

www.pibb.ac.cn

基于光谱-纹理特征的辣椒早疫病 潜育期高光谱图像检测识别^{*}

沈梦姣1) 鲍 浩2) 张 艳1,2)**

(1)贵阳学院计算机科学学院,农产品无损检测中心,贵阳 550005; 2)贵州大学大数据与信息工程学院,贵阳 550025)

摘要 目的 早疫病是茄科作物生长过程中的一种常见破坏性病害,严重时会导致作物欠收而损失严重,传统的作物病害 检测方法难以在病害潜育期及时发现病害特征从而采取科学有效的防治措施。本文通过高光谱成像仪连续监测从而获得不 同感染期辣椒早疫病的高光谱图像,利用光谱角余弦-相关系数和切比雪夫距离确定了辣椒早疫病潜育期最早可识别时间 (本实验潜育期最早可识别时间为接种后24h)。**方法** 以辣椒早疫病潜育期病状作为研究对象,采用遗传算法筛选出13个 特征波长,经特征波长优化组合并结合逻辑回归模型建立基于光谱特征的作物病害潜育期病状识别模型。同时,利用局部 二值模式建立基于图像纹理特征的辣椒早疫病潜育期识别模型。结果 实验以120个样本进行测试,基于光谱特征的作物 病害潜育期病状检测识别模型在训练集和测试集的准确率均达到93%以上,基于纹理特征的作物病害潜育期病状检测识别 模型在训练集和测试集的准确率分别达到了98.96%和100%。结论 利用光谱特征或者纹理特征均可实现作物病害潜育期 病状的检测识别,纹理特征相比光谱特征更显著地揭示了病害潜育期特征,有效提升了模型检测性能。本文研究成果可为 其他作物病害潜育期病状的监测识别提供理论参考。

关键词 高光谱图像,辣椒早疫病,潜育期,图谱特征,检测识别 中图分类号 S435, TP391.4 **DOI**: 10.16476/j.pibb.2024.0136

CSTR: 32369.14.pibb.20240136

早疫病是广泛存在于茄科作物生长过程中的一种易感性强、破坏性大的病害,极易造成茄科作物 大面积减产,对世界各地茄科作物种植造成了很大 的经济损失。传统的作物病害检测识别依赖于农业 工作者的目视观察或实验室里的生化分析,这些方 法往往经验性强、费时费力,难以在作物病害潜育 期及时发现病害特征从而采取科学有效的防治措 施。超越人眼视觉局限,对作物病害潜育期的图谱 特征进行检测识别,对及时指导病害防治的作物生 产安全具有重大指导意义。

植物遭受病害胁迫时,随着生理结构和生化特性的改变,其叶片的光谱、纹理等表面特征会随之改变^[1]。高光谱图像具备融合图谱信息的优势,可以根据光谱特征和图像特征的差异对作物病害进行检测^[2]。Rajendran等^[3]为研究番茄植株随疾病严重程度的变化,采用浸渍和注射器渗透的方法给植株接种了不同细胞密度的菊苣假单孢菌。研究结果表明,在植株出现可见症状之前,可以通过叶绿素荧光分析和高光谱图像检测病原菌的感染严重程

度,表明高光谱成像技术早期检测疾病的可行性。 Bohnenkamp等^[4]在实验室条件下以叶片为研究对 象建立了一种基于高光谱成像检测和区分小麦叶片 褐锈病小麦叶绣菌(*Puccinia triticina*)和黄锈病 条锈菌(*P. striiformis*)的方法。Abdulridha等^[5]利 用高光谱(400~1000 nm)成像系统,通过采用两种 分类方法在3个疾病发展阶段(即无症状、早期和 晚期症状)成功实现柑橘溃疡的检测识别。然而, 现有研究主要集中在对处于显著发病期的作物进行 监测识别,少见针对作物病害潜育期进行监测识别 研究的相关报道,而作物病害潜育期的监测识别方 法对植物病理学的研究、精准农业的遥感监测等具 有重要的理论和应用价值。为了深入研究作物病害 潜育期的病状特征,本文选择接种茄链格孢菌后的 辣椒叶片为研究对象,从图像纹理特征和光谱特征

