
called "byDate" in our program is responsible for
controlling the selection of the hits deposited earlier
than a specified date. For the hits with more than 100
residues, this process is further controlled by a
parameter called Imax, which is the maximum sequence
identity of the hits to be selected to the query
sequence.
1.3 Using ClustalW to align the query and all
corresponding hits

ClustalW [43-44] is a program widely used for
multiple sequence alignment, which was used to align
the query sequence from the evaluation dataset with all

its homology hits from PDB. The current 2.1 version
of ClustalW can be downloaded from http://www.
clustal.org/.
1.4 Mapping the structure of homologues to the
query sequence

For each query sequence, the prediction result of
NetTurnP can be obtained from a website at http://
www.cbs.dtu.dk/services/NetTurnP/. According to the
multiple sequence alignment by ClustalW, a strategy of
sliding a 7 residue window over the alignment was
used to map the structures of homologues to the query
sequence. The same window size was adopted by
Proteus [40] using similar mapping strategy to predict
protein secondary structures. Each non-gap (i. e. not
"-") residue of the query sequence marks a column in
the whole alignment, centered around which a 7
residue window was opened. In this window, the
central non-gap residue of each aligned homologue
was assigned a probability value Ph, which is defined
as follows:

Ph=0.5+0.5·I忆g·Il (1)

I忆g= 1 if Ig >Tg

Ig if Ig臆Tg
嗓 (2)

Il=Ns/Lw (3)
These equations are defined based on the

following analysis. First, we assume the probability (i.
e. Ph) of assigning the type of the central residue of a
homologue over the window to the aligned residue of
the query sequence is 0.5. Ph can be increased depending
on the sequence identity of the homologue to the query
sequence over the whole sequence and over the
window. The higher both identities are, the higher Ph

would be. When the sequence identity over the whole
sequence exceeds a threshold, Ph mainly depends on
the sequence identity over the window. Among these
equations, Ig stands for the sequence identity of the
homologue to the query sequence over the whole
sequence using BLAST. I忆g is derived from Ig using a
threshold Tg. I l represents the sequence identity of the
homologue to the query sequence over the window,
which is calculated by dividing the number of identical
residues between the homologue and the query in the
window (i. e. Ns) with the length of the window (i. e.
Lw). The residue with the highest Ph in the homologue
is then privileged to assign its structure type (茁-turn or
non-茁-turn) to the aligned residue in the query
sequence if Ph meets either of the following conditions:
(1)Ph 逸 Pq; (2)Ph < Pq and Ph > Tl , where Pq represents
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Imax Tg Tl MCC
0.2 0.85 0.8 0.4704
0.3 0.85 0.8 0.4704
0.4 0.80 0.6 0.4725
0.4 0.85 0.8 0.4723
0.5 0.45 0.8 0.4809
0.6 0.45 0.8 0.4874
0.7 0.45 0.8 0.5005
0.8 0.45 0.8 0.5131
0.9 0.45 0.6 0.5273
0.9 0.45 0.8 0.5272
1.0 0.30 0.8 0.5425
1.0 0.45 0.8 0.5421

More decimal digits are retained for MCC than in Table 1 to show
its variation more precisely.

Table 2 Parameter optimization
using the EVA300 dataset

the probability value of NetTurnP prediction for the
aligned residue in the query sequence, and Tl is a
threshold value. If Ph meets neither conditions, the
predicted type (茁-turn or non-茁-turn) by NetTurnP is
retained for that residue.
1.5 Measures to evaluate our method

The quality of our method for classifying 茁-turn
and non-茁-turn is evaluated by five measures Qtotal, Qpre,
Qobs , MCC and AUC. Given that TP (true positives) is
the number of correctly classified 茁-turn residues, TN
(true negatives) is the number of correctly classified
non-茁-turn residues, FP (false positives) is the number
of non-茁-turn incorrectly classified as 茁-turn residues,
and FN (false negatives) is the number of 茁-turn
incorrectly classified as non-茁-turn residues, Qtotal

(prediction accuracy) is defined as the percentage of
correctly classified residues as

Qtotal= TP+TN
TP+TN+FP+FN 伊100% (4)

Qpre, also called precision, is the percentage of
correctly predicted 茁-turns among the predicted
茁-turns, i.e.

Qpre= TP
TP+FP 伊100% (5)

Qobs, also called sensitivity, is the percentage of
correctly predicted 茁-turns among the observed (true)
茁-turns, i.e.

Qobs= TP
TP+FN 伊100% (6)

Qtotal is sometimes misleading, so a more robust
measure is used, which is known as Matthews
Correlation Coefficient (MCC).

