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Abstract Tunneling nanotubes (TNTs) are F-actin-based thin channel-like structures connecting distant cells, which provide a

new route for intercellular communication. Since TNTs are discovered, an increasing number of studies have demonstrated their

roles in the transfer of diverse cargoes between connecting cells, including signaling molecules, RNAs, proteins, organelles, and even

pathogens, which illustrate the diversity and complexity of TNTs' function. TNTs have been found in various types of cells, including

neuronal cells. In the nervous system, the formation of TNTs between neurons or between neurons and astrocytes mediates electrical

coupling and the transfer of pathogenic proteins associated with neurodegenerative diseases. Here, we summarized the current results

of TNTs in the nervous system, including its formation, regulatory factors, functions, and potential benefits in the treatment of

diseases.
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1 Introduction

Tunneling nanotubes (TNTs) have been regarded
as a novel way for intercellular communication since
they were discovered by Rustom and colleagues[1].
Distinct from other ways of cell-cell communication,
such as gap-junctions or cell-cell contacts between
adjacent cells, TNTs are membrane channel structures
directly connecting the cytosol of two non-contact
cells, which have the potential to mediate long-range
intercellular communication. The TNT-like structures
have been observed in various cell types[2]. A growing
number of researches have revealed that TNTs have
powerful functions in intercellular communication. A
variety of cellular cargoes, such as proteins, vesicles,
mitochondria, Golgi apparatus, and lysosomes have
been reported to be transported by TNTs. In addition,
pathogens can be transferred through TNTs from
infected cells to naïve cells, including prion, HIV, and
influenza virus[3-5].

Inclusions of protein aggregates are the
pathological hallmark of a number of
neurodegenerative diseases, such as Alzheimer's

disease (AD), Huntington's disease (HD), Parkinson's
disease (PD), and amyotrophic lateral sclerosis
(ALS) [6-7]. Accumulation of protein aggregates has
been linked to the dysfunction of neurons, which
leads to neuronal loss[8]. The spreading of protein
aggregates in the brain is likely to contribute to the
progression of neurodegenerative diseases. However,
the exact mechanisms of spreading of pathogenic
protein aggregates are not fully understood. Recently,
numerous studies have demonstrated the role of TNTs
in transferring protein aggregates in neuronal
cells[4,9-12]. Here in this review, based on the recent
literatures, we aim to have a better understanding of
the formation and function of TNTs in the nervous
system. We will discuss some unsolved problems in
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TNTs so as to promote the follow-up research
progress and advance their emerging roles in health
and disease.

2 The discovery of TNTs： structural
characteristics and potential functions

In 2004, Rustom et al. [1] reported a thin
membrane structure connecting distant cells, which
mediating the transfer of membrane vesicles and
organelles. These structures were named as“tunneling
nanotubes”(TNTs). As described in this study, the
characteristics of TNTs have been summarized into
the following aspects: (1) They have a diameter of 50-
200 nm; (2) Their length is up to several cell
diameters and they rarely have a branched
appearance; (3) They do not attach to any substrate;
(4) They are sensitive to prolonged light excitation,
mechanical stress and chemical stress (such as PFA),
which are all leading to rupture, but they are resistant
to trypsin-EDTA treatment; (5) They have enriched
actin, but not microtubules[13].

Since its discovery, TNTs have been found in
various types of cells[14]. With the increase of
researches, TNTs exhibit diverse morphology and
structural composition. TNTs have been found with a
diameter much larger than 200 nm[4,15-16]. In addition,
TNTs' length varies from a few microns to hundreds
of microns[17]. Initially, TNTs were regarded as actin-
enriched structures without microtubules. Studies
have shown that F-actin polymerization is critical for
TNT formation, whereas depolymerization of F-actin
by chemicals or drugs can efficiently suppress the
formation of TNTs[18-19]. However, recent works have
shown that microtubules are also the common
components of some TNTs[16,20-21]. Moreover,
intermediate filaments have been found in TNTs[22].
As more research progresses come along, some
previous inappropriate descriptions of TNTs have
already been excluded, such as length and thickness.
In short, the shared features of TNTs include the
following aspects: a. They connect at least two cells;
b. They do not attach to the substrate, distinguishing
them from other cellular protrusions, such as
filopodia; c. They contain F-actin[23-24].