^{*}国家自然科学基金(62265003,62141501)资助项目。

^{**} 通讯联系人。

Tel: 0851-85402217, E-mail: Eileen_zy001@sohu.com 收稿日期: 2024-04-03, 接受日期: 2024-07-01

两个维度进行辣椒早疫病潜育期的实验研究。利用 高光谱成像仪连续动态拍摄健康和接种叶片在不同 时期的高光谱图像,以健康叶片为参照,通过光谱 特性确定辣椒早疫病潜育期最早可识别时间。针对 潜育期叶片样本,分别利用高光谱图像的光谱特征 和图像纹理特征,建立了辣椒早疫病潜育期的高光 谱图像检测识别模型。

1 实验方法

1.1 实验方案

选择潜育期内的辣椒叶片高光谱图像作为研究 对象,分别从光谱特征和图像特征角度建立相应的 早疫病潜育期检测识别模型,图像处理过程主要分为3个阶段,流程如图1所示。

a. 辣椒早疫病潜育期最早可识别时间判定:利用光谱角余弦-相关系数(SAC-SCC)和切比雪夫距离(*L*_∞)两种测度方法对连续采集时段的样本高光谱图像进行光谱相似性测量;

b. 提取图谱特征:针对潜育期样本的高光谱图像,基于特征波长的选择提取光谱信息,基于局部 二值模式(local binary patterns, LBP)提取图像 信息;

c. 基于图谱特征建模:在提取早疫病潜育期样本的光谱特征和图像特征后,分别建立对应的辣椒 早疫病潜育期检测识别模型并比较其模型性能。

Fig. 1 The diagram of image processing

1.2 数据采集与预处理

1.2.1 高光谱数据采集

本研究选取的辣椒品种为线椒,幼苗均由农业 种植户提供,共60株。为了避免杂菌感染,将辣 椒幼苗置于实验室环境培养;针对辣椒早疫病的易 感期,选择辣椒开花期进行接种实验。在植株中上 冠层叶片中采集120片健康正常、无病虫害、大小 形状相近、表面光洁平滑的辣椒叶片作为实验样 品。经过接种预实验保证接种成功率,为了确保接 种效果,本研究对辣椒叶片进行背面二级叶脉处菌 丝刮伤接种和孢子悬浮液喷洒接种两种方式结合。

叶片接种前,先对所有辣椒叶片正面进行一次 高光谱数据采集。此后在培养过程中,每隔12h将 叶片取出采集一次高光谱图像,直至接种组中80% 以上辣椒叶片出现肉眼可见病斑,然后调整监测时 间间隔为24h继续2~3次拍摄完成实验监测。

1.2.2 光谱数据预处理

在样本集划分中,采用 Knnard-Stone (K-S) 算法挑选校正集样本以保证校正集样本按空间距离 均匀分布。通过连续动态监测采集接种后第0h、 12h、24h、36h、48h、60h、72h、96h、120h、 144h、168h的共120个样本的高光谱图像(其中 健康样品数:接种样品数=50:70),在确定辣椒 早疫病潜育期后将潜育期内的辣椒样本按健康和接 种两个类别进行划分,健康组样本赋值为"0",接 种组样本赋值为"1"。然后在每个类别中选取4/5 样本数作为训练集,剩下的1/5样本数则为测试集。

为了深入探讨早疫病潜育期的图谱特征演变规 律,对于健康组和接种组辣椒叶片均选择整个叶片 区域为感兴趣区域(region of Interest, ROI),分 别提取其平均光谱。针对光谱起止波段信噪比较低 的情况,采用SG-MSC-MMN进行光谱预处理,从 而降低噪声干扰同时便于后期建模。

2 结果与讨论

2.1 利用光谱特性判别早疫病潜育期最早可识别 时间

物质光谱曲线之间的差异主要体现在曲线的形状和幅度两个方面。目前,一般用光谱距离来表征 光谱曲线的幅度差异,用光谱角和相关系数来表征 光谱形状的差异。本实验室综合光谱角余弦-相关 系数和切比雪夫距离两种测度方法的结果,最终判 定 24 h 为辣椒早疫病潜育期最早可识别时间^[6]。 在后续数据处理中,均针对接种后 24 h时的 120 个 叶片样本的高光谱图像进行分析和模型建立。

