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Abstract Objective Lung cancer is one of the most common cancers in the world. Lung adenocarcinoma (LUAD) has the

highest annual mortality rate among lung cancer patients. It has been reported that changes in gene spectrum were associated with the

process of tumorigenesis and its development. The purpose of this study is to identify the gene signatures associated with LUAD and

to further analyze their prognostic significance. Methods Weighted gene co-expression network analysis (WGCNA), differential

gene analysis, cox regression analysis, and protein-protein interaction (PPI) network analysis were used to screen the hub genes

highly related to LUAD based on The Cancer Genome Atlas (TCGA) database. The RNA-seq data sets from TCGA and GTEx

(Genotype Tissue Expression) database were combined and divided into a training set and a validation set, which were used to

construct the diagnostic model by support vector machine recursive feature elimination feature (SVM-RFE) algorithm. GSE32863

and GSE31210 were used to verify the diagnostic accuracy of the model and the prognostic value of our obtained gene signatures,

respectively. Results The results demonstrated that the model of 5 gene signatures (anln, cenpa, plk1, tpx2, cdca3) obtained by the

SVM-RFE algorithm had an outstanding performance in the classification of LUAD patients. Functional enrichment analysis showed

that these 5 gene signatures were highly related to the biological process of tumor initiation and progression. What’s more, LUAD

patients with high expression of these 5 genes also exerted a poor outcome in survival status. Conclusion Therefore, we could

conclude that our study obtained useful models with 5 gene signatures for the diagnosis and prognosis of LUAD, which were

essential for the development of novel targets applied in precision therapy.
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Lung cancer is the leading cause of death
globally, and non-small cell lung cancer (NSCLC)
accounts for 85% of all lung cancer[1]. Lung
adenocarcinoma (LUAD) is the most common type in
NSCLC[2]. The 5-year survival rate after the diagnosis
of lung cancer is less than 20%[3]. Although there are
recent advances in surgical methods, immunotherapy,
and neoadjuvant therapy, the mortality of NSCLC
remains high[4].

With the development of high-throughput
sequence technology, bioinformatics has become
increasingly popular in genomic analysis to
investigate the pathological mechanism of tumor and
discover tumor-specific biomarkers[5]. Bioinformatics
has made it possible to identify gene expression

changes during tumorigenesis, contributing to
determining the prognosis and treatment of lung
cancer[6]. What’s more, after the HGP (Human
Genome Project) finished, lots of publicly available
databases such as The Cancer Gene Atlas (TCGA,
https://tcga-data. nci. nih. gov/), Gene Expression
Omnibus (GEO, http://www. ncbi. nlm. nih. gov/geo/)
and Genotype Tissue Expression (GTEx, https://
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commonfund.nih.gov/GTEx/) showed cancer genome
sequencing data. A careful and thorough analysis of
these data can identify gene signatures and signal
pathways about tumor, which will help to explore the
mechanism of tumor formation and development.

At present, there have been numerous studies on
gene signatures, which are helpful for the selection of
lung cancer treatment methods and the prediction of
survival rate after lung cancer surgery. For example,
Dama et al. [7] suggested that 10 gene signatures may
be important prognostic indicators of patients with
stage I LUAD. Liu et al. [8] proved that increased
mRNA expression of TTK and NEK2 improved the
risk of smoking-related LUAD death. Moreover, Xie
et al. [9] identified prognostic signatures containing 6
genes significantly correlated with the overall survival
(OS) of NSCLC patients, providing support for the
construction of treatment regimens for patients.
However, most of these studies considered genes as
individual bioinformatics analysis factors and finally
combined the screened genes to form a predictive
model, which did not make full use of the relationship
between genes.

Weighted gene co-expression network analysis
(WGCNA) is a systematic biological method for
selecting co-expression modules of related genes and
the critical module associated with clinical traits[10],
providing a new direction to predict the gene
signatures. Furthermore, the support vector machine
recursive feature elimination feature (SVM-RFE) is a
powerful algorithm to establish a gene model based
on a large number of sample data. It improves the
accuracy of the classifier model and has a wide range
of applications in the field of bioinformatics[11-12].
Therefore, an idea of combining WGCNA and SVM-
RFE to improve the recognition ability of highly
related genes turned out, which was used to establish
a cancer diagnosis model and screen candidate gene
signatures.

