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Abstract

-85% of cases. Despite the prevalence, effective treatments remain scarce. The compelling evidence suggest that high concentrations

Objective  Stroke is a leading cause of death and disability worldwide, with ischemic stroke accounting for 80%
of ATP in the brain post-stroke can trigger irreversible neuronal damage and necrosis, contributing to a range of neurocellular
dysfunctions. Pyroptosis, a recently identified form of programmed cell death, is characterized by caspase-1 activation and the action
of the Gasdermin D (GSDMD) protein family, leading to cell perforation and inflammatory death. Methods In this study, human
neuroblastoma SH-SYS5Y cells were used to investigate the mechanisms of ATP-induced neurotoxicity and the protective effects of
hydrogen sulfide (H,S) against this toxicity through the antagonization of pyroptosis. We employed CCK-8 and LDH assays to assess
cell viability. YO-PRO-1 fluorescent dyes and flow cytometry were conducted for detecting changes in cell membrane permeability.
Western blot analysis was used to measure protein levels associated with cellular dysfunction. Results Our results indicate that
high concentrations of ATP enhance cytotoxicity and increase cell membrane permeability in SH-SYSY cells, that are mitigated by
the H,S donor NaHS. Furthermore, ATP was found to promote the activation of the NOD-like receptor pyrin domain-containing 1
(NLRP-1), caspase-1, and the cleavage of GSDMD, with NaHS significantly attenuating these effects. Conclusion Our research

suggests that H,S protects SH-SYSY cells from ATP-induced neurotoxicity through a mechanism mediated by the NLRP1, caspase-1,

and GSDMD pathway.

Key words
DOI: 10.16476/j.pibb.2024.0117

Stroke represents a principal cause of mortality
and disability globally, posing significant threats to
the health and well-being of middle-aged and elderly
populations!"’. Ishemic stroke constitutes
approximately 80%-85% of all stroke cases”. To
date, tissue plasminogen activator (tPA) remains the
only U.S. Food and Drug Administration (FDA) -
approved therapeutic for ischemic stroke®!. However,
its efficacy is limited by a narrow therapeutic window
and the potential for severe complications, restricting

its benefit to a minority of patients!’!

. Consequently,
elucidating the pathophysiological mechanisms of
ischemic brain injury and identifying novel
therapeutic targets are imperative to enhance the
treatment landscape for stroke worldwide.

ATP is well-known as a universal energy source
for eukaryotic cells. Under physiological conditions,
ATP concentrations remain low in the extracellular
space, yet are maintained at high levels within the
cytoplasm to support essential cellular functions.
Under pathological conditions, ATP may be released
into the extracellular space, where it plays a crucial
role in disease progression by participating in signal
transduction pathways. Typically, extracellular ATP
enters adjacent cells by activating the P2 purinergic
receptors, which include the ligand-gated ion channel
P2X receptor and the G-protein-coupled P2Y
receptor’”. And this process is involved in tissue
damage repair and the immune-inflammatory

response. For example, studies have confirmed that

stroke, ATP, H,S, NLRP1, caspase-1, GSDMD, pyroptosis
CSTR: 32369.14.pibb.20240117

under conditions of oxygen

hypoglycemia®, hippocampal neurons release ATP

deprivation  or

and similarly, the striatum releases a substantial
amount of ATP during cerebral ischemial®. Further
research indicates that a high concentration of ATP in
the brain alters the energy metabolism and
inflammation levels in various neural cells (including
neurons, microglia, and astrocytes), exacerbating the
ischemic microenvironment and leading to neuronal
death!”’. Therefore, exploring the mechanisms through
which ATP induces neuronal death is crucial for
understanding the pathophysiology of ischemic brain
injury.