2.2 早疫病潜育期光谱数据分析

为了揭示作物早疫病潜育期的高光谱图像特征 演变规律,分别针对健康与接种辣椒叶片进行连续 监测,其中,接种后24h时的健康组和接种组辣椒 叶片的光谱曲线图如图2所示。图2a为24h时健 康-接种叶片全样本光谱曲线,可以看出,健康样 本和接种后24h时的样本在400~1000 nm 波段范 围内的整体变化趋势基本一致。叶片样本在500~ 610 nm 波段有一个波峰,该波峰主要与叶片细胞 内色素含量相关。通常,高等植物中参与捕光作用 的主要是叶绿素 a和叶绿素 b,其吸收峰在红光波 段(610~720 nm)、蓝光波段(400~520 nm),而 在黄绿光波段几乎没有吸收。也就是说,植物对蓝 光(400~520 nm)、红光(610~720 nm)的吸收率 较高,导致相应波段的光谱反射率较低甚至出现低

谷,叶片中叶绿素会吸收该波段的可见光对光合作 用与光周期效应有显著影响。因为叶片细胞中的叶 绿素 a 和叶绿素 b 对于波长 700 nm 以上电磁波几乎 不吸收,所以在720~760 nm 波段,叶片光谱反射 率急剧增加,760~1000 nm 波段的光谱反射率逐渐 趋于平稳。其中, 670~760 nm 属于可见光与近红 外区域的交接区,该区域包含了绿色植物的"红 边"位置,作物光谱在该波段变化剧烈。"红边" 位置与植物的各种理化参数紧密相关,揭示了作物 色素状态和健康状况的重要特征,红边斜率越大, 植物生长状态越好,红边位置会出现"红移",反 之,则红边位置会相应"蓝移"。780~1000 nm 属 于近红外波段、该波段与叶片细胞的蛋白质含量、 水分含量等营养物质相关,叶片细胞对该波段光谱 的吸收率较低,因光周期效应对细胞刺激作用延 长,促进植物生长,影响其开花结果^[7]。

图 2b 为监测 24 h 时的健康与接种样本的平均 光谱曲线。整体来看,接种组叶片的平均光谱反射 率高于健康组叶片的平均光谱反射率,这是由于病 菌侵染导致叶绿体等叶片细胞结构受到破坏,使得 叶片对光的吸收减弱。具体而言,在500~670 nm 波段,健康与接种叶片光谱曲线存在细微分离,接 种组叶片光谱反射率略高于健康组辣椒叶片,在 670~760 nm 波段,接种组叶片的红边位置较健康 组发生轻微"蓝移",在760~1 000 nm 的近红外波 段,接种组叶片的光谱反射率明显高于健康的叶片 反射率。

Fig. 2 Spectral curves of health and vaccination samples during incubation period (using hyperspectral images monitored for 24 h as an example)

(a) Spectral curves of the whole sample; (b) average spectral curve.

2.3 全光谱检测识别模型建立

通过预先使用高斯朴素贝叶斯、支持向量机、 多层感知器及逻辑回归等建模方法进行模型性能比 较,本研究优选采用逻辑回归(logistic regression, LR)建立了基于光谱特征的辣椒潜育期识别建模 方法。研究针对连续动态采集的健康和接种辣椒样 本建立全光谱的逻辑回归分类模型(本文所指的全 光谱是指本研究所用高光谱成像仪的完整工作波段 400~1000 nm),结果如表1所示。

 Table 1
 Classification results of health and vaccination samples using a logistic regression model based on full spectrum

Vaccination time/h	Number of input variables	Training set		Test set		
		Sample size	Accuracy/%	Sample size	Accuracy/%	
0	256	96	18.71	24	16.67	
12			67.46		73.50	
24			90.83		89.33	
36			87.5		87.50	
48			95.83		95.83	
60			97.92		100	
72			93.29		96.67	
96			92.71		91.67	
120			91.88		90.83	
144			89.58		95.83	
168			94.79		75.00	