In our study, in order to screen gene signatures
related to the diagnosis and prognosis of LUAD, we
used WGCNA, SVM-RFE, survival analysis, and
other bioinformatics analysis methods to identify and
verify the gene signatures highly related to LUAD
based on multiple bioinformatics databases. Finally,
our study obtained useful models with 5 gene
signatures that applied to different sets for the
diagnosis and prognosis and provided some valuable
insights for the development of novel targets involved

in the precision therapy of LUAD.

1 Materials and methods

1.1 Data download and processing
The transcriptome profiling dataset of LUAD

and corresponding clinical dataset were obtained from
TCGA database, including 344 tumor samples and 38
normal samples, and RNA-seq count data had about
19 430 genes. The mRNA expression of each sample
was merged into a matrix with a merge script in the
Perl language. Then the matrix of mRNA expression
was annotated with the Ensembl database. With the
help of the “edgeR” and “DESeq2” package, genes
with low read counts were usually not of interest for
further differential gene screening. According to the
standard that the average expression of a gene in each
sample should be ≥ 1, the mRNA expression data
were filtered, a total of 18 127 gene expression data
continued to be analyzed. This study conformed to the
publication guidelines of TCGA database.

Meanwhile, to improve the accuracy of the
diagnostic model constructed by the SVM-RFE
algorithm, data of 288 normal LUAD samples were
downloaded from the GTEx database and gene count
data on 56 754 genes. As the data used herein were
freely sourced, approval from the Ethics Committee
was not required. However, since only the data from
normal samples were collected by GTEx database, it
is usually used for bioinformatics analysis combined
with TCGA database. Because the types of TCGA
data and GTEx data were gene counts and reads per
kilobase per million mapped reads (RPKM),
respectively. According to the calculation Equation
(1), the gene counts of TCGA are converted into
RPKM, and then the data sets of TCGA and GTEx are
standardized and merged by the Z-socre method to
facilitate the further construction of the model. The
combination of TCGA and GTEx dataset were divided
into a training set (60%) and an interval validation set
(40%), including 325 normal samples and 307 tumor
samples.

FPKM = total exon reads
mapped reads × exon length (1)

FPKM standardized total exon reads based on
two aspects: mapped reads and exon length.

For further verification, we downloaded LUAD
gene expression data from two access sets, GSE32863
and GSE31210, from GEO database. The former one
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provided 58 cancer samples and 58 normal samples
for verifying the accuracy of the diagnostic model and
the latter one provided 226 cancer samples with
clinical information which helped to explore the
relationship between the gene signatures and clinical
prognosis.
1.2 Identification of key gene co-expression
module

In order to identify gene modules highly related
to tumor patients, a weighted gene co-expression
network was constructed by using the “WGCNA”
package[13] in R software. WGCNA generated co-
expression modules of highly correlated genes based
on the interaction between genes and screened the
critical module that was highly related to the clinical
feature, providing a new insight for gene target
prediction in precision medicine[14-16]. According to
the variance of gene expression, the first 8 000 genes
were selected to construct a co-expression network.
After constructing a sample tree based on gene
expression, the goodSamplesGenes function was used
to delete samples with large outliers. According to the
co-expression relationship of genes, Pearson
correlation coefficients were calculated between each
gene, and their absolute values were used to establish
the gene adjacency matrix, the formula is Equation
(2). In order to make the distribution of genes
conform to the scale-free network base on gene
connectivity, the best soft-threshold power value β
was chosen to construct the proximity matrix and
transformed into a topological overlap matrix (TOM)
in Equation (3). According to the TOM of genes,
Equation (4) was used to calculate the distance
between genes for hierarchical clustering. The
network modules were generated using the dynamic
shear method and distinguished by colors, with the
best soft-threshold power value and a module size cut-
off criterion ≥ 10. Then, the obtained modules were
used to screen the key module most relevant to the
clinical traits by Pearson correlation test.