Prior to the 1980s, hydrogen sulfide (H,S) was
predominantly recognized as a toxic gas with potent
reducing properties in nature. However, endogenous
production of H,S was later identified in several
human organs, including the brain, liver, kidney, and
vascular tissues®. Recent evidence increasingly
substantiates the neuroprotective effects of H,S¥.. For
instance, H,S has been
neurogenesis and ameliorate anxiety-like behaviors in
diabetic rats'”; it can also reverse oxidative stress-
induced neuronal injury by modulating the mitogen-
activated protein kinase signaling pathway!'.
Additionally, H,S inhibits  neuroinflammatory
responses and neuronal death, which are pivotal in the
pathology of ischemic stroke!'. Post-intracerebral
hemorrhage  (ICH) interventions  with  H,S

significantly reduce the expression and activation of

shown to promote
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the P2X7 receptor and its downstream inflammatory
signaling pathway, the NOD-like receptor pyrin
domain-containing protein 3 (NLRP3) inflammasome,
in microglial”®!. Recent studies from our group have
further demonstrated that H,S mitigates brain injury
artery
reperfusion (MCAO/R), reinforcing its protective role

induced by middle cerebral occlusion/
in neuronal damage!'!. Nevertheless, the capacity of
H,S to counteract neuronal damage induced by high
concentrations of ATP and the underlying mechanisms
involved remain to be elucidated.

In the study, we

mechanisms underlying ATP-induced neurotoxicity

present explored the
and the neuroprotective effects of H,S using SH-
SYS5Y neuroblastoma cells, which is widely employed
to investigate the molecular mechanisms of
neurodegeneration and cerebral ischemia-reperfusion
injury™. Our findings indicate that H,S mitigates
neurotoxicity by inhibiting the ATP-induced NLRP1/
caspase-1/GSDMD-dependent

These results offer a novel perspective on the

pyroptosis  pathway.
potential of H,S to ameliorate neuronal damage in
conditions such as ischemic stroke and other forms of
traumatic brain injury.

1 Materials and methods

1.1 Reagents

NaHS was purchased from Sigma (St Louis,
MO, USA, Cat#: 491-70-3), and dissolved in
phosphate buffer solution (PBS) at 50 mmol/L as
stock solutions. ATP was from Solarbio (Beijing
Solarbio Science & Technology, China). Antibodies
including rabbit anti-cleaved-caspase-1 (#41997),
anti-gasdermin D (#39754S) and NALP1 (#4990S)
were from Cell Signaling Technology (Danvers,
Massachusetts, USA). Rabbit anti-caspase-1 antibody
(#AF5418) was from Affinity Biosciences (San
Francisco, CA, USA). Antibodies including rabbit
recombinant  anti-cleaved = N-terminal GSDMD
antibody (ab215203), recombinant anti-GSDMD
antibody (ab210070) were from Abcam. HRP-labeled
goat anti-rabbit IgG antibody (#A0208) was from
Beyotime  (Shanghai, China). HRP-conjugated
affinipure goat anti-rabbit IgG(H-+L) (SA00001-2)
was from Wuhan SANYING (Wuhan, China). LDH
Cytotoxicity Assay Kit (#C0016) was from Beyotime
(Shanghai, China). YO-PRO-1 (#Y3603) was from
Invitrogen (USA). PVDF membranes were from Merk

Millipore (Burlington, MA, USA). Cell Counting
Kit-8 (#C0039) was
China).
1.2 Cell culture
SH-SYS5Y cells were obtained from National
Collection of Authenticated Cell Cultures (Shanghai,
China) and were cultured in DMEM/high glucose
medium (Hyclone) supplemented with 11% fetal

from Beyotime (Shanghai,

bovine serum and double antibiotics (1%, 100 U/ml
penicillin and 100 mg/L streptomycin and diluted at
100 times) at 37°C under an atmosphere of 5% CO,
and 95% air. The culture media were replaced every
three days.
1.3 Cell viability assay

Cell viability was assessed using the CCK-8 kit
according to the manufacturer’s instructions. Cells
were plated on 96-well plates with a cell density of
1.5x10%well and cultured for 24 h. Cells were treated
with NaHS (250 pmol/L) for 30 min and then with
indicated concentrations of ATP (5 mmol/L) for 24 h.
After that, 10 ul CCK-8 solution was added into each
well and incubated at 37°C for 45 min. Absorbance
was recorded at 450 nm using a microplate reader
(Spectrophotometer-1510-01410; Fisher
Scientific). The cell viability was calculated following
the instructions. Cell viability= (4