MCC= TP伊TN-FP伊FN
(TP+FP)伊(TP+FN)伊(TN+FP)伊(TN+FN)姨 (7)

MCC can be in the range of -1 to 1, where 1 is a
perfect correlation and -1 is the perfect anticorrelation.
A value of 0 indicates no correlation. Higher MCC
value corresponds to better performance of the
prediction method. AUC, short for Area Under the
Curve, is a threshold independent measure, and
calculated from the receiver operating characteristic
(ROC) curve which is a plot of the sensitivity against
the False Positive rate = FP/(FP+TN)[49]. An AUC value
above 0.7 is an indication of a useful prediction and a
good prediction method achieves a value > 0.85 [50].
AUCCalculator is a Java jar file for calculating the
AUC for both ROC graphs and Precision-Recall
graphs [51], which was downloaded from http://mark.
goadrich. com/programs/AUC/.

2 Results
2.1 Parameter optimization using EVA300

The EVA300 dataset was used to optimize the
two parameters Tg and Tl of the structure mapping
process. Given a fixed Imax, the grid search method was
used to find the optimal combination of Tg and Tl

according to the measure MCC. The search range of Tg

is from 0.2 to 0.9 with a step of 0.05, and Tl changes
from 0.5 to 0.9 with a step of 0.1 since Ph逸0.5 by
definition and Ph > Tl, which require Tl to be at least
0.5 to take effect as a threshold. We varies the values
of Imax itself from 0.2 to 1.0 with a step of 0.1 to
investigate the performance variation of our method at
different Tg, Tl combinations. Table 2 shows all optimal
combinations found. Considering the robustness of
different combinations at all Imax levels, we finally
decided to use the optimal combination Tg=0.85, Tl=0.8
when Imax<0.5, and Tg=0.45, Tl=0.8 when Imax逸0.5.

2.2 Evaluation of the method against BT426 and
EVA937

Two datasets, BT426 and EVA937, were used to
test the performance of our method for improving
茁-turn prediction. The results of our method were
compared with those predicted by NetTurnP alone. For
each query sequence of the two datasets, as mentioned
in Materials and methods, the BLAST hits with
sequence identity of more than 25% to the query were
selected. We set the parameter Imax to 1.0 to fully
employ homology information from the filtered PDB
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Fig. 2 ROC curves of NetTurnP and
BTMapping on EVA937 dataset

: NetTurnP; : BTMapping.

2.3 Evalution of the method by varying maximum
sequence identity

In order to evaluate the performance of our method
(i. e. BTMapping) under various conditions when the
BLAST hits of the query sequences have different
sequence identity levels, we vary Imax from 0.2 to 1.0
with a step of 0.1 to control the selection of the
BLAST hits that are more than 100 residues in length.
When Imax is small, only hits with low sequence identity
are included for predicting, but when Imax gets bigger,
hits with higher sequence identity are added. Both
BT426 and EVA937 are used for evaluation. Table 4
lists all the results for the gradient Imax and the results of
NetTurnP are also inserted for comparison, from
which we can see that by employing the homology
information from the BLAST hits, the accuracy of
NetTurnP has been improved, and the most robust
measure MCC increases as Imax increases for both
datasets. Since the BLAST hits we selected must have
more than 25% sequence identity to the query
sequences as mentioned in Materials and methods,
when Imax equals to 0.2, there are no BLAST hits
selected with >100 residues, the main contribution to
the increase of MCC comes from hits with 臆100
residues. When Imax equals to 0.3, all measures have the
same values as those when Imax equals to 0.2, which
means either the BLAST hits selected with > 0.25
and 臆0.3 sequence identity have little impact on
increasing the MCC or there are no such hits found at

Dataset Predictor
Measure

MCC Qtotal/% Qobs/% Qpre/% AUC
BT426 BTMapping 0.56 81.4 77.8 59.3 0.885

NetTurnP 0.50 78.2 75.9 54.1 0.864
EVA937 BTMapping 0.52 80.4 72.6 59.4 0.858

NetTurnP 0.46 77.3 70.6 54.1 0.838

database. Before predicting on either of the BT426 and
EVA937 datasets, the sequences in either dataset were
removed from the PDB database. The selected hits
must also be deposited earlier than the query sequence
(controlled by the parameter "byDate" in our
program), thus we can ensure that the query sequence
itself was not selected as a hit. Table 3 shows the
results of our method and NetTurnP on the two
datasets. For BT426 dataset, the prediction accuracy of
NetTurnP has been improved, MCC increases from

0.50 to 0.56 by 0.06, Qtotal changes from 78.2% to
81.4% by 3.2% increase and the other three measures
Qpre, Qobs, AUC also rise. For EVA937 dataset, the
situation is similar, MCC increases from 0.46 to 0.52
by 0.06, Qtotal from 77.3% to 80.4% by 3.1%, and the
other three measures Qpre, Qobs, AUC also rise. ROC
curves of the two methods on BT426 and EVA937
were plotted in Figure 1 and Figure 2, from which we
can see the increase of AUCs more clearly.