aij = |cor (xi,xj )β| (2)

TOMij = lij + aij
min (ki,kj ) + 1 - aij (3)

Dij = 1 - TOMij (4)

xi and xj are the nodes in the scale-free network;
β: soft threshold; aij: gene adjacency matrix; k: the
sum of the adjacency coefficient of all nodes
connected individually between genes; lij: the sum of

the product of the adjacency coefficients between
gene i and j; Dij: the hierarchical clustering distance
between gene i and j.
1.3 Analysis of differential expressed genes
（DEGs） and the intersection with the key co-
expression module

Due to differential analysis of the macro-
genome, adj.P was selected to reduce the error rate of
differential gene screening. Two DEGs sets were
generated by “edgeR” and “DESeq2” packages after
normalization and data filter with thresholds|log2 fold-
change| ≥2 and adj. P<0.01 by comparing LUAD
group with normal group, respectively. The two DEGs
sets of LUAD group were visualized as volcano plots
by using “gplots” package. Then, the overlapped
genes obtained by crossing the two DEGs sets and the
gene modules with high clinical relevance screened
by WGCNA were used to identify potential gene
signatures, which were shown as the Venn diagram by
“VennDiagram” package.
1.4 Univariate cox regression analysis

The purpose was to independently assess the
impact of overlapping genes on the survival time of
LUAD patients. The “survival” package was used to
analyze the prognostic value of each gene through
univariate cox regression[17]. According to the cutoff
criterion of P<0.05 in TCGA set, genes that were
significantly related to the survival time of the
patients were considered to have prognostic value.
Then, the independent prognostic genes were selected
to further analysis.
1.5 Construction of protein-protein interaction
（PPI） network

According to the results of the univariate cox
regression analysis, we used the Search tool for the
Retrieval of Interacting Genes (STRING) database to
build PPI networks and then selected the genes that
played key roles in the gene network for the further
network model analysis. The threshold for minimum
interaction score of these genes was 0.7 and built a
PPI network model visualized by Cytoscape (version
3.6.1; https://www. cytoscape. org/). According to
reports, Maximal Clique Centrality (MCC) algorithm
was the most effective way to find hub genes in PPI
networks[18]. The MCC score of each node in the PPI
network was calculated by using CytoHubba plugin.
In our study, according to the results of MCC
algorithm analysis, the top 15 genes were considered
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as the hub genes that played important roles in the
process of tumor formation.
1.6 Functional enrichment analysis

To investigate the biological function of the
selected genes, the “clusterProfiler” package in R
software[19] was used to analyze the Gene Ontology
(GO) annotation in the overlapping genes and hub
genes. GO annotation that includes the three aspects:
molecular function (MF), cellular component (CC),
and biological process (BP), can describe the
molecular functions that gene products may perform,
the cellular environment, and the biological processes
involved [20].
1.7 Gene signatures selection base on SVM-RFE

The “e1071” [21] and “caret” packages[22] in R
software were used to select optimized gene
signatures based on recursive feature elimination
(RFE) algorithm. Furthermore, the expression of
genes was considered as the feature, the clinical traits
of the sample were considered as the categorical
variable, and the support vector machine (SVM) used
the linear kernel to predict patients with LUAD to
obtain the optimal gene signatures by RFE algorithm.
The hub genes that passed the MCC algorithm
analysis entered the SVM-RFE algorithm analysis. In
the SVM-RFE algorithm, genes were ranked
according to the measure of their importance, those
genes with lower rankings were removed. And the
precision of the gene model was examined by 10-fold
cross-validation in the training set. Then, the optimal
gene model was examined in the internal validation
set and external validation set (GSE32863). Besides,
the performance of the classifier in these sets was
evaluated by receiver operating characteristic (ROC)
curve analysis. The genes selected by the SVM-RFE
method were chosen as the gene signatures.
1.8 Constructions and verification of prognostic
prediction model

To confirm the prognostic value of gene
signatures, the multivariate cox regression model was
constructed with the gene signatures as variables
based on GSE31210 set. Then, based on the
expression of gene signatures and the regression
coefficient estimated by the multivariate cox
regression model, the risk score (RS) prognostic
model was constructed as follows[23]:

RS = ∑βmRNA × ExpmRNA (5)

βmRNA was defined as the independent prognostic

coefficient and ExpmRNA represented the expression of
corresponding mRNA.