TNTs have powerful functions for intercellular
communication. Membrane vesicles and organelles
have been detected inside TNTs since the original
report[1]. Over the past few years, a variety of

cytoplasmic components were found to be transported
intercellularly via TNTs, including mitochondria,
vesicles, lysosomes, Golgi apparatus, proteins,
possibly RNA granules, and even pathogens (such as
viruses and bacteria) [25-26]. TNTs mediated signaling
transport or organelles transfer plays an important role
in both physiological and pathological conditions[27].
In physiological conditions, TNTs are involved in cell
reprogramming, repair of mitochondrial dysfunction,
senescence, angiogenesis, and differentiation[15,28-33].
Under pathological conditions, TNTs promote the
progression of diseases, such as neurodegenerative
diseases, AIDS, and cancers[3,12,34-35]. Here, we
summarize the existing literatures on the formation
and role of TNTs in the nervous system as well as the
potentials in neurological diseases.

3 TNTs in the nervous system

3.1 Formation and molecular regulators of TNTs
TNTs have been observed in a variety of cell

types, including cell lines and primary cells dissected
from nerve tissue[36]. Time-lapse imaging has shown
that TNTs are formed by at least two ways: a.
Separating from two contact cells; b. One cell forms a
filopodium-like structure and then extends to reach
another cell to form TNTs. Both forms of TNT
formation are found in the cells of neuronal
culture[13,37]. These two forms do not interfere with
each other and they can coexist in the same cell
type[38].

Increased TNT formation has been observed
when cells are under stress, such as oxidative stress,
serum deprivation, pathogenic protein aggregation,
and infection with pathogens[14]. However, no
universal molecular mechanism regulating TNT
formation has been revealed so far. Recent studies
have uncovered several genes/pathways that regulate
TNT formation in the nervous system (Figure 1 and
Table 1). Actin polymerization is required for TNT
formation; thus it is not surprising that proteins
regulating actin dynamics may modulate TNT
formation. Cdc42, a Rho family of GTPase, has been
reported to regulate actin polymerization and promote
TNT formation by regulating Arp2/3 and WASP in
macrophages[39]. However, in neuronal CAD cells,
Cdc42, acting as a negative regulator, inhibited TNT
formation and TNT-mediated vesicle transfer via
Cdc42/IRSp53/VASP network. Epidermal growth
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factor receptor pathway 8 (Eps8), another actin
regulator, increased TNT formation dependent on its
bundling activity[40]. The role of Eps8 in regulating
TNT formation has also been reported in cancer
cells[41]. Myosin Ⅹ is an actin-based motor protein
with ATPase activity, which regulates filopodia
formation and plays an important role in neurite
outgrowth and axon guidance[42-43]. In addition,
myosin Ⅹ could regulate the extension of actin by
transporting VASP to the tips of filopodia to compete
with actin capping proteins[44]. TNTs can arise from
filopodium-like structures, suggesting that myosin Ⅹ
may play a role in regulating TNT formation. Indeed,
a study has found that TNTs arose from a subset of
myosin Ⅹ -driven filopodia in neuronal CAD cells.
Myosin Ⅹ could promote the formation of TNTs, and
its F2 subdomain of FERM domain was essential to
promote TNT formation[38]. Wnt pathway, a classical
signaling pathway involved in diverse cellular
processes, has also been found to regulate the
formation of TNTs. The activated Wnt/Ca2+ pathway
promoted the formation of TNTs in primary neurons
(by Wnt5a) and neuronal CAD cells (by Wnt7a) by
modulating the interaction between βCaMKII and
actin cytoskeleton, which facilitating actin
polymerization and stabilization of TNTs[45]. In
addition to actin polymerization, vesicular trafficking
has been revealed to be involved in the formation of
TNTs[46-47]. Rab GTPases are master regulators of
intracellular membrane trafficking, which surely plays
a role in the traffic of vesicles[48]. Rab GTPases also
regulate cytoskeleton dynamics[49]. These results
suggest that Rab GTPases may be involved in
regulating the formation of TNTs. Indeed, Rab8a and
Rab11a have been reported to promote TNT formation
in primary Schwann cells[50]. Furthermore, a latest
research confirmed that Rab11a-Rab8a cascade
promoted TNT formation in neuronal CAD cells, and
the formation of TNTs was regulated by the
downstream effector of Rab8a, VAMP3[51].