(Acontrol_Ablank control) x1 00
1.4 Lactate dehydrogenase activity assay

Thermo

drug ETOUP_Ablank control)/

Lactate dehydrogenase (LDH) is an intracellular
enzyme. The activity of intracellular LDH was
assessed using LDH cytotoxicity assay kit!'®. Cells
were plated on 96-well plates with a cell density of
1.5x10%well and cultured for 24 h. Cells were treated
with indicated conditions for 24 h. After indicated
treatment, cells were analyzed for the LDH activity
according to the manufacturer instructions. Cells were
incubated at 25°C for 30 min in dark. At the end of
reaction, formazan was formed as a chromogenic
substance. Spectrophotometric absorbance at 490 nm
were acquired using a microplate reader
(Spectrophotometer-1510-01410. The ratio of LDH
activity was determined, and cytotoxicity or mortality
= (A experimental group™ A control group)’ (Amaximum enzyme activity of cells ™
Aot o) ¥100%.

1.5 Western blot

SH-SYSY cells were grown in 25 cm’® culture
flasks up to 80%, treated with 0.25% EDTA/trypsin
and seeded onto 100 mm Petri dish and cultured one
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night. The cell density is approximately 60%. Cells
were treated with NaHS (250 pumol/L) for 30 min and
then with indicated concentrations of ATP (5 mmol/L)
for 24 h. After that, cells were washed with PBS for
3times and lysed in cell lysis buffer (400 pl)
(Beyotime, Shanghai) . The cell lysate was collected
by centrifugation (12 000 r/min) at 4°C for 5 min,
mixed with SDS loading buffer and denatured at
100°C for 10 min. Protein samples of equal quantities
were loaded into 12% SDS-PAGE gels (12 pl/well)
and separated by electrophoresis. Proteins were
transferred to the PVDF membranes (0.45 um). The
membranes after blocked with 5% skimmed milk
powder at room temperature for 2 h, were incubated
with one of the following rabbit primary antibody:
GSDMD (1 © 2 000), cleaved caspase-1 (1 - 2 000),
caspase-1 (1 - 2 000), NALP1 (1 : 2 000) and B-actin
(1 © 2 000) overnight at 4°C. After washed in TBS-
Tween 3 times, 10 min each time, the membranes
were incubated with horseradish peroxidase-
conjugated goat anti-rabbit secondary antibody (1 -
2 000) at room temperature for 2 h. The proteins were
visualized using ChemiDocTMXRS+ (Bio-RAD).
Image J software was used for analysis of the protein
expression.
1.6 Cell membrane permeability

The cell membrane permeability was assessed by
YO-PRO-1 using a protocol described previously!'”.
YO-PRO-1 is a membrane-impermeable monomeric
cyanine nucleic acid that stains double-stranded
nucleic acids. YO-PRO-1 uptake by cells, indicative
of cell membrane permeability, was examined using
single cell imaging and flow cytometry. For single
cell imaging, 3.5x10" cells were plated in each 10 mm
culture dish and incubated for 24 h. Cells were treated
with ATP (5 mmol/L) in the absence or presence of
H,S (250 pmol/L) for 24 h. YO-PRO-1 was added to
culture media with a final concentration of 1 umol/L
and each sample was incubated with 1 pmol/L YO-
PRO-1 and no light exposure for 45 min at 37°C. YO-
PRO-1
fluorescence microscope (ZEISS, Germany).

fluorescence was determined using a

For flow cytometry analysis, cells in 25 cm’
culture flask that were treated by indicated treatment
for 24 h, and then harvested by centrifugation. Cells
were mixed with the 1 ml YO-PRO-1 (1 umol/L) for
45 min at 37°C in dark. YO-PRO-1 fluorescence was
determined using flow cytometry (Beckman Coulter,
USA).

1.7 Statistical analysis

All data were acquired from at least three
independent experiments. Data are expressed as
mean+SEM. Statistical analysis was performed using
SPSS Statistics 19. The significance of inter-group
differences was evaluated by one-way analyses of
variance (ANOVA, least-significant difference’s test
for post-hoc comparisons). Difference was considered
to be significant when P<0.05.