According to the median RS as the cut-off point,
all patients in GSE31210 set were distributed to low-
risk and high-risk groups. In order to evaluate the
survival time difference between low-risk and high-
risk groups and verify the prognostic value of RS
model, the “survival” (version 3.27) package in R
software was used to perform Kaplan-Meier (K-M)
survival curve analysis[24].

2 Results

2.1 Weighted gene co-expression network
construction

This study was conducted as indicated in Figure
1. The mRNA expression matrix of TCGA-LUAD
was obtained (18 127 genes) after data preprocessing.
According to the requirements of WGCNA algorithm,
we selected the top 8 000 genes in the variance order
among genes. Then, in order to ensure the reliability
of co-expression network, the outliers of the samples

Fig. 1 The workflow of this study
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were removed by the method of sample clustering
(Figure 2a). The scale-free distribution was shown in
Figure 2b, and the appropriate soft-threshold power
value β=8 was chosen base on the fitting degree and
connectivity of the network. Finally, 11 modules were
identified base on dynamic tree clipping and average
hierarchical clustering (Figure 2c). In addition, we

plotted the heatmap of module-trait relationships to
evaluate the association between modules and two
clinical traits. The result of the heatmap revealed that
the turquoise module (r=0.61, P=2E−35) was found to
be the highest associated with tumor tissues
(Figure 2d).

2.2 Identification of genes in the DEGs and co-
expression modules

Based on the cut-off criteria of | log2 fold-
change| ≥ 2 and adj. P<0.01, a total of 1 137 DEGs
(Figure 3a) and 1 011 DEGs (Figure 3b) were found
to be dysregulated in tumor samples by the “edgeR”

and “DESeq2” packages, respectively. As shown in
Figure 2c, 1 799 co-expression genes were found in
the turquoise module of TCGA data set. According to
the intersection of these three sets, a total of 295
overlapping genes were extracted for gene signature
screening (Figure 3c).

Fig. 2 Construction of weighted gene co-expression network for LUAD
(a) Samples clustering and removal of outliers. (b) Network topology analysis of various soft-threshold power. The left figure shows the scale-free fit

index for various soft-threshold powers, signed R2 (y axis), and the soft threshold power (x axis). Soft-threshold power value β=8 was chosen. The

right figure shows that the mean connectivity for various soft-threshold powers, y axis is a decreasing function of the soft-threshold power β (x axis).

(c) The cluster dendrogram of the 8 000 genes was ordered by a hierarchical clustering of genes based on the value of dissimilarity (1−TOM). Each

branch in the figure represents one gene, and each module was assigned different colors. (d) Identification of modules associated with the clinical

traits of LUAD. Each module contains the corresponding correlation and P. The correlation coefficient represents the correlation between the gene

module and clinical characteristics.
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2.3 Univariate cox regression and PPI network
analysis identifying gene signatures

Univariate cox regression analyses were
performed on 306 LUAD patients to evaluate the
prognostic relation between the selected 295 genes
and OS. A total of 39 genes were obtained with a cut-
off criterion of P<0.05, which was considered to be
significantly associated with OS in LUAD patients.
Then, PPI network among the selected genes was
constructed by using STRING database (Figure 4a).
The cut-off value of the interaction score was 0.7. To
further analyze the relationship of the 39 genes, we
imported PPI network into Cytoscape. HR (hazard
ratio), the co-expression relationship among the
selected genes was calculated using the gene
expression levels by MCC algorithms in the
Cytoscape (Figure 4b) and the result was shown in

Table 1. As shown in Figure 3b, PPI network of the
top 15 highest-scored genes have 19 nodes and 102
edges, including their expanded sub-network.
According to the MCC scores, the top 15 highest-
scored genes were considered as the hub genes for
further bioinformatics analysis.
2.4 Functional enrichment analysis