In addition to cytoskeleton regulatory factors,
some genes or pathways involved in cell signaling
regulate TNT formation. In an earlier study, Wang et
al. [9] found that oxidative stress (H2O2 treatment) and
serum depletion induced TNT formation in rat
primary astrocytes and neurons. Further study
suggested that the formation of these TNTs was
dependent on the activation of p53 along with its

target genes, EGFR, Akt, PI3K, and mTOR,
contributing to the formation of TNTs[9]. Furthermore,
the results showed that p53 activation efficiently
induced the overexpression of M-Sec, a well-known
inducing factor of TNT formation. Thus, it is
proposed that M-Sec might be the downstream
effector for p53, EGFR, or Akt/PI3K/mTOR,
triggering F-actin polymerization and mediating the
formation of TNTs. In this study, TNTs have been
observed to form invariably from stressed cells
toward the unstressed cells. Follow-up studies from
the same group revealed that S100A4 acted as a
navigator to determine the direction of TNTs. In
stressed cells, p53 activated caspase-3, which led to
S100A4 cleavage, thus creating a concentration
gradient between stressed (low) and target (high)
cells. Then, the concentration gradient of S100A4
guided the formation of TNTs along with its receptor,
RAGE[52]. So far, S100A4 is the only reported
guidance factor for TNT formation. Furthermore, a
latest research showed that Rhes, a brain-enriched
GTPase/SUMO E3-like protein, induced the
biogenesis of TNT-like cellular protrusions in striatal
neuronal cells. The full-length wild-type Rhes could
be transported in these TNT-like tunnels so that these
structures were referred to as“Rhes tunnels”in this
study. Further work demonstrated that the SUMO E3-
like domain of Rhes was required to promote TNT
formation, and the mutation of Ser33 in the
N-terminal GTPase domain abrogated Rhes' activity
in promoting the formation of TNT-like Rhes tunnels.
These results indicate that both the GTPase domain
and the SUMO E3 ligase domain of Rhes coordinate
to induce TNT-like Rhes tunnels[53].

Although several genes/pathways have been
found to be involved in the regulation of TNT
formation, it is not difficult to find that these results
were all obtained from in vitro experiments and have
not been verified in vivo. Besides, the expression of
these genes is not limited to TNTs, and they cannot be
recognized as specific molecular markers to identify
TNTs. Currently, it is still incapable of distinguishing
TNTs from other cellular protrusions by labeled
molecular marker, which hinders the development of
experiments in vivo. Therefore the identification of
specific markers for TNTs can greatly promote
progress in this field.
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3.2 Potential physiological role of TNTs in the
nervous system