由表1可见, 接种12h时, LR模型的分类结 果最差,训练集和测试集的准确率分别为67.46% 和73.50%, 说明此时早疫病侵染不明显, 接种叶 片的光谱与健康叶片的光谱差异不大, 识别效果不 佳。接种24h时,健康和接种样本的训练集和测试 集的准确率分别达到90.83%、89.33%, 说明随着 潜育期病状的演变,具备了较为明显的光谱检测特 征。接种36h时,测试集和训练集上的准确率均为 87.50%,相比前后时段(24h和60h)的准确率略 有降低,说明植物在病害侵染初期,自身防御机制 也增强,使得该时段光谱反射率没有线性增加而是 出现了一定的波动,后期随着侵染程度加深,接种 叶片的病状越来越明显。接种60h时, LR模型的 分类效果达到最佳,训练集和测试集的分类准确率 也都达到97%以上,说明这时病状已经具有非常 显著的光谱检测特征。此后,随着叶片离体培养的 时间延长,叶片细胞功能逐步衰退,健康组叶片的 生理活性也整体下降,对实验监测识别形成干扰, 使得检测样本的特征差异变得模糊,从而模型的识 别准确率逐渐下降。

2.4 辣椒早疫病潜育期特征波长选择

样本接种后处于潜育期的辣椒叶片,虽然表面 还没有显现出人眼可见的发病状态,但是受感染部 位的光谱特征已经发生变化,利用高光谱成像技术 结合逻辑回归建立全光谱的识别模型,接种24h时 的高光谱图像识别准确率达到89%以上,说明利 用光谱特征可以在肉眼观察到病状前实现对辣椒早 疫病潜育期病状进行检测。

然而,本研究所用高光谱成像仪的工作波段中 包含了256个光谱波段,使得实际监测图像中有大 量冗余信息,导致计算成本增加、效率降低,甚至 影响模型性能,因此需要从实验拍摄的高光谱图像 的所有工作波段中有效提取对作物病害监测识别的 特征波长。本研究使用遗传算法(genetic algorithm, GA)从早疫病潜育期(24h)辣椒叶 片的全光谱数据中选择特征波长。GA算法共选择 出18个有效鉴定辣椒早疫病潜育期的特征波长: 394.85 nm, 411.14 nm, 434.52 nm, 448.62 nm, 517.41 nm, 538.99 nm, 589.75 nm, 623.92 nm, 628.82 nm, 653.42 nm, 660.82 nm, 725.49 nm, 753.12 nm, 760.68 nm, 816.51 nm, 842.10 nm, 974.68 nm 及 982.59 nm。图 3 显示了这 18 个特征波 长在整个光谱曲线上的位置分布,GA算法挑选出 的特征波长大部分分布在健康和接种潜育期辣椒叶 片光谱差异较大的 500~670 nm 和 750~100 nm 波段。

Fig. 3 Selection of characteristic wavelengths of pepper samples at incubation period based on genetic algorithm

2.5 特征波长相关性分析

根据GA算法共选出18个特征波长中存在多组 相邻的特征波长(如411.14 nm和434.52 nm、 623.92 nm和628.82 nm等),这些相邻波长之间可 能存在强相关性,因此考虑是否去除相邻波长的其 中之一以优化特征波长组合。结合作物反射光谱曲 线的演变趋势,本研究以光谱反射率作为特征波长 相关性的遴选参量,设定两个波长光谱反射率的相 关系数达到0.9时,可判定二者存在很强的相关 性。利用相关性分析求出18个特征波长的两两相 关系数(图4)。

通过相关性分析得到,414.14 nm 和434.52 nm 的光谱反射率的相关系数达到0.99,说明两者存在 很强相关性,可去除其中之一。将414.14 nm 和 434.52 nm分别与其他16个特征波长的光谱反射率 的相关性进行比较,相比434.52 nm,414.14 nm的 光谱反射率与另外16个特征波长光谱反射率的相 关系数更大,说明414.14 nm与另外16个特征波长 具有更高相似度,所以本研究选择434.52 nm作为 辣椒早疫病潜育期的特征波长。其余16个特征波 长的选择规则与上述一致。