To further analyze the potential biological
function of the 295 overlapping genes and hub genes,
the functional enrichment analysis was performed by
the “clusterProfiler” and “enrichplot” packages in R
software. As shown in Figure 5a, several enriched
gene sets were obtained by screening from GO
enrichment analysis. Biological processes (BP) of the
295 genes were mainly involved in nuclear division
and organelle fission. Due to the result of cellular
component (CC), these genes were mainly enriched in

Fig. 3 Screening of overlapping genes
(a, b) Identification of DEGs using “edgeR” and “DESeq2” packages respectively, with the cut-off criteria of | log2 fold-change| ≥ 2.0 and padj (adj.

P) < 0.01. (a) Volcano map of DEGs using “edgeR” package. (b) Volcano map of DEGs using “DESeq2” package. Red represents up-regulated

genes, and green represents down-regulated genes in the two volcano maps. (c) The Venn diagram of genes among two DEGs sets and co-expression

module gene set. Totally, 295 overlapping genes were selected in the intersection of the two DEGs sets and the turquoise module genes set.
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the chromosomal region and spindle. Moreover,
through the molecular function (MF) analysis, ATPase
activity, tubulin binding, and microtubule binding
were suggested to be related to these 295 genes. In
addition, the result of gene enrichment analysis of the
hub genes is shown in Figure 5b. These hub genes
were mainly enriched in regulation of mitotic cell
cycle phase transition, regulation of cell cycle phase
transition, regulation of mitotic nuclear division,

mitotic nuclear division, regulation of nuclear
division, etc.
2.5 Gene signature selection

The recursive feature elimination (RFE)
algorithm was used to identify the most significant
gene signatures. In order to solve the class skew
caused by the imbalance between normal and tumor
samples in TCGA data set, data of 288 normal lung
tissue samples were downloaded from GTEx database
for SVM-RFE algorithm analysis. Then the RFE
algorithm was applied to filter the 15 hub genes in
order to identify the optimal combination of gene
signatures in the training set. Finally, 5 genes (anln,
cdca3, cenpa, plk1, tpx2) were selected as the gene
signatures. Figure 6a shows the optimization process
of RFE algorithm. When the number of gene
signatures is 5, the accuracy of SVM-RFE model is
the highest. Consequently, we constructed a
diagnostic gene model based on these 5 genes.

The constructed SVM classifier with 5 gene
signatures was applied to the training set (n=391),
internal validation set (n=241), and external validation
set GSE32863 (n=116). As shown in Figure 6b-d, the
classifier could successfully differentiate normal
samples and tumor samples in the 3 sets (AUC, area
under curve; PPV, positive predictive value; NPV,
negative predictive value). The training set generated

Fig. 4 Screening of the hub genes
(a) PPI network between the selected genes. Edges represent the protein-protein associations. The different colors of the nodes represent different

clusters (n≥3). To facilitate observation, different gene clusters connect with different types of lines. (b) Identification of the hub genes from PPI

network using MCC algorithm. The nodes from red to green represent the genes with high to low MCC score. Edges represent the protein-protein

associations.

Table 1 The top 15 highest-scored genes in PPI network

Gene ID

ccnb1

dlgap5

tpx2

ube2c

aurkb

hjurp

foxm1

cdc25c

cenpa

cdkn3

plk1

Anln

fam64a

troap

cdca3

MCC score

4.50E+07

4.50E+07

4.50E+07

4.50E+07

4.50E+07

4.50E+07

4.50E+07

4.43E+07

4.35E+07

4.35E+07

4.06E+07

3.99E+07

4.35E+06

1.45E+06

7.26E+05

HR

1.17

1.16

1.13

1.17

1.15

1.18

1.15

1.17

1.13

1.18

1.17

1.15

1.15

1.14

1.20

P value

4.77E−02

2.61E−02

4.53E−02

1.03E−02

4.34E−02

1.70E−02

2.49E−02

3.63E−02

4.82E−02

1.59E−02

2.28E−02

3.44E−02

3.89E−02

4.36E−02

1.61E−02
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Fig. 5 GO enrichment analysis
(a) GO enrichment analysis of 295 overlapping genes with q value (adj.P) < 0.01. The color represents q value, and the size of the spots represents the