TNTs have been reported to play a role in various
physiological processes by transferring diverse
cargoes[2,23]. Electrical coupling is one of the
important physiological functions of TNTs, which has
been studied in neurons. In 2010, the electrical
coupling by TNTs was firstly discovered by Wang et
al. [54] in NRK cells, HUVEC, HEK293 cells, and
quail neuronal crest cells (NCC). The depolarization
of the TNTs-connected cells activated low-threshold
voltage-gated Ca2+ channels, thus leading to an
increase in intracellular Ca2+ levels. Further studies
demonstrated that the electrical coupling was
dependent on gap junction, connexin 43 (CX43)
proteins. Since neuronal PC12 cells did not express
CX43, the TNTs formed by PC12 cells could not
occur electrical coupling. The electrical coupling in
the nervous system mediated by TNTs was also
reported by the same group. This work demonstrated
that immature hippocampal neurons and adult
astrocytes could be electrically coupled through
TNTs, which was dependent on CX43 expression.
With the neuronal differentiation, the expression of
CX43 in neurons decreased, and the TNTs formed
between neurons and astrocytes did not mediate the
electrical coupling any more[37]. The activation of low-
threshold voltage-gated Ca2+ channels was also
observed in neurons and astrocytes. Calcium signals
have been suggested to be the important regulators for
proliferation, migration, and differentiation of
neurons[55]. In addition, astrocytes play a significant
role in maintaining brain hemostasis and participating
in guiding neuronal progenitor cell migration[56].
These results suggest that TNTs-mediated electrical
coupling between astrocytes and neurons might be a
signaling mechanism to regulate early brain
development. Moreover, the radial glia extends radial
fibers to guide the migration of embryonic neurons
from the ventricular region to the cortical plate, in
which gap junction proteins Connexin 26 and 43 are
required[57]. Combined these results, it can be
speculated that the presence of TNTs in the nervous
system provides an efficient way for information
processing, especially in the early stages of neural
development.
3.3 TNTs in neurological diseases

TNTs are multifunctional structures, which have

been well-studied in many types of cells, including
cancer cells, immune cells, and neuronal cells. TNTs
play an important role in both physiological and
pathological conditions[27]. Although the physiological
functions of TNTs have not been well studied, most
studies are currently focusing on the role of TNTs in
diseases including neurological disorders. Here we
summarize two aspects of TNTs' role in neurological
diseases according to the functions by transferring
mitochondria and pathogens (Figure 1 and Table 2).

Mitochondria, as the powerhouse of the cell, play
a key role in the maintenance of normal physiological
functions of cells and the progression of diseases.
Mitochondrial dysfunction in neurons leads to brain
damage which is usually caused by hypoxic-
ischemia[58-59]. Lower levels of oxygen increase the
production of ROS, and then impair mitochondrial
function, thus triggering neuronal death. Since
mitochondria are the most common cargoes of TNTs,
different studies have reported that TNT-mediated
mitochondrial transport can effectively improve cell
survival[60-62]. Thus TNT-mediated mitochondrial
transport is likely to help to reduce cell injury caused
by hypoxic-ischemia. In vitro experiments indicated
that mitochondria could be transferred from
mesenchymal stem cells (MSCs) to CoCl2-induced
PC12 cells via TNTs, resulting in ameliorating
mitochondrial dysfunction and reducing cell injury of
PC12 cells[63]. Mitochondria have been reported to be
transferred by TNTs from multipotent mesenchymal
stem cells (MMSCs) to ischemic injured astrocytes or
neuron-like PC12 cells, restoring the bioenergetics of
the recipient cells and stimulating their
proliferation[64]. These results suggest that increasing
TNT formation by genetic manipulation or medication
may have a beneficial effect by preventing hypoxic-
ischemic brain injury.