Table 3 Comparsion between our method and NetTurnP against the BT426 and EVA937 datasets

Fig. 1 ROC curves of NetTurnP and
BTMapping on BT426 dataset

: NetTurnP; : BTMapping.
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2.4 The impact of "byDate" value on prediction
accuracy and comparison with the predictor
ShapeString_Pred

The parameter "byDate" in our program controls
the selection of BLAST hits, only the hits deposited
earlier than the date represented by "byDate" are
adopted for structure mapping. Therefore, set with
different "byDate" values, our method may have
different prediction accuracies. For a newly identified
protein sequence, only structures deposited earlier in
the PDB can actually be employed for structure
mapping. BT426 was used for this testing. As
mentioned in Materials and methods, the recent
release of PDB sequences was filtered by CD-HIT [48]

utility at 95% sequence identity threshold and the
included BT426 sequences were removed from it. We
varied "byDate" from 1st January 1990 to 1st January
2011 with a step of one year. Additionally, the date 1st
September 2010 was also considered for comparison
with ShapeString_Pred. Table 5 reports the result. It

can be concluded from the table that as the "byDate"
value increases, MCC and Qtotal both increase, which
means the prediction accuracy becomes higher. We
believe the reason for this is that as the "byDate" value
gets nearer, more homologues to a query sequence can
be found through BLAST, and it is of higher
possibility to find optimal homologues for structure
mapping to increase the prediction accuracy. In order
to compare with the ShapeString_Pred, we constructed
a release of PDB sequences by applying a 30%
sequence identity cutting using CD-HIT[48] and removed
the included BT426 sequences as what was done in the
evaluation of ShapeString_Pred. Since the release of
PDB sequences adopted by ShapeString_Pred was
downloaded in September, 2010, we set the "byDate"
parameter to 01-SEP-10. As Table 5 shows, we
achieved a result of: MCC=0.7152, Qtotal=89.0%, Qobs=
83.2%, Qpre=74.8%, and this is better than the 7-fold
cross-validation result of ShapeString_Pred: MCC =
0.66, Qtotal=87.2%, Qobs=75.9%, Qpre=73.8%.

Dataset
Measure

MCC Qtotal/% Qobs/% Qpre/% AUC
BT426 0.4972 78.24 75.85 54.11 0.864

0.5013 78.45 76.07 54.42 0.866

0.5234 80.40 72.56 59.37 0.858

Imax

-
0.2

1.0

Predictor

NetTurnP
BTMapping

0.5013 78.45 76.07 54.42 0.8660.3
0.4 0.5020 78.49 76.06 54.50 0.866
0.5 0.5085 78.92 76.03 55.19 0.868
0.6 0.5198 79.53 76.40 56.16 0.871
0.7 0.5260 79.89 76.52 56.76 0.872
0.8 0.5276 79.97 76.58 56.89 0.873

0.9 0.5319 80.19 76.74 57.26 0.874
1.0 0.5561 81.39 77.84 59.27 0.885

EVA937 NetTurnP - 0.4638 77.28 70.59 54.09 0.838
BTMapping 0.2 0.4700 77.61 70.82 54.60 0.840

0.3 0.4700 77.61 70.82 54.60 0.840

0.4 0.4706 77.66 70.78 54.69 0.840
0.5 0.4790 78.17 70.82 55.55 0.842
0.6 0.4868 78.60 70.98 56.28 0.845
0.7 0.4952 79.04 71.22 57.04 0.848
0.8 0.4983 79.21 71.30 57.34 0.848
0.9 0.5009 79.33 71.45 57.54 0.849

More decimal digits are retained for the first four measures than in Table 1 to illustrate the change of them more clearly.

all. When Imax equals to any value in the range of 0.4 to
1.0, as Table 4 shows, the BLAST hits selected with

>100 residues start to obviously contribute to the
increase of MCC.

Table 4 The performance of BTMapping at different maximum sequence identity(Imax) levels on BT426 and EVA937
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byDate
Measure

MCC Qtotal/% Qobs/% Qpre/% AUC
01-Jan-90 0.5047 78.7 76.1 54.7 0.866
01-Jan-91 0.5064 78.7 76.2 54.9 0.867

b01-Sep-10 0.7152 89.0 83.2 74.8 0.921

01-Jan-92 0.5101 78.9 76.4 55.2 0.869
01-Jan-93 0.5202 79.5 76.6 56.1 0.873

01-Jan-94 0.5352 80.3 77.0 57.5 0.879
01-Jan-95 0.5517 81.2 77.6 58.9 0.884
01-Jan-96 0.5773 82.5 78.4 61.3 0.893
01-Jan-97 0.5955 83.4 79.1 62.9 0.898
01-Jan-98 0.6300 85.0 80.5 66.1 0.909
01-Jan-99 0.6632 86.5 82.1 69.0 0.918