gene number. (b) A circular plot of hub genes GO enrichment analysis. The left half of the circle is gene ID, and each line connects to a GO term in

the right half of the circle.
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AUC of 0.984, Accuracy of 0.936, and Recall of
0.897, the internal validation set generated AUC of
0.977, Accuracy of 0.900, and Recall of 0.835, and
the external validation set GSE32863 generated AUC
of 0.903, Accuracy of 0.828, and Recall of 0.800
(Table 2). These results illustrate that the

classification model based on the 5 genes could
accurately predict the LUAD patients (Figure 6).
2.6 Risk score survival model of 5 gene signatures

According to the result of SVM-RFE algorithm
analysis, 5 genes (anln, cdca3, cenpa, plk1, tpx2)

were obtained to explore their prognostic value
among the patients of the GSE31210 set. The risk
score (RS) model was constructed based on the
coefficients (Table 3) of the 5 gene signatures and

their expression levels in the GSE31210. The RS
formula was shown in Equation (6). The concordance
index of this model was 0.69, and P=1.717 4E − 02
(Figure 7a).

Table 3 Cox regression model of the 5 gene signatures in
the GSE31210 set

Gene ID

cdca3

plk1

tpx2

anln

cenpa

Coefficient

0.436

0.105

0.044

0.376

−0.331

HR

1.55

1.11

1.05

1.46

0.71

HR.95L

0.808

0.635

0.437

0.824

0.327

HR.95L

2.96

1.94

2.50

2.57

1.56

P value

0.188

0.714

0.921

0.195

0.409

Table 2 Effectiveness evaluation of the classifier of 5 gene
signatures on the three sets

Set

Training set

Internal validation set

GSE32863

AUC

0.984

0.977

0.903

Accuracy

0.936

0.900

0.828

Recall

0.897

0.835

0.800

PPV

0.990

1.000

0.914

NPV

0.988

1.000

0.896

Fig. 6 Construction and validation of the diagnostic model for LUAD
(a) Accuracy curve of the optimized hub genes using RFE algorithm. ROC curves based on the SVM classifier in the training set (b), internal

validation set (c), and external validation set GSE32863 (d).
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Fig. 7 Prognostic value of the 5 gene signatures in the GSE31210 set
(a) The Hazard ratio, P, and risk score distribution of constituents involved in multivariate cox regression and some RS model parameters. (b) Kaplan-

Meier curves of the 5 gene signatures for high-risk and low-risk groups. (c) Time-dependent ROC analysis of the 5 gene signatures. (d-f) The risk

score distribution of patients, the survival status of patients in the high-risk and low-risk groups, and a heatmap of the 5 genes expression in patients.

(g-k) The expression level of the 5 genes was significantly associated with prognosis (P<0.05) in the GSE31210 set. The expression of the 5 genes

selected increased, and the overall survival time was significantly reduced.
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RS = (0.436 × Expcdca3) + (0.105 × Expplk1) +
(0.044 × Exptpx2) (6)

+ (0.376 × Expanln ) + ( -0.331 ×Expcenpa )
The expression of cdca3 marked as Expcdca3 and

it is same to others.
The risk score of each sample was calculated for

each LUAD patient, and all 226 patients were divided
into two groups containing low-risk and high-risk
groups. As shown in Figure 7b, compared with the
high-risk group, patients with low-risk scores are
demonstrated to have a greater chance of having the
same survival time in the GSE31210 set. The AUC
was 0.749 and 0.742 for the 3-year and 5-year OS by
ROC analysis, respectively (Figure 7c), which
indicated the good performance of RS model in
survival prediction. Notably, the risk curves, living
status of LUAD patients, and the 5 gene expression
value associated with the risk score in the GSE31210
set were shown in Figure 7d-f. The mortality of high-
risk group was significantly higher than that of low-
risk group. Besides, we put the 5 genes into
independent survival curve analysis, and the result
showed that the expression of anln, cdca3, cenpa,
plk1, and tpx2 had a significant impact on the survival
time of patients and displayed good prognostic
significance (Figure 7g-k).