2 Results

2.1 Treatment with NaHS protects SH-SYSY
cells from ATP-induced cytotoxicity

CCK-8 assay was conducted to examine the
effects of ATP and NaHS, a H,S donor, on the
viability of SH-SY5Y neuroblastoma cells. Cells were
exposed to different concentrations of ATP (1, 3, 5
and 7 mmol/L) for 24 h. Compared with cells under
control conditions, cell viability significantly reduced
after exposure to 5 and 7 mmol/L ATP (Figure la),
higher  ATP
treatment at

demonstrating  cytotoxicity  at
NaHS

concentrations of 200, 250 and 300 pmol/L during

concentrations. Conversely,
exposure to 5 mmol/L ATP significantly enhanced cell
viability, particularly at 250 and 300 pmol/L (Figure
1b). NaHS did not significantly affect the viability of
or ATP-untreated cells.
intracellular lactate dehydrogenase (LDH) activity, a

control Correspondingly,
marker of cellular integrity, decreased following
exposure to 5 mmol/L ATP for 24 h. However, this
ATP-induced in LDH
substantially mitigated by NaHS treatment (Figure 2).
Treatment with NaHS alone did not alter LDH
activity levels in control cells. Collectively, these
results from the CCK-8 and LDH assays consistently
demonstrate that NaHS significantly
mitigates ATP-induced cytotoxicity.

2.2 Treatment with NaHS inhibits ATP-induced
cleavage of GSDMD and formation of large pores

N-gasdermin D (N-GSDMD) can oligomerize
within plasma membranes

reduction activity was

treatment

to form membrane-
spanning cytotoxic pores, consequently increasing cell
membrane permeability and leading to pyroptotic cell
death!®. We investigated the cleavage of GSDMD,
which produces pore-forming N-GSDMD proteins, in
cells exposed to ATP with and without NaHS
treatment. As depicted in Figure 3a, N-GSDMD
protein levels, indicative of GSDMD cleavage, were
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Fig.1 Effects of treatment with NaHS on ATP-induced cytotoxicity in SH-SYSY cells determined using the CCK-8 assay
(a) Cells were treated with indicated concentrations of ATP for 24 h. (b) Cells were treated with 5 mmol/L ATP in the absence or presence of indicated

concentrations of NaHS for 24 h. Values are the mean+=SEM (n=3). *P<0.05, compared to control cells; **P<0.05, compared to cells treated with ATP

alone.
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Fig.2 Effect of treatment with NaHS on ATP—-induced cytotoxicity in SH-SY5Y cells determined by the CCK-8 (a) and
LDH assays (b)
Cells were treated with 5 mmol/L ATP in the absence or presence of 250 pmol/L NaHS for 24 h. Values are the mean+SEM (n=3-4). *P<0.05

compared to control cells; **P<0.05 compared to cells treated with ATP alone.

significantly elevated in cells treated with 5 mmol/L
ATP. However, this effect was mitigated by NaHS
treatment (Figure 3a). Furthermore, we analyzed total
GSDMD protein expression. Notably, ATP treatment
upregulated GSDMD levels, an effect that was largely
inhibited by NaHS treatment (Figure 3b). Taken
together, findings GSDMD
activation-dependent  pyroptosis mediates ATP-
induced cytotoxicity, and that NaHS effectively
suppresses this ATP-induced, GSDMD-mediated
pyroptotic pathway.

To further elucidate the role of pyroptosis in ATP-

these indicate that

induced cytotoxicity, we assessed the formation of
cytolytic pores in SH-SYS5Y cells by analyzing YO-
PRO-1 uptake through single-cell imaging and flow
cytometry (Figure 4). Single-cell imaging revealed
that ATP exposure increased both the number of cells
exhibiting YO-PRO-1 uptake and the intensity of this
uptake, indicating enhanced pore formation (Figure
4a). The ATP-induced increase in YO-PRO-1 uptake
was attenuated by NaHS treatment (Figure 4a).
Consistently, flow cytometry showed a
significant increase in the percentage of cells with YO-
PRO-1 uptake following ATP exposure, an effect that

results
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Fig. 3 Effects of treatment with NaHS on ATP—induced GSDMD cleavage and GSDMD expression in SH-SYSY cells
Representative Western blots showing (left) and mean levels (right) of N-GSDMD (a) and GSDMD (b) in cells, following exposure to 5 mmol/L ATP
for 24 h in the presence or absence of 250 umol/L NaHS. Values are the mean+SEM (n=3). *P<0.05 compared to control cells; **P<0.05 compared

to cells treated with ATP alone.