针对特征波长光谱反射率的相关性分析,进一 步遴选最优特征波长组合。对于两两特征波长之间 相关性极强但各自对模型识别效果均产生较大影响 的情况,本文选择保留两个特征波长以最大程度优 化特征波长组合,从而保证模型最佳识别效果。因 此在每一次比较舍去某特征波长时,均将新生成的 特征波长组合进行LR建模并将其识别结果与最初 基于GA算法选择的18个特征波长的LR模型识别 效果进行比较,从而最终确定是否舍去该特征波 长。通过上述逐一遴选比较,本研究最终得到由 13个特征波长组成的最优特征波长组合,分别为 394.85 nm、411.14 nm、448.62 nm、517.41 nm、 538.99 nm、589.75 nm、628.82 nm、653.42 nm、

Fig. 4 Correlation analysis of spectral reflectance at characteristic wavelengths

725.49 nm, 760.68 nm, 816.51 nm, 974.68 nm, 982.59 nm, 并利用这13个特征波长最终建立了辣 椒早疫病潜育期高光谱图像的检测识别模型。

2.6 全光谱与特征波长模型识别效果比较

通过特征波长间的相关性分析,磷选出检测辣 椒早疫病潜育期高光谱图像的最优特征波长组合

(optimal characteristic wavelength combination, OCWC),从而建立普适性更好、稳定性更强的辣 椒早疫病潜育期高光谱图像识别模型。分析比较了 全光谱(256个波长)、18个特征波长、13个特征 波长的建模识别效果(表2)。

Table 2 Comparison of modeling effects between full spectrum and characteristic wavelength

Model	Number of input variables	Training set		Test set	
		Sample size	Accuracy/%	Sample size	Accuracy/%
LR	256	96	90.83	24	89.33
GA-LR	18	96	92.71	24	95.83
OCWC-LR	13	96	93.75	24	95.83

相比基于全光谱的LR分类模型和基于18个特 征波长的GA-LR分类模型,基于13个特征波长的 OCWC-LR分类模型取得了更为优秀的识别结果。 其中, 基于全光谱的LR分类模型在训练集和测试 集的分类准确率分别为90.83%和89.33%。基于18 个特征波长的GA-LR分类模型在训练集和测试集 的分类准确率分别为92.71%和95.83%, 说明GA-LR模型的识别效果已经十分可观。基于13个特征 波长的OCWC-LR分类模型,其训练集和测试集的 准确率分别达到了93.75%和95.83%,在进一步简 化光谱变量个数的同时,又有效提升了模型性能。 模型分类结果表明,利用健康与染病叶片的光谱特 征差异可对早疫病潜育期的辣椒叶片进行有效识 别,选择高光谱图像的最佳特征波长组合可有效揭 示作物早疫病潜育期的病状演变。

2.7 基于纹理特征的辣椒早疫病潜育期检测识别 模型建立

在利用高光谱图像的光谱特征建立基于最优特 征波长组合的LR模型有效识别辣椒早疫病潜育期 特征的基础上,结合高光谱图像"图谱合一"的特 点,利用图像纹理特征建立辣椒早疫病潜育期的检 测识别模型。

2.7.1 提取特征波长对应的特征图像

高光谱图像中每一个像素均具有光谱信息^[8], 提取病害叶片高光谱图像中的光谱信息和图像信 息,可以进行相关检测识别^[9]。根据GA算法结合 光谱相关性分析筛选出13个特征波长最优组合, 本研究提取了健康样本与病害潜育期叶片高光谱图 像中这13个特征波长所对应的系列灰度图 像(表3)。

Table 3 Characteristic wavelength grayscale map of health (H) and inoculation (I) samples during incubation period