3 Discussion

NSCLC is the most common type of lung cancer.
LUAD is the most common subtype of NSCLC with
an extremely high mortality rate[25]. In recent years,
the increasing studies of high-tech sequencing which
illustrated the importance of gene signatures on
determining cancer formation and outcomes provided
a novel insight to integrate this bioinformatics into the
therapeutic schedule[26-27]. It is necessary for the
diagnosis and treatment of LUAD to reveal the
molecular mechanism of LUAD and screen out the
gene signatures based on the genome information. In
this study, 295 overlapping genes were selected by
comprehensively differential gene analysis and
WGCNA analysis based on TCGA-LUAD database.
As shown in functional annotation analysis, these
genes were mainly enriched in the nuclear division,
organelle fission, and chromosomal region, essential
for tumorigenesis. According to the survival status of
LUAD patients, 39 prognostic genes were screened by

univariate cox regression, and the top 15 hub genes
were selected out from the prognostic genes through
the MCC algorithm with the help of CytoHubba
plugin in Cytoscape. The classification model was
constructed based on the 15 hub genes using the SVM-
RFE algorithm for choosing the optimal gene
signatures in the training set. Due to the results of the
model accuracy, a classifier model with 5 gene
signatures (anln, cdca3, cenpa, plk1, tpx2) was
obtained and performed well in classifying LUAD
samples in the training set, internal validation set, and
external validation set GSE32863 through calculating
AUC, Accuracy, Recall, PPV and NPV. Moreover, the
RS model was constructed to validate the prognostic
value of the 5 gene signatures. By applying these
signatures to construct the RS model in the GSE31210
set, there were significant differences between the
high-risk and low-risk groups, and the high-risk group
has a lower survival rate than the low-risk group.
Also, we found that these 5 genes had a high
prognostic value in LUAD through the survival
analysis of each gene signature.

The anillin actin binding protein (anln) gene is
located on chromosome 7p14.2 and encodes a protein
composed of 1 124 amino acids that contain four
domains, including a RhoA-binding domain, a C-
terminal pleckstrin homology domain, and myosin-
and actin-binding domain[28]. Anln plays an important
role in the process of cell cycle in the assembly of
actin and myosin contractile rings in separates
daughter cells[29]. Moreover, anillin is a substrate for
the anaphase-promoting complex/cyclosome (APC/
C), a ubiquitin ligase that controls the mitotic
progression[30]. In addition, the inheritance and mitotic
proliferation of defective genome can cause
pathological conditions including a variety of
cancers[31]. Aniline, a cell cycle regulator, has been
proved to play a key role in tumor invasion[32-33]. In
our study, compared with normal samples, the
expression of anln is up-regulated in tumor tissues,
which is significantly correlated with LUAD.
Mechanism of anln function showed that active cell
division in tumor tissue results in higher levels of
anln, which is consistent with our findings.

Cenpa (centromere protein-A), a centromere-
specific 17-ku protein, is a unique histone H3, likes
the protein found in the active centromeres, relates to
the major epigenetic tension of centromeric
identity[34]. Cenpa plays an important role in cell cycle
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regulation and cell survival[35]. According to previous
reports, when cenpa and cenpb were knocked out at
the same time, the inhibitory effect on cell
proliferation was more significant[36]. A recent study
showed that high expression of cenpa was closely
associated with LUAD tumorigenesis proved by real-
time polymerase chain reaction (RT-PCR) and
Western blotting analysis[37]. Therefore, inhibitors
targeting cenpa may be a promising anticancer
strategy.