was also diminished by NaHS treatment (Figure 4b,
c¢). These findings support the hypothesis that high
concentrations of ATP induce GSDMD-mediated
pyroptosis, and that NaHS can mitigate this ATP-
triggered cell death pathway.
2.3 Treatment with NaHS reverses ATP-induced
caspase—1 activation

Caspase-1 activation is crucial for the cleavage
of GSDMD into its pore-forming component,
N-GSDMD, which is initiating
pyroptosis''®.. To elucidate the impact of ATP and H,S
on caspase-1 activation, we analyzed levels of cleaved
caspase-1, an indicator of activation, in SH-SYS5Y
cells via Western blot. control
conditions, cells exposed to 5 mmol/L ATP exhibited a
significant increase in cleaved caspase-1 levels, an
effect that was inhibited by treatment with NaHS
(Figure 5). Notably, ATP exposure also significantly
enhanced caspase-1 protein expression, which was
similarly curtailed by NaHS treatment (Figure S1).

essential  for

Compared to

NaHS treatment alone did not affect the expression or
activation of caspase-1. These findings indicate that
ATP exposure stimulates the expression and activation
of caspase-1, while H,S effectively inhibits these ATP-
induced changes in caspase-1.
2.4 Treatment with NaHS reverses ATP-induced
upregulation of NALP1 expression

NLRPI1, a key component of the inflammasome,
exhibits distinct expression profiles in human tissues,
with notably high levels in pyramidal neurons?”.
Next, we investigated the impact of ATP and NaHS
treatments on NLRP1 expression using Western blot.
As depicted in Figure 6, ATP exposure significantly
increased NLRP1 expression, which was attenuated
by NaHS treatment. Importantly, NaHS alone did not
alter NLRP1 expression levels. These findings suggest
that ATP-induced NLRP1 expression and activation
are implicated in the initiation of caspase-1/GSDMD-
mediated pyroptosis, which can be effectively
mitigated by NaHS treatment.
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Fig. 4 Effects of treatment with NaHS on ATP-induced YO-PRO-1 uptake in SH-SYS5Y cells
Cells were treated with 5 mmol/L. ATP in the presence or absence of 250 umol/L NaHS for 24 h, and YP-PRO-1 uptake was detected using a
fluorescence microscope (a) and the mean fluorescence intensity (MFI) of YO-PRO-1 was determined using flow cytometry (b, c). Values are the

mean+SEM (n=3). *P<0.05 compared to control cells; **P<0.05 compared to cells treated with ATP alone.
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Fig. 5 Effects of treatment with NaHS on ATP-induced caspase—1 activation in SH-SYSY cells
Representative Western blots showing (left) and mean levels (right) of cleaved-caspase-1 in cells, following exposure to 5 mmol/L ATP for 24 h in the
presence or absence of 250 umol/L NaHS. Values are the mean+SEM (n=3). *P<0.05 compared to control cells; **P<0.05 compared to cells treated
with ATP alone.
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Fig. 6 Effects of treatment with NaHS on ATP-induced NALP1 expression in SH-SYS5Y cells

Representative Western blots showing (left) and mean levels (right) of NALP1 expression in cells, following exposure to 5 mmol/L ATP for 24 h in

the presence or absence of 250 umol/L NaHS. Values are the meantSEM (n=4). *P<0.05 compared to control cells; **P<0.05 compared to cells

treated with ATP alone.

3 Discussion

In the present study, we showed that H,S has a
protective action against ATP-induced neurotoxicity
in human SH-SYS5Y neuroblastoma cells. More
specifically, our study provides evidence to suggest
that ATP induced cytotoxicity via the NLRP1/caspase-
1/GSDMD-mediated pyroptosis pathway, which was
inhibited by H,S.