从表3可见,因高光谱图像在短波波段噪声较 大,导致前3个特征波长(即394.85 nm、411.14 nm 及448.62 nm)对应的图像较暗、叶片纹理特征模 糊。在后续10个特征波长所对应的灰度图中,对 于健康叶片,其灰度图整体均匀、叶片脉络较为清 晰,对于接种样本,在特征波长517.41 nm及其以 后的灰度图中能看出接种部位的病斑形态。

植物叶片表面的叶脉分布具有一定的规律性, 可用于叶片纹理信息的提取。LBP算子作为一种基 于灰度信息的纹理提取方式被广泛应用于叶类目标 的纹理特征提取,具有较强的纹理描述能力^[10-11]。 LBP 是由 Ojala、Pietikainen 和 Harwood 在 1994 年 提出的用于描述图像局部纹理特征的算子^[12],该 算法通过度量和提取图像局部的纹理信息,在不经 过预处理的情况下就能达到较高的识别效果,具有 光照不变性和旋转不变性的优点,被广泛用作计算 机视觉领域纹理特征的分类方法^[13-14]。

为了增强特征提取的稳定性,本研究舍去前3 个特征波长对应的灰度图,利用后续10个特征波 长的灰度图作为研究对象,对健康样本潜育期叶片的10个特征波长进行LBP特征提取,获取对应图像的纹理信息,取其平均值作为单个样本的纹理特征值进行建模识别。

2.7.2 LBP特征提取

LBP模式的特征提取步骤: a. 原始的LBP算子 定义为在3×3的窗口内,以窗口中心像素为阈值, 将相邻的8个像素的灰度值与其进行比较,若周围 像素值大于中心像素值,则该像素点的位置被标记 为1,反之为0; b. 将窗口左上角的像素点作为起 始点,顺时针旋转,与阈值进行比较,得到一串8 位的二进制数(全部都是0与1),将该二进制数转 化为十进制,十进制数应该介于0至255之间(通 常转换为十进制数即LBP码,共256种),刚好与8 位图像的灰度值对应; c. 将该十进制数作为该窗口 中心点的像素值保存起来,即得到该窗口中心像素 点的LBP值,并用这个值来反映该区域的纹理信 息。当遍历整张图像后,得到的新图像即为提取出 的纹理图^[15],操作过程如图5所示。

Fig. 5 LBP feature description diagram

经过LBP算子的计算,每个像素都会有一个 LBP特征值,将其表示为一张图像称为LBP图谱。 图 6 为 517.41 nm 特征波长下提取到的健康与接种 辣椒叶片的LBP图谱。

Fig. 6 LBP feature images

在 517.41nm 特征波长下,利用接种叶片 LBP 图谱建立 LBP 直方图,过程如图 7 所示。通过对样 本 LBP 图谱中所有矩形区域进行统计建立 LBP 直 方图,再将所有子区域的LBP直方图串联连起来,得到用于描述整张图片的LBP直方图,用于识别模型建立。

Fig. 7 LBP histogram establishment process

2.7.3 纹理特征的LBP识别模型建立

为了提高模型性能,在基于纹理特征建模时剔 除了表3所的前3个特征波长对应的灰度图, 仅利 用后面10个特征波长所对应的灰度图,建立了基 于LBP特征的辣椒早疫病潜育期病状的检测识别 模型,并将其与基于光谱特征的潜育期病状的检测 识别模型相比较,识别结果如表4所示。

Table 4 Comparison of recognition effects of latent period models for pepper early blight based on spectral texture features

Model	Number of input variables	Training set		Te	st set
		Sample size	Accuracy/%	Sample size	Accuracy/%
OCWC-LR (spectral features)	13	96	93.75	24	95.83
LBP-LR (texture features)	10	96	98.96	24	100.00

从表4中可以看出,不管是利用光谱特征还是 纹理特征建立相关的检测模型,均能够实现对辣椒 早疫病潜育期的有效识别,且识别效果较好,训练 集和测试集的准确率均能达到93%以上。利用纹 理特征建立的潜育期病状检测识别模型在性能上优 于利用光谱特征建立的潜育期病状检测识别模型, 前者训练集和测试集的准确率分别达到了98.96% 和100%, 说明潜育期病状中纹理信息具有更好的 识别效果,有效提升了模型检测性能。