01-Jan-00 0.6972 88.1 83.4 72.3 0.926
01-Jan-01 0.7245 89.3 84.5 75.0 0.931
01-Jan-02 0.7321 89.6 84.9 75.7 0.933
01-Jan-03 0.7416 90.0 85.1 76.7 0.935
01-Jan-04 0.7503 90.4 85.4 77.7 0.935

01-Jan-05 0.7540 90.5 85.8 77.8 0.936
01-Jan-06 0.7611 90.8 86.0 78.6 0.937
01-Jan-07 0.7650 91.0 86.1 79.0 0.937
01-Jan-08 0.7747 91.4 86.5 80.0 0.938
01-Jan-09 0.7805 91.6 86.9 80.5 0.938
01-Jan-10 0.7877 91.9 87.2 81.3 0.939

01-Jan-11 0.7897 92.0 87.3 81.4 0.939
a01-Sep-10 0.7898 92.0 87.4 81.4 0.939

a. The release of PDB sequences was filtered by CD-HIT at 95% sequence identity threshold. b. The release of PDB
sequences was filtered by CD-HIT at 30% sequence identity threshold, same as what was done in the paper introducing the
two-layer SVM predictor ShapeString_Pred [38]. More decimal digits are retained for the measure MCC than in Table 1 to
illustrate its variation more precisely.

3 Discussion
Testing on BT426 and EVA937, by using the

structures of homologues deposited earlier in PDB
than the query sequences to be predicted, we can
improve the prediction accuracy of a neural network
茁-turn predictor NetTurnP. In order to evaluate the
performance of our method (i. e. BTMapping) under
various conditions when the BLAST hits have different
sequence identity levels, we varied the Imax to simulate
such situations, and we found that even when Imax is
pretty low, the prediction accuracy of NetTurnP can be
improved. We believe this is contributed by the short
homologues (臆100 residues) and part of the long
homologues (>100 residues) with low Imax. As the
structural databases like PDB get larger, the possibility

of having homologues for a newly identified sequence
is higher and it is easier to be predicted accurately. We
varied the "byDate" parameter to see the performance
of our method, we found that when the "byDate" value
is closer to the present time, the prediction accuracy is
higher, which means more or better homologues are
found. Under the same conditions, comparing with the
recent two-layer SVM predictor ShapeString_Pred that
uses homology information from PDB in a different
way, our method shows better performance. Besides
NetTurnP, our method can be easily integrated with
other de novo 茁-turn predictors to improve their
performance as long as their outputs of prediction are
formatted as required.

There is still room for improvement in that it
can only conduct two-class (茁-turn or non-茁-turn)

Table 5 Performance of the method on BT426 dataset at different "byDate" values
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prediction currently. Since there are many 茁-turn
subtypes, we hope to extend our method for predicting
茁-turn subtypes in the future work. The algorithm of
the mapping process in our work is relatively simple,
which would allow integration with more sophisticated
algorithms to further improve the 茁-turn prediction
accuracy.
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运用 PDB中的同源信息提高 NetTurnP
的蛋白质 茁转角预测精度 *

钱 刚 1, 2) 王海燕 3) 袁哲明 1, 2)**

(1)湖南省作物种质创新与资源利用重点实验室，长沙 410128；2)湖南省植物病虫害生物学与防控重点实验室，长沙 410128；
3) Department of Statistics, Kansas State University, Manhattan, Kansas 66506, USA)

摘要 茁转角作为一种蛋白质二级结构类型在蛋白质折叠、蛋白质稳定性、分子识别等方面具有重要作用．现有的 茁转角预
测方法，没有将 PDB等结构数据库中先前存在的同源序列的结构信息映射到待预测的蛋白质序列上．PDB存储的结构已超
过 70 000，因此对一条新确定的序列，有较大可能性从 PDB中找到其同源序列．本文融合 PDB中提取的同源结构信息(对
每一待测序列，仅使用先于该序列存储于 PDB 中的同源信息 )与 NetTurnP 预测，提出了一种新的 茁 转角预测方法
BTMapping，在经典的 BT426数据集和本文构建的数据集 EVA937 上，以马修斯相关系数表示的预测精度分别为 0.56、
0.52，而仅使用 NetTurnP的为 0.50、0.46，以 Qtotal表示的预测精度分别为 81.4%、 80.4%，而仅使用 NetTurnP的为 78.2%、
77.3%．结果证实同源结构信息结合先进的 茁转角预测器如 NetTurnP有助于改进 茁转角识别．BTMapping程序及相关数据
集可从 http:// www.bio530.weebly.com获得．

关键词 茁转角预测，同源信息，PDB，NetTurnP，BTMapping
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