Neurologic deficits following ischemic stroke
and other traumatic brain injury are primarily
attributed to neuronal death, closely associated with
high concentrations of extracellular ATP accumulation
in damage regions®!). Extracellular ATP is recognized
as a damage-associated molecular pattern that
potently triggers inflammation and activates the
inflammasome via P2Y and P2X receptors®?.
Additionally, employing nucleoside triphosphate
diphosphate ~ hydrolase-1  to  degrade  high
concentrations of ATP has been shown to effectively
reduce neuroinflammation following ischemic brain
injury?!!. These findings underscore the significant
role of ATP in mediating inflammatory responses*’).
Consequently, mitigating effects
induced by high ATP could

significantly improve outcomes after stroke-related

the neurotoxic
concentrations

brain injury. Previous research has documented the
anti-inflammatory properties of H,S in the brain and
heart. Consistent with these findings, our studies
revealed that SH-SYSY cells exposed to high ATP
concentrations exhibit impaired activity (Figure 1la)
and decreased intracellular LDH levels (Figure 2).

NaHS
ameliorates ATP-induced toxicity (Figure 1b, 2),

However, treatment  with effectively
highlighting its potential as a therapeutic intervention.

To delineate the specific mechanisms of ATP-
induced neurotoxicity, we focused on the pivotal role
of cell pyroptosis. Pyroptosis, different from apoptosis
and other regulatory cell death mechanisms such as
exhibit
pathophysiological changes™?. In brief, caspase-1

ferroptosis, unique morphological and
activation mediates the cleavage of GSDMD to
produce its N-terminal fragment, N-GSDMD, which
can oligomerize and form pores in the plasma
membrane, leading to cell death and the release of pro-
inflammatory ~ cytokines IL-1p  and  IL-18%")
Pyroptosis, characterized by these features, is a
prevalent form of cell death in neurologic diseases
and has been documented in ischemic stroke, cerebral
hemorrhage™. In this study, we found that ATP
exposure accelerated the cleavage of GSDMD to
N-GSDMD in neural cells (Figure 3). Crucially,
intervention with H,S was able to halt this process and
mitigate the activation of caspase-1 and the formation
of membrane pores (Figure 4, 5).

Pyroptosis can be categorized into -classical
(caspase-1 mediated) and non-classical (caspase-4/5/9
mediated) pathways. The former is regulated by
various inflammasomes including NLRP1, NLRP3,
and AIM2°, Our previous research demonstrated that
H,S could mitigate cortical and retinal damage post-
ischemic stroke by inhibiting the NLRP3/caspase-1/
GSDMD pathway!'¥. NLRP1, a critical component of
the inflammasome complex alongside caspase-1°Y, is
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predominantly expressed in the brain, particularly in
pyramidal neurons®”). Prior studies have identified the
involvement of the NLRPI
caspase-1 activation in neuronal pyroptosis triggered

inflammasome and

by amygdala kindling”"!. Additionally, we observed in
SH-SYS5Y cells that ATP exposure
elevated the expression levels of NLRP1 (Figure 6)

significantly

and caspase-1 (Figure S1). Importantly, the ATP-
induced activation of the NLRP1 inflammasome was
mitigated by NaHS treatment. It has been proposed
that the NF-kB pathway might regulate NLRP1
expression in primary cortical neurons under ischemic

conditions??.

Future investigations should explore
these pathways further to elucidate the molecular
mechanisms underlying ATP-induced pyroptosis and
neuronal injury.

In summary, our study using SH-SYSY cells
provides evidence that H,S mitigates ATP-induced
neurotoxicity by inhibiting the NLRP1, caspase-1, and
GSDMD-mediated  pyroptosis These
findings offer new insights into the mechanisms of

pathway.

ATP-induced neuronal cell death in stroke and other
traumatic brain injuries, underscoring the potential of
enhanced H,S production as a neuroprotective

strategy.
4 Conclusion

This study provides an evidence to suggest that
H,S is
neurotoxicity via inhibiting ATP-induced activation of
the NLRP1/caspase-1/GSDMD pyroptosis pathway.

a neuroprotectant against ATP-induced

Supplementary Available online (http://www. pibb.
ac.cn, http://www.cnki.net ):
PIBB 20240117 _Figure S1.pdf
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