Plk1 (polo-like kinase 1), a member of the
mitotic serine/threonine kinase family, is closely
related to spindle formation and chromosome
segregation during mitosis[38]. Previous studies
demonstrated that plk1 mRNA expression was
elevated in proliferating cells including tumors of
different origins and various cancer cell lines[39].
Wang et al. [40] revealed that the overexpression of
plk1 protein was an independent prognostic biomarker
in NSCLC patients. In the present study, we further
demonstrate that LUAD patients who express a high
level of plk1 protein have low overall survival, and
the high expression of plk1 protein is a prognostic
factor validated by the RS model and survival
analysis.

The targeting protein for Xenopus kinesin-like
protein 2 (tpx2), which is required for targeting
Aurora-A kinase to the spindle apparatus, had been
reported as gene signatures for human lung cancer
prognosis in vitro lung carcinogenesis system[41-42]. Li
et al. [43] demonstrated that tpx2 was a potential
candidate targeted for amplification and over-
expression in NSCLC. In our study, tpx2 is mainly
plays a role in the regulation of mitotic cell cycle
phase transition and mitotic nuclear division. The
survival time of samples with a high tpx2 gene
expression level is significantly lower than that with a
low tpx2 gene expression level, which is consistent
with previous studies.

Cell division cycle-associated protein-3 (cdca3),
is required for mitosis entry as a part of the SKP1-
Cullin RING-F-box (SCF) ubiquitin ligase complex to
degrade the endogenous cell cycle inhibitor Wee1[44].
Some studies showed that unregulated cdca3 was
associated with the carcinogenic process and
malignant patterns of certain tumors[45-46], but the
relationship between the gene and formation of
LUAD has not been found. Cdca3 may be a new
potential target for NSCLC to inhibit tumor growth

and promote tumor aging, which may play an
important role in tumor cell proliferation.

In conclusion, we obtained 5 gene signatures of
LUAD by bioinformatics and machine learning
analysis methods. The diagnostic and prognostic
models constructed by the 5 gene signatures could had
an outstanding performance in predicting and
prognostic among different sets. PPI network analysis
and GO analysis confirmed that these genes were
positively related to the tumorigenesis and
development of LUAD. The combined application of
multiple sets provided more robust supports for our
research. Therefore, our study may provide new
insight into the diagnosis and treatment of LUAD.
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基于WGCNA和SVM-RFE算法挖掘肺腺癌诊断
和预后基因标志物*

王 美 王可心 谭建军** 王京京
（北京工业大学环境与生命学部生物医学工程系，智能化生理测量与临床转化北京市国际科研合作基地，北京 100124）

摘要 目的 肺癌是世界上最常见的癌症之一，在众多肺癌患者中，肺腺癌（lung adenocarcinoma，LUAD）的死亡率最

高。基因表达谱的变化与肿瘤的发生和发展过程有关，通过识别与LUAD患者相关的诊断和预后基因标志物，可以为肺腺

癌的预防和治疗提供理论依据。方法 本研究以肿瘤基因组图谱（The Cancer Gene Atlas，TCGA）数据库为基础，采用加

权基因共表达网络分析（weighted gene co-expression network analysis，WGCNA）、差异基因分析、cox回归分析、蛋白质互

作网络（protein-protein interaction，PPI）分析等方法筛选与LUAD形成过程高度相关的 hub基因。将TCGA和基因型组织

表达（GTEx genotype tissue expression，GTEx）数据库中的RNA数据合并划分为训练集和内部验证集，利用基于支持向量

机的递归特征消除算法（support vector machine recursive feature elimination feature，SVM-RFE）构建诊断模型并进行验证。

GSE32863和GSE31210数据集分别用于验证诊断模型的准确性和基因标志物的预后价值。结果 SVM-RFE算法得到的5个

基因标志物（anln、cenpa、plk1、tpx2、cdca3）模型在LUAD患者分类中具有显著的诊断能力。功能富集分析表明，这 5

个基因与肿瘤发生发展的生物学过程密切相关。此外，这5个基因高表达的LUAD患者的预后表现不良，死亡率显著高于

低表达的患者。结论 我们的研究为LUAD的诊断和预后提供了具有5个基因特征的模型，这对于开发用于精确治疗的新

靶点具有重要意义。

关键词 肺腺癌，基因标志物，加权基因共表达网络分析，递归特征消除算法
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