The most commonly studied function of TNTs in
diseases is to mediate the transfer of pathogens,
including prions, bacteria, and viruses[2]. The
pathological hallmark of a number of
neurodegenerative diseases is the intracellular or
extracellular inclusions of protein aggregates in the
brain[7]. The spreading of protein aggregates in the
brain has been proposed to be associated with the
pathological progression of neurodegenerative
diseases. Numerous studies have shown that disease-
related protein aggregates could be intercellularly
transferred by TNTs, contributing to their spreading
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anatomically for the underlying pathology[10-11,65]. In
an in vitro experiment, PrPSc (an infectious form of
prions) was transferred between neuronal CAD cells
via TNTs. PrPSc could also be transferred from bone
marrow-derived dendritic cells to primary neurons,
which may be further transferred to the central
nervous system[4]. Astrocytes are one of the earliest
sites where prion accumulation occurs. These prion-
infected astrocytes might be responsible for disease
propagation by causing neuronal damage[66-67], but the
exact mechanism is still unclear. A recent study offers
a possible explanation by showing that astrocytes
could transfer PrPSc to neurons by forming TNTs
between them[68]. Another example of protein
aggregates spreading from cell to cell by TNTs is
α -synuclein. It has been reported that α -synuclein
fibrils inside lysosomal vesicles were efficiently
transferred between neuronal cells through TNTs, and
the soluble α -synuclein was then seeded to form
aggregates by transferred fibrils in the recipient
cells[11]. TNT-mediated α -synuclein transfer was also
observed by other groups in neuronal CAD cells,
primary neurons, astrocytes, SH-SY5Y cells, and
primary brain pericytes from patients with Parkinson's
disease[12,45,69]. These results provide a clue for how
non-neuronal cells play a role in disease progression.
Furthermore, mutant huntingtin has been reported to
promote TNT formation, which in turn provides an
efficient mechanism for its transfer in neuronal cells
and primary neurons[10]. Recently, Rhes, a brain-
enriched GTPase/SUMO E3-like protein, was
demonstrated to promote TNT formation in mouse
striatal neurons, thus facilitating the transfer of
mHTT[53]. Most importantly, experimental evidence
has been obtained from different disease-associated
proteins including Aβ, TDP-43, and tau, supporting
TNT-mediated transfer for pathogenic protein
aggregates[9,35,65,70]. Together, these results suggest that
TNTs may serve as a common mechanism for disease
progression in neurodegenerative disorders, thus
providing a potential target for the treatment of these
devastating diseases.
3.4 Potential role of TNTs in the treatment of
neurological diseases

Reviewing the above experimental results, we
find that TNTs, as one of the highly efficient
transmission routes of pathogens or pathogenic
proteins, play a great role in promoting the

progression of neurological diseases. Therefore, a
hypothesis is proposed whether inhibiting the
formation of TNTs can delay the disease progression
and reverse the disease status. Although there is no in
vivo study so far, some clues and circumstantial
evidence can be retrieved from in vitro studies which
can provide a reference for future in vivo research.

Dilsizoglu et al. [18] reported that tolytoxin, a
cyanobacteria macrolide that targets actin by
inhibition of its polymerization, significantly inhibited
the formation of TNTs in neuronal cells (SH-SY5Y),
and the transfer of α-synuclein fibrils as well. Besides,
tolytoxin at low nanomolar concentrations can
specifically reduce TNT formation without affecting
filopodia and inducing cell death or dramatic
morphological changes. These results suggest that
inhibition of TNTs is feasible and tolytoxin may be a
candidate drug, but further research is needed.

Everything could be a double-edged sword, and
so do TNTs. TNTs can not only transfer pathogenic
particles as a connecting pipe but also be utilized as
an alternative strategy to treat neurological diseases.
As mentioned above, TNTs could mediate the transfer
of mitochondria from healthy cells to injured cells,
which preventing neuronal cell death in vitro[63-64].
Therefore, it is reasonable to propose that promoting
connections between damaged neurons and
surrounding healthy cells through TNTs in vivo may
play a beneficial role in repairing damaged brain
tissue. At present, the biggest challenge in the
treatment of neurological diseases is how to facilitate
drugs to cross the blood-brain barrier (BBB) more
efficiently. Engineered nanoparticles (NPs) can
effectively cross BBB and have a promising
application targeting lesions in the central nervous
system (CNS) to deliver drugs at the proper position.
However, how NPs can be transmitted quickly
between neurons after crossing the BBB is still
unknown. Tosi et al. [71] demonstrated that NPs can be
transferred between glial cells and neurons in an
F-actin-dependent manner via TNTs. Increasing TNTs
by M-Sec can then promote NPs transmission. A
recent study also confirmed that TNTs could be used
as a new strategy for NPs delivery in the brain[72].