3 结 论

本研究综合考虑到以下因素:田间往往多种病 害交杂共存对潜育期病状的图像监测识别造成的复 杂影响;田间环境复杂也会给造成监测识别造成干 扰:作物病害潜育期病状具有微弱敏感、不易识别 的特点。为了简化外界环境的干扰以及多种病状交 杂共存造成的复杂影响,本文在实验室条件下,通 过接种茄链格孢菌进行单一病种的潜育期病状的监 测识别模型研究,利用光谱特征和纹理特征建立了 单一病害潜育期病状的识别模型,为后续进行复杂 环境和田间多种病害交杂共存的监测识别奠定了方 法基础。本研究利用高光谱图像的光谱特征和纹理 特征分别建立相应检测识别模型,实现对辣椒早疫 病潜育期病状的有效识别,通过研究可以得到:

a. 分析健康与接种辣椒叶片在全光谱波段 (400~1 000 nm)的平均光谱反射率,得到健康叶 片与染病潜育期辣椒叶片的光谱反射率存在明显差 异的波段(500~670 nm、760~1 000 nm)。利用GA 算法结合光谱相关性分析,得到与病害信息紧密关 联的13个特征波长,并利用最优特征波长组合建 立辣椒早疫病潜育期检测识别模型。

b. 比较基于全光谱和最优特征波长组合的检测 识别模型,基于最优特征波长组合建立的分类模型 效果得到了更好的检测结果,训练集和测试集的准 确率均达到93%以上,表明利用光谱特征可有效 实现辣椒早疫病潜育期病状的检测识别。

c. 利用纹理特征建立作物病害潜育期高光谱图 像的检测识别模型, 在训练集和测试集的准确率分 别达到了98.96%和100%,说明潜育期病状中纹理 信息具有更好的识别效果,有效提升了模型检测性 能。相比基于光谱特征的识别效果,采用纹理特征 的识别结果更为稳定且检测识别性能有所提升。

在本文研究的基础上,后续将进一步优化拓展 到田间病害和复杂环境下的病害潜育期的监测识 别,本文研究结果将为农作物病害潜育期监测识别 的实用化提供理论参考。

参考文献

- Lowe A, Harrison N, French A P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods, 2017, 13: 80
- [2] Cheshkova A F. A review of hyperspectral image analysis techniques for plant disease detection and identif ication. Vavilovskii Zhurnal Genet Selektsii, 2022, 26(2): 202-213
- [3] Rajendran D K, Park E, Nagendran R, et al. Visual analysis for detection and quantification of *Pseudomonas cichorii* disease severity in tomato plants. Plant Pathol J, 2016, 32(4): 300-310
- [4] Bohnenkamp D, Kuska M T, Mahlein A K, et al. Hyperspectral signal decomposition and symptom detection of wheat rust disease at the leaf scale using pure fungal spore spectra as reference. Plant Pathol, 2019, 68(6): 1188-1195
- [5] Abdulridha J, Batuman O, Ampatzidis Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sens, 2019, 11(11): 1373
- [6] 沈梦姣,鲍浩,张艳.辣椒早疫病潜育期的光谱特性判别方法. 光谱学与光谱分析,2024,44(10):2923-2931
 Shen M J, Bao H, Zhang Y. Spectrosc Spect Anal, 2024, 44(10): 2923-2931
- [7] 邵欢欢.植物吸收光谱测量及光谱调控[D].合肥:中国科学技 术大学,2015

Shao H H. Measurement and Spectral Regulation of Plant Absorption Spectrum[D]. Hefei: University of Science and Technology of China, 2015