4 Conclusions and perspectives

Recent studies have revealed the important role
of TNTs in physiological and pathological conditions.
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TNTs as a novel type of intercellular communication,
their formation, functions, and the regulatory factors
in the nervous system are documented and
summarized in Figure 1. Combined with existing
results, TNTs appear to be a universal mechanism for
the progression of neurological diseases, which
promote the transmission of pathological proteins
between neurons and other non-neuronal cells.

Nonetheless, our understanding of TNTs is
inadequate and there are still many challenging
questions worth of investigation. The molecular
mechanisms of TNT formation are not fully

understood. In particular, currently identified genes/
pathways regulating TNT formation cannot be used as
specific markers for TNTs because they are not
limited to TNTs but widely expressed in cells, thus
hindering the development of in vivo experiments. In
addition, TNTs play a double-edged role in
neurological diseases because of their featured
function. The proper regulation of TNT formation is
so complex that should be well considered in disease
progression. A better understanding of TNTs is surely
beneficial for the treatment of neurological disorders.

Table 1 Genes/pathways involved in the formation of TNTs in the nervous system

Genes/Pathways

p53/EGFR/Akt/mTOR

MyosinⅩ
CDC42/IRSp53/VASP and Esp8

Rab8a and Rab11a

Rab11a/Rab8a/VAMP3

Wnt /Ca2+/CAMKII

Rhes

Cell types

Rat primary astrocytes and neurons

Neuronal CAD cells

Neuronal CAD cells

Primary Schwann cells

Neuronal CAD cells

Neuronal CAD cells

STHdhQ7/Q7 cells

References

［9］

［38］

［40］

［50］

［51］

［45］

［53］

TNT formation

H2O2

Serum starvation

p53

EGFR
Akt/PI3K/
  mTOR

M-Sec

Rab11a

Rab8a

VAMP3

MyosinXEsp8

Wnt

βCaMKII

Rhes Actin/Cytoskeleton remodeling

Cdc42/IRSp53/VASP

Ca2+

 Recycling 
endosome

GTP

GTP

     Supply 
Lipids/Proteins

Formation

Function

Pathological proteins:
Aβ                  PrPSc

a-Synuclein    Tau
TDP-43           mHTT  

Cell signals:
Calcium flux
Electrical coupling
Pro-phagocytic signals

Other cargoes:
RNAs
Nanoparticles

Vesicles
Mitochondria
Endoplasmic reticulum
Liposomes

Transfer of various cargoes
(Contribute to physiological or 

     pathological processes)

Orientation

RAGE

S100A4

Fig. 1 Schematic molecular mechanisms in the regulation of TNT formation and potential functions of TNTs
in the nervous system

Representative signaling molecules described in the text are shown in different colored shapes, which play a regulatory role in TNT formation.
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摘要 隧道纳米管（tunneling nanotubes，TNTs）是基于细胞骨架尤其是纤维状肌动蛋白形成的细胞间管道样结构，其功能

主要是介导广泛的细胞间物质交换，包括各种信号分子、RNA、蛋白质、细胞器甚至病原体，在生理和病理过程中都发挥

重要作用 . 各种细胞类型中均发现有TNTs的形成，尤其在神经元细胞和神经胶质细胞中得到广泛关注 . 神经元细胞间或神

经元细胞与星形胶质细胞间形成的TNTs，能够介导电耦合，还参与神经退行性疾病相关致病蛋白质的转移和/或传播，进而

在神经系统发育和疾病进展中发挥作用 . 本文简要总结了在神经系统细胞间形成TNTs的研究进展，包括调节其形成的分子

机制、功能和在神经系统疾病治疗中的潜在优势 .
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