- [8] 吴静珠,刘倩,陈岩,等.高光谱技术检测单籽粒小麦粗蛋白含量探索.红外与激光工程,2016,45(B05):127-131
 Wu J Z, Liu Q, Chen Y, et al. Infrared Laser Eng, 2016, 45(B05): 127-131
- [9] 芦兵,孙俊,杨宁,等.基于荧光透射谱和高光谱图像纹理的茶 叶病害预测研究.光谱学与光谱分析,2019,39(8):2515-2521
 Lu B, Sun J, Yang N, *et al.* Spectrosc Spectr Anal, 2019, 39(8): 2515-2521
- [10] 芦兵.基于高光谱图像的食源性植物叶部病害检测方法研究
 [D].镇江:江苏大学,2020
 Lu B. Study on Detection Method of Leaf Diseases of Food-borne Plants Based on Hyperspectral Images[D]. Zhenjiang: Jiangsu University,2020
- [11] 郑一力, 钟刚亮, 王强, 等. 基于多特征降维的植物叶片识别方法. 农业机械学报, 2017, 48(3): 30-37
 Zheng YL, Zhong GL, Wang Q, et al. Trans Chin Soc Agric Mach, 2017, 48(3): 30-37
- [12] Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions//IEEE. Proceedings of 12th International Conference on Pattern Recognition. Jerusalem, Israel: IEEE, 1994: 582-585
- [13] Wang X, Han T X, Yan S. An HOG-LBP human detector with partial occlusion handling//IEEE. 2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009: 32-39
- [14] 李龙龙,何东健,王美丽.基于改进型LBP算法的植物叶片图 像识别研究.计算机工程与应用,2021,57(19):228-234
 Li L L, He D J, Wang M L. Comput Eng Appl, 2021, 57(19): 228-234
- [15] 米福,陆佳平,孙旋,等.基于LBP的特征融合猴魁茶叶叶尖和 叶柄识别研究.包装与食品机械,2022,40(4):14-19 MiF,LuJP,SunX,etal.PackagFoodMach,2022,40(4):14-19

Research on Hyperspectral Image Detection and Recognition of Pepper Early Blight Incubation Period Based on Spectral and Texture Features*

SHEN Meng-Jiao¹⁾, BAO Hao²⁾, ZHANG Yan^{1,2)**}

(¹⁾School of Computer Science, Nondestructive Testing Center for Agricultural Products, Guiyang University, Guiyang 550005, China;
²⁾School of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

Graphical abstract

^{*} This work was supported by grants from The National Natural Science Foundation of China (62265003, 62141501).

^{**} Corresponding author.

Tel: 86-851-85402217, E-mail: Eileen_zy001@sohu.com Received: April 3, 2024 Accepted: July 1, 2024

·243·

Abstract Objective Early blight is a common destructive disease in the growth process of *Solanaceae* crops, which can lead to crop failure and serious losses. Traditional crop disease detection methods are difficult to detect disease characteristics in a timely manner during the incubation period of disease, and thus take scientific and effective prevention and control measures. This study obtained hyperspectral images of early blight of peppers at different infection stages through continuous monitoring with a hyperspectral imager. The earliest identifiable time during the incubation period of early blight in peppers (the earliest identifiable time during the incubation period in this experiment was 24 h after inoculation) was determined using the spectral angle cosine-correlation coefficient and Chebyshev distance. Methods Taking the symptoms of the latent period of early blight in peppers as the research object, 13 characteristic wavelengths were selected using a genetic algorithm. An identification model of crop disease latent period symptoms based on spectral features was established through optimized combinations of characteristic wavelengths combined with a logistic regression model. Simultaneously, a recognition model of the latent period of early blight in peppers based on image texture features was established using local binary patterns. **Results** The experiment was tested with 120 samples. The accuracy of the identification model of crop disease latent period symptoms based on spectral features reached over 93% in both the training set and the test set. The accuracy of the identification model of crop disease latent period symptoms based on texture features reached 98.96% and 100% in the training set and test set, respectively. Conclusion Both spectral features and texture features can be used to detect and identify crop disease latent period symptoms. Texture features more significantly revealed the characteristics of the latent period of the disease compared to spectral features, effectively improving the detection performance of the model. The research results in this article can provide theoretical references for monitoring and identifying other crop disease latent period symptoms.

Key words hyperspectral images, chili pepper early blight, incubation period, image and spectral features, detection and recognition

DOI: 10.16476/j.pibb.2024.0136 **CSTR:** 32369.14.pibb.20240136

2025; 52 (1)